2009-wear-Slurry and cavitation erosion resistance of thermal spray coatings!

2009-wear-Slurry and cavitation erosion resistance of thermal spray coatings!
2009-wear-Slurry and cavitation erosion resistance of thermal spray coatings!

Wear267(2009)160–167

Contents lists available at ScienceDirect

Wear

j o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/w e a

r

Slurry and cavitation erosion resistance of thermal spray coatings

J.F.Santa?,L.A.Espitia,J.A.Blanco,S.A.Romo,A.Toro

Tribology and Surfaces Group,National University of Colombia,Medellín,Colombia

a r t i c l e i n f o

Article history:

Received9September2008

Received in revised form9January2009 Accepted10January2009

Keywords:

Cavitation erosion

Slurry erosion

Thermal spray coatings

Wear mechanisms a b s t r a c t

The slurry and cavitation erosion resistance of six thermal spray coatings were studied in laboratory and compared to that of an uncoated martensitic stainless steel.Nickel,chromium oxide and tungsten carbide coatings were applied by oxy fuel powder(OFP)process and chromium and tungsten carbide coatings were obtained by high velocity oxy fuel(HVOF)process.The microstructure of the coatings was analyzed by light optical microscopy(LOM)and scanning electron microscopy(SEM),as well as by X-ray diffraction (XRD).The cavitation erosion resistance of the coatings was measured in a vibratory apparatus according to ASTM G32standard and the slurry erosion tests were carried out in a modi?ed centrifugal pump in which the samples were conveniently placed to guarantee grazing incidence conditions,as well as in a high velocity jet erosion testing machine.

The results showed that the slurry erosion resistance of the steel can be improved up to16times by the application of the thermally sprayed coatings.On the other hand,none of the coated specimens showed better cavitation resistance than the uncoated steel in the experiments.The main mass removal mechanisms observed in all the coatings submitted to slurry erosion were micro-cutting and micro-ploughing as well as detachment of hard particles.In cavitation erosion,OFP coatings showed brittle fracture and microcracking,and in nickel-based coatings some ductile deformation was also observed.In HVOF coatings,detachment of small particles led to coalescence of pores in WC/Co coatings while in CrC coatings the main wear mechanism was brittle fracture of particles.

Published by Elsevier B.V.

1.Introduction

Martensitic stainless steels are widely used in hydroelectric power plants due to their good properties such as corrosion resis-tance,weldability and moderate cavitation erosion and slurry erosion resistance[1].

Slurry erosion problems are especially important during rainy seasons in hydroelectric power plants due to the increase in the number of solid particles impacting the surfaces,especially in sys-tems where the installation of an exhaustive?ltration process is not possible[2].Cavitation erosion problems are found in Pelton and Francis runners as well as in other parts of the turbine system as a result of rapid changes in pressure,which lead to the formation of small bubbles or cavities in the liquid.These bubbles collapse near the component’s surface at a high frequency in such a way that the elastic shock wave created is able to cause erosion of the material straight afterwards[3].

It is desirable that reparation of the worn components can be accomplished without changing signi?cantly the microstructure of

?Corresponding author.

E-mail address:jfsanta@https://www.360docs.net/doc/02276962.html,(J.F.Santa).the steel and the shape of the part,in addition to the expected pro-tective effect of the new surfaces against cavitation and erosion.A good way to improve the slurry and cavitation erosion resistance of the components is by the application of thermally sprayed coat-ings[4,5].The term thermal spray describes a family of processes that use chemical or electrical energy to melt(or soften)and accel-erate particles of a material which is then deposited on a surface [6].The quality of the coatings obtained by thermal spray tech-niques is related to the nature of the process and the processing parameters.

In some countries hydroelectric power plants are the most important sources of energy and,in order to operate them ef?-ciently,the parts in contact with?uids usually require special maintenance procedures including welding repairs and time-consuming heat treatments.

On the other hand,thermal spray coatings are a good option to repair components and prevent excessive wear because during the deposition process no signi?cant changes to the microstructure of substrates or excessive deformation are promoted.

In this work,six thermal spray coatings were studied in labo-ratory in order to evaluate their resistance to cavitation and slurry erosion.The evaluation was done in order to decide if the coatings were a good option to repair worn parts of hydroelectric turbines

0043-1648/$–see front matter.Published by Elsevier B.V. doi:10.1016/j.wear.2009.01.018

J.F.Santa et al./Wear 267(2009)160–167

161

Table 1

Processing parameters of coatings a .Coating

Feedstock materials

Gas ?ow (10?4m 3s ?1)(cfh)

Air pressure (kPa)(psi)Coating rate (10?

4kg s ?1)(Lbs h ?1)Standoff distance (10?3m)(in.)Travel velocity (10?2m s ?1)(in.s ?1)Density (kg m ?3)Ni-1Ni (95%)Al (5%)particles O 2=3.7(35)CH 2=6.6(70)207(30)11(9)200(8)10(3.9)7.7Ni-2

Cladded Ni,Cr,Mo,Ti

O 2=4.3(40)CH 2=5.8(60)241(35)7(10)200(8)13(5.1)7.7WC/Co–Ni WC/Co particles (46%)and Ni–Fe–Cr (54%)

O 2=4.1(38)CH 2=5.8(60)207(30)6(13)75(3)10(3.9)13.2Cr

Chromium oxide (100%)

O 2=4.3(40)CH 2=5.8(60)

76(11)

4(10)

200(8)

8(3.1)

5.6

a

English units are shown along with SI units because all the indications in the equipment controls are given in English system.

Fig.1.(a)Cavitation vibratory apparatus according to ASTM G32and (b)modi?ed centrifugal pump for slurry erosion tests.

which are submitted to cavitation and slurry erosion under grazing incidence.

2.Experimental procedure 2.1.Materials

The coatings were applied onto ASTM A743grade CA6NM martensitic stainless steel (from now on,13-4steel),commonly used in turbine components,by OFP (Terodyn 2000gun)and HVOF processes.The deposition parameters chosen for OFP coatings are described in Table 1,while HVOF coatings were applied by a com-mercial manufacturer following proprietary deposition conditions.The 13-4steel was received in the as-cast condition and it was homogenized at 1050?C for 1h and then air-cooled to room tem-perature.After that,the specimens were tempered at 620?C for 1h and cooled down in air.

The surfaces were prepared by sand blasting to a surface ?nish-ing of R a =5.4±0.5?m.In some cases a nickel-rich bond coat was applied to improve the adhesive strength of the substrate-coating system.The coatings were applied on cylinders with 9.65mm in diameter and 9.65mm in height for slurry erosion testing (modi-?ed centrifugal pump)and cylinders with 15.9mm in diameter and 6mm in height for cavitation erosion testing.The jet erosion tests were carried out using test samples with 45mm ×17mm ×5mm.The coated surfaces were machined in order to obtain samples with the same thickness in all cases.

2.2.Microstructure and chemical characterization

The microstructure of the coatings,feedstock materials and worn surfaces was analyzed in a thermoionic scanning electron microscope (SEM)and a light optical microscope (LOM).The char-acterization included measuring of volume fraction of pores and phases by digital image processing (DIP),localized chemical analy-sis with an EDS spectrometer coupled to the SEM,Vickers hardness and micro-hardness measurements and X-ray diffraction analysis

(XRD)in a diffractometer with Cu K ?radiation equipped with a 2D solid-state detector.The XRD patterns were used to identify the phases in the coatings and to understand the phase formation during coatings’build-up.2.3.Wear measurements

2.3.1.Cavitation erosion tests

Cavitation erosion tests were performed using a vibratory appa-ratus according to ASTM G32shown in Fig.1a.Mass losses were measured every hour using a scale with 0.01mg resolution and each test had a duration of 6h.The results were converted to vol-ume losses in order to effectively compare the tested materials.The conditions of the test were as follows (Table 2).

2.3.2.Slurry erosion tests

The slurry erosion tests were carried out in a modi?ed centrifu-gal pump described elsewhere [7]in which the specimens were placed at the outlet of the device to ensure grazing incidence of the slurry (Fig.1b).The slurry was composed of distilled water and quartz particles with a mean diameter between 212and 300?m (AFS 50/70)and the solids content was 10wt%.The mean impact velocity of the slurry was 10m s ?1and the erosion resistance was determined from the mass loss results.Mass losses were measured every 30min by using a scale with 0.01mg resolution.The total duration of each test was 120min.

Additional tests were performed in a jet erosion testing machine in which slurry composed of water and 0.4wt%of SiO 2particles

Table 2

Testing parameters in cavitation erosion tests.Frequency 20±0.2kHz Amplitude 50±2.5?m Fluid

Distilled water Temperature

22±1?C

Mass loss measurements Cleaning,drying and mass measurements every hour Total testing time

6h

162J.F.Santa et al./Wear 267(2009)

160–167

Fig.2.Schematic of jet erosion tests setup.

(AFS 50/70)reached the surface of the samples with an impact velocity of 75m s ?1at an incidence angle of 15?(Fig.2).Only fresh slurry was used for each sample and the tests lasted 4min with measurement of mass losses every 1min.

In both wear tests the coatings were tested under grazing incidence using the same abrasive particles at different impact velocities.The testing conditions are similar to those observed in some components of hydraulic turbines such as liners and runners.2.3.2.1.Analysis of worn surfaces.The worn surfaces were analyzed by LOM and SEM in order to identify the wear mechanisms and relate them to the mass loss results.3.Results and discussion

3.1.Microstructure of coatings and substrate

Fig.3shows the microstructure of 13-4steel as well as of the coatings and feedstock materials.

Fig.4shows the XRD patterns of the studied coatings,where all the crystalline phases were identi?ed.

The microstructure of the steel is composed of martensite (aver-age hardness 280HV 62,5)with 15%retained austenite and 4%delta ferrite (?)[8]

.

Fig.3.Microstructure of 13-4stainless steel,thermal spray coatings and feedstock materials.

J.F.Santa et al./Wear267(2009)160–167

163

Fig.4.XRD patterns of the thermal spray coatings used in this work.

Ni-1coating is composed of14.6±1.2%aluminum oxide particles(1533HV25gf,15s)and Ni splats(191HV300g,15s).DIP mea-surements reported2.9±1.2%porosity.XRD patterns revealed that the oxides do not have a crystalline system as a consequence of the high cooling rates during coatings build-up.[9].The average thickness of the as-sprayed coatings was650?m.

Ni-2coating is composed of Ni–Fe–Mo–W–Si particles(385 HV50gf,15s)and titanium oxide particles(701HV50gf,15s).DIP mea-surements reported4.4±1.5%porosity.As described for Ni-1,the oxides in the coatings do not have a crystalline system although the XRD pattern of feedstock powder revealed the presence of a crystalline titanium oxide(TiO2).The average thickness of the as-sprayed coatings was760?m.

WC/Co–Ni coating is composed of46±2%Ni–Fe–Cr(639 HV300g,15s)particles and54±3%of WC/Co and WC particles(1211 HV HV300g,15s)as reinforcement.The volume fraction of pores was estimated to13.7±3.8%by DIP of SEM images.The coating has partially crystalline Co4W2C carbides which were identi?ed by a convex zone near40?in XRD patterns(Fig.4).The average thickness of the as-sprayed coatings was820?m.

Cr coating is composed mainly of Chromium oxide Cr2O3(1853 HV300g,15s)with a porosity of30%.The as-sprayed surfaces had some cracks and the morphology of splats can be described as?ower shaped[7].It is noteworthy that these splats reported very low values of cohesion among lamellas.The average thickness of the as-sprayed coatings was450?m.

The microstructure of WC/Co HVOF coating is composed of?ne tungsten carbides(WC)in a Co matrix with a porosity of2%,which is considerably lower than that measured in OFP ceramic coatings. The average thickness of the as-sprayed coatings was85?m.

CrC HVOF coatings showed a very heterogeneous thickness, which caused that in some areas the uncoated steel was actually exposed.The coatings microstructure is composed of Cr3C2and metallic Ni.Other peaks identi?ed in the XRD pattern were related to the substrate as a consequence of X-ray penetration.The average thickness of the as-sprayed coatings was40?m.

Generally speaking,the microstructure of the OFP coatings is related to what is commonly expected for this deposition process as the particles impact the surfaces at low temperatures and low velocities,which cause defects such as pores,partially melted par-ticles and others.Regarding the HVOF coatings,porosity levels are signi?cantly lower than those observed in OFP samples even with presence of elevated volume fractions of ceramic phases with high melting points.This is coherent with the nature of HVOF process, in which a high amount of kinetic energy is given to the particles to reach velocities up to800m s?1.

3.2.Cavitation erosion tests

Fig.5shows the volume losses measured after cavitation erosion tests,as a function of testing time.It can be seen that the uncoated stainless steel(13-4)showed the best cavitation resistance of all the samples tested.Among the coatings,the best behavior was reported by CrC(HVOF)coating followed by WC/Co–Ni.Although none of the tested coatings showed incubation period(mass losses were mea-sured from the beginning of the tests),the Ni-2and CrC coatings had uniform wear rate during the entire test.In the speci?c case of the CrC HVOF coating,it is believed that its good behavior is the result of insuf?cient coating thickness as SEM observations revealed that the surface of the stainless steel was reached soon after the begin-ning of the tests.In all the other cases,SEM examination of worn surfaces con?rmed that the substrate was not exposed.

The volume losses reported by Cr coating(omitted in Fig.5)were extremely high and prevented any possibility for this coating to be considered a good option to protect against cavitation.How-ever,a reduction of porosity could probably result in an increase of

164J.F.Santa et al./Wear267(2009)

160–167

Fig.5.Cumulative volume losses in cavitation erosion tests performed according to ASTM G32standard.

the cavitation resistance of these coatings due to their high hard-ness.

3.2.1.Analysis of worn surfaces and identi?cation of wear mechanisms in cavitation erosion

The examination of worn surfaces in stereoscopic microscope revealed different features for each material(Fig.6).WC/Co–Ni coating showed detachment of large particles of WC/Co from the surface,which caused high volume losses and was related to pre-vious cracks formed during the growth of the coating as a result of high cooling rates and differences among the thermal expansion coef?cients of the phases in the microstructure(Fig.7a).In Ni-rich coatings,on the other hand,the surfaces showed typical plas-tic deformation marks and no detachment effects were observed although SEM inspection of the as-sprayed surfaces showed that aluminum oxides were also cracked from the deposition process (Fig.7b).

The main mass removal mechanism for13-4stainless steel was fatigue delamination due to accumulation of plastic deformation, which was revealed by the presence of deformation bands in highly deformed areas(Fig.8a).Ni-1and Ni-2coatings showed fracture of oxides and the formation of small cavities in Ni splats(Fig.8b and c).WC/Co particles of WC/Co–Ni coatings showed sharp surfaces as consequence of propagation of cracks(Fig.8d).

In WC/Co HVOF coatings the removal mechanism was coales-cence of pores,which were created as a result of a process that began with the erosion of the Co binder followed by detachment of small particles of WC(Fig.8e).In CrC HVOF coatings,portions of the coating detached from substrate due to adhesion problems and the remaining areas showed ductile deformation of Ni particles and detachment of CrC(Fig.8f).

3.3.Slurry and jet erosion tests

Figs.9and10show the cumulative volume loss after slurry ero-sion tests carried out in modi?ed centrifugal pump and jet erosion device,respectively.Generally speaking,no running-in period was observed probably as a consequence of the high severity of the tests.A signi?cant improvement in the erosion resistance of the 13-4stainless steel was obtained by application of the OFP

coatings, Fig.6.Worn surface observed in stereoscopic

microscope.

Fig.7.Surfaces of as-sprayed coatings showing cracks formed during the deposition of the layers.

J.F.Santa et al./Wear 267(2009)160–167

165

Fig.8.Worn surfaces of thermal spray coating tested in cavitation erosion.Ni coatings showed pits formation in splats.Hard phases in WC/Co and CrC coatings showed brittle

behavior.

Fig.9.Cumulative volume losses in slurry erosion in modi?ed centrifugal pump.Impact velocity 10m s ?1.Solids content 10wt%SiO 2

particles.

Fig.10.Cumulative volume losses in jet erosion tests.Impact velocity 75m s ?1.Solids content 0.4wt%SiO 2particles.

being the WC/Co–Ni the best option in all cases.By considering the total volume loss measured at the end of the tests,under low veloc-ity impingement conditions (centrifugal pump)the improvement factor was 5:1while in the jet erosion tests it increased to 16:1.3.3.1.Analysis of worn surfaces and identi?cation of wear mechanisms in slurry and jet erosion tests

The surface of the coated specimens tested in the modi?ed cen-trifugal pump showed two distinct regions when observed in the stereoscopic microscope (Fig.11):the ?rst one was typical of severe erosion conditions with deep and abundant grooves in metallic areas and microcracks in ceramic phases,although the erosive par-ticles did not reach the steel substrate in any case.In the second region mild wear was predominant since no signi?cant changes were observed at the worn surfaces with respect to the as-sprayed condition.In both zones,the wear patterns were typical of erosion under grazing incidence (with micro-cutting and micro-ploughing marks)and also beach marks were evident (Fig.11a).In all cases,during the testing time the substrate was not reached by the erodent particles so the wear resistance of the coatings could be effectively compared.In some regions of the Cr coatings the lack of adhesion among lamellaes caused detachment of the coating (Fig.11c).This behavior is supposed to be a consequence of the low energy deliv-ered to the particles during coating formation and it is a limitation of the OFP technique.

In jet erosion tests,on the other hand,the wear patterns observed in the stereoscopic microscope varied depending on the tested material (Fig.12).The worn surface of WC/Co–Ni coatings exhibited both severe wear (marked by the arrow in Fig.12a)and mild wear regions,while Ni-2coating and 13-4stainless steel (Fig.13d)showed homogeneous patterns along the entire worn area.

The examination of the worn surfaces by SEM revealed details on the wear mechanisms and their relationship with the microstruc-ture for both erosion tests.Titanium oxide particles cracked and detached from Ni-2coating’s surface (Fig.13a and f)leaving the Ni matrix unprotected.As a consequence of detachment of hard phases,the erodent particles caused micro-cutting and micro-ploughing.Although this mechanism was similar in both erosion

166J.F.Santa et al./Wear267(2009)160–167

Fig.11.Wear mechanisms in slurry erosion tests(centrifugal pump).

Fig.12.Wear mechanisms in jet erosion tests.

Fig.13.Worn surfaces of thermal spray coatings tested in slurry and jet erosion.

J.F.Santa et al./Wear267(2009)160–167167

tests,the degree of plastic deformation of single splats was signi?-cantly higher in the jet erosion tests.

Cr coatings showed high mass losses due to brittle fracture of lamellas as a result of intersection of cracks and delamination effects,with no evidence of plastic deformation or ploughing marks (Fig.13c).Very low values of adhesion/cohesion strength were found(4.9±0.6MPa)after measurements carried out according to ASTM C633standard,which veri?ed the prejudicial effect of the brittle behavior of the microstructure.

WC/Co coatings showed micro-cutting of Ni splats as well as brittle fracture of WC/Co lamellas(Fig.13b and e).Also,a number of small cavities,probably formed by a synergistic corrosion–erosion mechanism[10],were observed in WC/Co particles.However,since Ni particles are expected to be more sensitive to corrosion than WC/Co particles,this hypothesis needs to be studied in detail and veri?ed with the aid of critical experiments.

4.Conclusions

Slurry and cavitation erosion tests of six thermal spray coat-ings and a bare13-4stainless steel were performed in laboratory in order to determine their wear resistance and identify the main wear mechanisms acting on the surfaces.The main conclusions of this work are

-The cavitation erosion resistance of the studied coatings was lower than that of uncoated stainless steel in all cases.This was attributed to high porosity,low cohesion between splats and pre-existent cracks in the coatings.To overcome these drawbacks a number of options are available,i.e.changing the application technique,optimizing some process parameters,among others. -The slurry erosion resistance of the13-4stainless steel was improved by deposition of thermally sprayed coatings with differ-

ent microstructures and chemical compositions,being obtained the best results with a WC/Co–Ni coating.

-The main mass removal mechanisms observed in thermal spray coatings after cavitation tests were brittle fracture of hard phases and fatigue of ductile areas.In slurry and jet erosion tests the dom-inant wear mechanisms were micro-cutting and micro-ploughing of softer phases and,in some cases,detachment of hard particles.

Acknowledgments

The authors thank the Empresas Públicas de Medellín E.S.P for their technical support.Financial support provided by Colciencias-EPM-UNAL project no.20201005975is also acknowledged. References

[1]H.J.Niederau,in:K.H.Miska(Ed.),State of Development of Soft Martensitic

Stainless Chromium Nickel Steels,Climax Molybdenum Company,1997.

[2]T.Kachele,Recent research results on predicting and preventing silt erosion,

in:Proceedings of the First International Conference on Silting Problems in Hydropower Plants,October1999,India,1999.

[3]S.C.Li,Cavitation of Hydraulic Machinery,Imperial College Press,2000.

[4]K.Sugiyama,et al.,Slurry wear and cavitation erosion of thermal-sprayed cer-

mets,Wear Volume258(2005)768–775.

[5]J.S.Boy,et al.Cavitation-and Erosion-Resistant Thermal Spray Coatings USAC-

ERL Technical Report97/118,July1997.

[6]L.Pawlowski,The Science and Engineering of Thermal Spray Coatings,John

Wiley&Sons Ltd.,London,1995.

[7]J.F.Santa,J.C.Baena,A.Toro,Slurry erosion of thermal spray coatings and stain-

less steels for hydraulic machinery,Wear263(2007)258–264.

[8]H.Pacheco,Phase Transformation Caused by a Post Weld Heat Treatment in

ASTM A743CA6NM Stainless Steel,National University of Colombia,2008. [9]F.Longo,Coating operations,in:Handbook of Thermal Spray Technology,ASM

International,2004,pp.120–127.

[10]M.M.Stack,T.M.Abd El-Badia,Some comments on mapping the combined

effects of slurry concentration,impact velocity and electrochemical potential on the erosion–corrosion of WC/Co–Cr coatings,Wear264(2008)826–837.

外阴白色病变考试试题

外阴白色病变考试试题 一、A1型题(本大题11小题.每题1.0分,共11.0分。每一道考试题下面有A、 B、C、D、E五个备选答案。请从中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。) 第1题 外阴硬化性苔癣的早期病理改变是 A 表层细胞过度角化 B 表层细胞增生 C 真皮乳头层水肿 D 毛囊角质栓塞 E 底层细胞增生 【正确答案】:C 【本题分数】:1.0分 第2题 女,50岁。因外阴瘙痒而就医,组织病理为增生型,营养不良,下列治疗中哪项是正确的 A 因有恶变趋向,应及早手术治疗 B 全身治疗 C 补充多量维生素 D 活检有非典型增生时手术治疗 E 全身+局部治疗 【正确答案】:D 【本题分数】:1.0分 第3题 关于外阴瘙痒下列哪项是正确的 A 外阴瘙痒是外阴癌的早期表现 B 外阴瘙痒最常见的原因是蛲虫病

C 外阴瘙痒严重时用肥皂液清洗会有所好转 D 外阴瘙痒经治疗无效应作单纯性外阴切除术 E 外阴瘙痒不是一种疾病而是多种疾病可引起的一种症状 【正确答案】:E 【本题分数】:1.0分 第4题 女,37岁。外阴奇痒,分泌物不多。妇检:两侧小阴唇增厚,外阴粘膜不红,阴道畅,皱襞正常,无异常分泌物,宫颈柱状,光滑,I°肥大,子宫前位,常大,双附件(-),为确诊应选用 A 外阴活检 B 阴道分泌物涂片 C 宫颈涂片(CG D 阴道镜 E 盆腔B超 【正确答案】:A 【本题分数】:1.0分 第5题 属于癌前病变的外阴白色病变是 A 增生型营养不良 B 硬化苔癣型营养不良 C 混合型营养不良 D 营养不良伴有上皮不典型增生 E 白癜风 【正确答案】:D 【本题分数】:1.0分 第6题

外阴疾病

外阴疾病 外阴:阴道口外边的外露部分肛门、阴道口及尿道邻近,经常受阴道分泌物及尿液的浸渍,容易发炎。 常见病症:外因瘙痒、外阴炎、外阴白色病变、外因溃疡、外阴癌 外阴疾病 外阴:阴道口外边的外露部分肛门、阴道口及尿道邻近,经常受阴道分泌物及尿液的浸渍,容易发炎。 常见病症:外因瘙痒、外阴炎、外阴白色病变、外因溃疡、外阴癌 外因瘙痒 外阴瘙痒是妇科疾病中很常见的一种症状,外阴是特别敏感的部位,妇科多种病变及外来刺激均可引起瘙痒,使人寝食难安、坐卧不宁。外阴瘙痒多发生于阴蒂、小阴唇,也可波及大阴唇、会阴和肛周 病因:1.慢性局部刺激,外阴、阴道、宫颈炎症的异常分泌物的刺激; 2.外阴不清洁及紧身化纤内裤、卫生巾等致通透不良; 3.外阴寄生虫病,如阴虱、蛲虫、疥疮等; 4.各种外阴皮肤病和外阴肿瘤等; 5.全身性疾病的外阴局部症状,如糖尿病、尿毒症、维生素缺乏等。 症状:外因皮肤瘙痒、烧灼感和疼痛瘙痒部位多生与阴帝、小阴唇、也可波及大阴、会阴、甚至肛周围 危害:(1)性外阴部瘙痒严重时,不但使人坐卧不宁,影响工作、学习、生活和睡眠。 (2)由于女性外阴瘙痒,会影响夫妻生活,所以极有导致夫妻感情不和,严重的 甚至造成感情破裂,婚姻走向终点。 (3)诱发生殖器感染,盆腔炎、肾周炎、性交痛等,日久不愈还可导致多种疾病 同时发生,疾病的危害严重的会危害女性健康,甚至还会造成女性不孕等严重后果。 (4)女性外阴瘙痒严重时,不易根治,易反复,引发早产、胎儿感染畸形等,造 成终身遗憾。 治疗1.外阴涂药

使用有止痒作用的洗剂、膏霜等,如炉甘石洗剂、苯海拉明软膏、皮质醇类软膏等。 2.局部封闭或穴位注药 如皮质醇激素、维生素B12、非那根等。 3.针对病因治疗。 4.预防1. 注意经期卫生,勤清洗。 2.不要冲洗阴道,因为阴道有自清的功能,如果刻意冲洗反而不利 3.忌乱用、烂用药物,忌抓搔及局部摩擦。 4.忌酒及辛辣食物,不吃海鲜等及易引起过敏的药物 6 .久治不愈者应作血糖检查。少吃糖类可避免常常感染霉菌,如少吃淀粉类、糖类以及刺激性的食物(例如酒、辛辣物、油炸类),多吃蔬菜水果类,水份要充足。 5、不穿紧身兜裆裤,内裤更须宽松、透气,并以棉制品为宜。 6.就医检查是否有霉菌或滴虫,如有应及时治疗,而不要自己应用“止痒水”治疗。 8.保持外阴清洁干燥,尤其在经期、孕期、产褥期,每天用女性护理液清洗外阴更换内裤。 9.不穿化纤内裤、紧身裤,着棉织内衣裤。局部坐浴时注意溶液浓度、温度及时间、注意事项。 10.外阴瘙痒者应勤剪指甲、勤洗手,不要搔抓皮肤,以防破溃感染从而继发细菌性感染。 11.上完厕所请记得由前往后擦,因为肛门可能会带来不少细菌,所以如厕后请不要由肛门擦到阴部,才能减少感染的机会。 12.内裤要和其他的衣物分开洗,最好暴晒,可以减少细菌的滋生。如果患有霉菌性阴道炎的话,最好内裤都有热水煮 外阴溃疡外阴溃疡是发生于外阴部的皮肤黏膜发炎、溃烂、缺损。病灶多发生于小阴唇和大阴唇内侧,其次为前庭黏膜及阴道口周围。病程有急性及慢性。 大小阴唇、阴道口周围、阴蒂等处(外阴疾病发展中出现的一个过程,不是一个独立的疾病,有急性和慢性)急性外阴溃疡:非特异性外阴炎病情较轻,多在搔抓之后出现一般比较表浅,但疼痛比较厉害 慢性外阴溃疡:持续时间较长,或者反复发作 癌症引起的溃疡,与结核性溃疡很难鉴别,需做确诊

温控器的使用方法

温控器的使用方法,温控器怎么调 温控器的使用方法 1. 温度控制器应按照本用户手册附带的操作手册使用。首先确定你使用的恒温器的类型,然后按照说明操作。 2. 建议不要随意改变原有的墙体结构、门窗形式和地面装饰。如果需要更改,应事先通知物业,以便相应地改变加热设计。 3. 把恒温器调到高温或适当的设备不会很快使房间温暖,只要把它调到你需要的温度就可以了。 4. 由于电热系统温度适中,所以尽量减少开启门窗造成的冷却空气高速流动造成的热量损失,以免影响加热效果。 5. 当你在无人值守的房间时,你可以把温度调节到12至15摄氏度或相应的齿轮,因为系统重新开启后加热非常慢,频繁的开启和关闭不能达到节能的效果。 6. 请勿使用家具等遮挡温度控制器,温度控制器周围没有热源,以免造成温度控制误差。 7. 恒温器是一种精密电子元件,请不要摇动恒温器,以免对恒温器造成损坏。 8. 如果温度控制器的旋钮因使用不当而脱落,应重新安装温度控制系统。注意,旋钮与温度控制器接口的间隙对齐。切勿强行安装,以免损坏温度控制系统。 如何调节恒温器如何调节地板加热恒温器的方法介绍 机械恒温器的调节方法比较简单,在恒温器安装完毕后(安装时将地板加热杆安装好),即可使用。我们打开恒温器右侧的开关,设置温度设置(打开恒温器顶部的设置按钮,将你想设置的温度刻度调整到恒温器中间的点,恒温器就设置好了),恒温器就开始根据设置的温度进行控制。当恒温器上方的指示灯亮时,表示加热装置已处于工作状态。当指示灯关闭时,表

示恒温器处于停滞工作状态。 如何设置地板供暖恒温器 如今,电子恒温器已被引入电子恒温器,电子恒温器通常是液晶显示器,可以通过按钮或触摸屏,但它们的操作方式大致相同,如下图所示,只需要一个触摸屏和一个按钮。 如图所示,目前的电子液晶温度控制器一般是5个按键,左边两个是调节高度的高低,左上是正数,左下是负数。右上角是选择模式按钮,一般安装在企业会比较好,通常用户使用不多。中间的键右键是定时键,如果需要休息的时候可以用,一般不要用太多。至于右小角是开关功能。 如果我们要开启和调节地暖,我们可以先按下开关,然后根据实际情况调节温度,通常在这个时候,如果需要关闭地暖也可以使用时间按钮控制。

xsc5温控仪表操作说明

加湿温度控制仪表XSC5使用说明书一、仪表接线说明:

二、仪表面板说及显示状态

仪表面板图 显示状态说明图

四、仪表参数设置步骤: 1.第一组参数的设置 第一组参数默认不受密码限制可以直接设置。 长按设置键约4秒不松开,直到显示,此时可以进行第一组 参数设置。 ①进入需要设置的参数所在组后,按键顺序循环选择本组 需设置的参数; ②按键调出当前参数的原设定值,闪烁位为修改位; ③通过键移动修改位,键增值,键减值,将参数修改 为需要的值; ★以符号形式表示参数值的参数,在修改时,闪烁位应处于末位。 ④按键存入修改好的参数,并转到下一参数; 2 密码登录 默认第2、3、4组参数需密码登录后才能修改,当仪表处于测量状态或第1组参数符号显示状态时,可进行密码设置。 ①长按设置键约4秒不松开,直到显示; ②按键进入修改状态,在,,键的配合下将其修 改为1111。 ③按键,密码设置完成(按下键后直接显示第二组第二个 参数)。 ★在仪表上电时或1分钟以上无按键操作时,密码将自动清零。 3 其它参数的设置方法

①首先按第一步的方法设置密码; ②第2组参数因为是密码参数所在组,密码设置完成后,按 键可选择本组的各参数; ③其它组的参数,通过按住设置键不松开,顺序进入各参 数组,仪表显示该组第1个有效参数的符号: 第2组第一个参数为: 第3组第一个参数为: 第4组第一个参数为: ④进入需要设置的参数所在组后,按键顺序循环选择本组 需设置的参数; ⑤按键调出当前参数的原设定值,闪烁位为修改位; ⑥通过键移动修改位,键增值,键减值,将参数修改 为需要的值; ★以符号形式表示参数值的参数,在修改时,闪烁位应处于末位。 ⑦按键存入修改好的参数,并转到下一参数; 重复④~ ⑦步,可设置本组的其它参数。 退出设置:在显示参数符号时,按住设置键不松开,直到 退出参数设置状态。 ★在参数设置过程中,若1分钟以上无按键操作,将自动退出设置状态。

外阴白色病变的症状表现有哪些

外阴白色病变的症状表现有哪些 外阴白色病变是慢性外阴的营养不良。属于营养不良的一种。而这也有分为好几个类型,混合型、增生型和硬化苔藓型等等都是外阴白色病变的类型。 外阴奇痒为主要症状,搔痒时间从发病到治疗有2~3月之内,也有达20 年之久,搔痒剧烈程度不分季节与昼夜,如伴有滴虫性或霉菌性阴道炎,分泌物会更多,局部烧灼感,刺痛与搔痒所致的皮肤粘膜破损或感染有关,局部有不同程度的皮肤粘膜色素减退,常有水肿,皲裂及散在的表浅溃疡。 一、增生型营养不良 一般发生在30~60岁的妇女,主要症状为外阴奇痒难忍,抓伤后疼痛加剧,病变范围不一,主要波及大阴唇,阴唇间沟,阴蒂包皮和后联合处,多呈对称性,病变皮肤增厚似皮革,隆起有皱襞,或有鳞屑,湿疹样改变,表面颜色多暗红或粉红,夹杂有界限清晰的白色斑块,一般无萎缩或粘连。 二、硬化苔藓型营养不良 可见于任何年龄,多见于40岁左右妇女,主要症状为病变区发痒,但一般远较增生型病变为轻,晚期出现性交困难,病变累及外阴皮肤,粘膜和肛周围皮肤,除皮肤或粘膜变白,变薄,干燥易皲裂外,并失去弹性,阴蒂多萎缩,且与包皮粘连,小阴唇平坦消失,晚期皮肤菲薄皱缩似卷烟纸,阴道口挛缩狭窄,仅容指尖。 幼女患此病多在小便或大便后感外阴及肛周不适,外阴及肛周区出现锁孔状珠黄色花斑样或白色病损,一般至青春期时,病变多自行消失。 三、混合型营养不良 主要表现为菲薄的外阴发白区的邻近部位,或在其范围内伴有局灶性皮肤增厚或隆起。 四、增生型或混合型伴上皮非典型增生 一般认为在增生型及混合型病变中,仅5、10例可出现非典型增生,且此非典型增生仅限于增生的上皮细胞部分。非典型增生多无特殊临床表现,局部组织活体组织检查为唯一的诊断方法。但如外阴局部出现溃疡。或界限清楚的白色隆起时,在该处活检发现非典型增生,其癌变的可能性较大。

温控器说明书

温湿度控制器 一、产品概述 温湿度控制器,主要应用于需要对被测环境进行自动温湿度调节的场合, 用户可通过按键分别调整温湿度的上、下限值来控制加热或排风实现自动控制, 显示方式为数码管显示。 二、基本功能: 2.1 温度测量范围:-25℃~+80℃±1℃; 2.2 湿度测量范围:相对湿度RH: 0%~99% 精度±3%RH; 2.3 控制方式:温度采用上、下限和回差控制,湿度采用上、下限控制,所有参数均可设置; 2.4 输出控制类型:两组继电器触点,分别为加热和排风,每路最大负载AC250V /3A,均为有源输出。 三、技术指标: 3.1电源:AC 220V±20% 3.2 工作环境:温度:-25℃~+55℃,相对湿度:<95%RH 3.3控制设定范围:温度:0℃~80℃,相对湿度:50%RH~99%RH 3.4 本机功耗:<3W 3.5自检功能:若数码管显示“–––”,则为检测到传感器故障;若加热或排风运行过程中相应指示灯熄灭, 则检测到加热或排风故障。 四、工作原理: 4.1 温度控制: 当被测环境温度低于设定温度下限时,本仪器启动电加热设备开始加温,此时加热指示灯亮,温度升至比下限温度设定值高回差值时,即:W测≥W下限+回差,停止加温。 当被测环境温度高于设定温度上限时,本仪器启动降温设备(如风机或空调)开始降温,此时排风指示灯亮,温度降至比上限温度设定值低回差值时,即:W测≤W上限-回差,停止降温。 4.2 湿度控制: 当被测环境湿度超过设定湿度上限时。如果当前温度较高,即:W测≥W下限+(W上限-W下限)×3÷4,采用降温(或排风,视具体地区采用不同设备)抽湿,此时排风指示灯亮;抽湿过程中,如果温度低于下限温度+2度后,自动转为加热降湿;当降湿过程中温度高于上限温度-2度后,自动转为降温抽湿,直至湿度低于设定下限值为止。 当被测环境湿度超过设定湿度上限时。如果当前温度较低,即:W测<W下限+(W上限-W下限)×3÷4,采用加热降湿,此时加热指示灯亮,降湿过程中,如果温度高于上限温度-2度后,自动转为降温抽湿;当温度低于下限温度+2度后,自动转为加热降湿,直至湿度低于设定下限值为止。 4.3 手动/自动控制: 当按下“手动/自动”按键后,本控制器无条件执行加热操作;再次按下该按键,控制器切入自动控制状态。 4.4 指示灯: 面板上四个指示灯依次为:温度指示灯、湿度指示灯、加热指示灯、排风指示灯;数码管显示哪项值时对应的指示灯会亮起,加热或排风动作时相应的指示灯亮起。 4.5 固定/循环显示: 上电后产品默认显示温度值,按“上键”或“下键”切换到显示湿度值,若要自动循环显示温湿度值,

RKC温控器_-_REX-C100讲解

o o o RKC温控器- REX-C100 o RKC温控器系列- 精品推荐 o RKC温控器- CB-900 RKC温控器- CD-701 RKC温控器- CH-102 REX-C400 o RKC温控器- REX-C100 - 详细信息

o RKC温控器使用警告 ·接线警告: - 如果仪器失效或发生错误,可引起系统故障,安装外部保护电路以防止类事故; - 为防止仪器损坏或失效,选用适当的保险丝保护电源线及输入/输出线以防强电源冲击。 ·电源供给: - 为防止仪器损坏或失效,用额定电夺供电; - 为防止仪器损坏或失效,所有接线工作完成后方可供电。 ·禁止在易燃气体附近使用: - 为防火、防爆或仪器损坏,禁止在有易燃、易爆气体,排方蒸气的场所中使用。 ·严禁触及仪器内部: -- 为防止触电或燃烧,严禁触及仪器内部。只有本厂服务工程师可以检查内部线路或更换部件,仪器内部有高电压、高温部件,非常危险! ·严禁改动仪器: - 为防止事故或仪器失效,不禁改动仪器。 ·保养: - 为防止触电,仪器报废或失效,只有本厂服务工程师可以更换部件; - 为保证仪器持续且安全使用,应定期保养,仪器内某些部件可能随使用时间的延长而损坏。 RKC温控器操作注意 ·断电后方可清洁仪器; ·清除显示器上的污渍请用软布或棉纸; ·显示器易被划伤,禁止使用硬物体操作面板按键,否则会损坏或划伤按键。 RKC温控器概述 CH、CD系列智能温度控制器是采用专用微处理的多功能调节仪表,它采用开关电源和表面贴装技术(SMT),因而仪表精致小巧,性能可靠。特有的自诊断功能,自整定功能和智能控制功能,使操作者可能通过简单的操作而获得良好的效果。 主要特点: 热电偶、热电阻、模拟量等多种信号自由输入,量程自由设置; 软件调零满度,冷端单独测温,放大器自稳零,显示精度优于0.5%FS; 模糊理论结合传统PID方法,控制快速平稳,先进的整定方案; 输出可选:断电器触点、逻辑电平、可控硅单相或三相过零或移相触发肪冲或移发脉冲、模拟量。另附二路可定义的报警点输出。RKC温控器主要技术指标 ·输入:各种热电偶(TC)、热电阻(RTD)标准电流电压信号(见输入类型表); ·基本误差:输入满量程的±0.5%±1个字; ·分辨率:1℃、0.1℃; ·采样周期:3次/sec ·报警功能:上限,下限,上偏差,下偏差,区间内,区间外; ·报警输出:继电器触点AC250V 3A(阻性); ·控制输出:继电器触点AC250V 3A(阻性),逻辑电平:DC 0/12V(配固态继电器SSR),过零触发脉冲:光偶可控硅输出1A600V 0-10mA电流输出(负荷阻值600Ω以下),0-20mA电流输出(负荷阻值600Ω以下),4-20mA电流输(负荷阻值600Ω以下); ·控制方式:模糊PID控制、位式控制; ·电源电压:AC85-264V(50/60Hz)(额定100-240V AC)21.6-26.4V AC(额定24V AC)21.6-26.4V DC(额定24V DC); ·工作环境:温度0-50℃,温度<85%RH的无腐蚀场合。功耗<5VA; ·面板尺寸:80X160,160X80,96X96,72X72,96X48,48X96,48X48mm。

外阴白色病变的检查诊断方法是什么

外阴白色病变的检查诊断方法是什么 外阴奇痒是外阴白色病变的主要症状,搔痒时间从发病到治疗有2~3月之内,也有达20年之久,搔痒剧烈程度不分季节与昼夜。专家提示,一旦发现自己有类似于外阴白色病变的这种,应立即到医院进行确诊。早期的诊断及治疗对我们早日恢复健康并且尤为重要。 外阴白色病变的检查: 多点活检送病理检查,确定病变性质,排除早期癌变,活检应在有皲裂,溃疡,隆起,硬结或粗糙处进行,为做到取材适当,可先用1%甲苯胺蓝(toluidine blue)涂病变区,待白干后,再用1%醋酸液擦洗脱色,凡不脱色区表示该处有裸核存在,提示在该处活检,发现非典型增生或甚至癌变的可能性较大,如局部破损区太广,应先治疗数日,待皮损大部愈合后,再选择活检部位以提高诊断准确率。 外阴白色病变的诊断: 1、症状判断:外阴白斑一般根据症状就可以判断,比如,外阴局部粘 膜发白,瘙痒、粗糙、脱屑等现象的出现,都会诊断为外阴白斑,当然,外阴白斑有很多的类型,如果外阴白斑属于增生型,也就是说局部的皮肤粘膜增厚了,弹性变差了,而且也出现了相应的溃疡等不适症状。这是主要的外阴白斑的诊断方法。 2、细胞活检:有时外阴白斑的诊断需要进一步的做细胞活检,观察有 没有癌细胞,以便于确诊。活检病理检查确定病变性质,排除早期癌变。活检应在有皲裂溃疡、隆起、硬结或粗糙处进行为做到取材适当,外阴白斑的诊断方法可先用1%甲苯胺蓝涂病变区,待白干后再用1%醋酸液擦洗脱色。凡不脱色区表示该处有裸核存在,提示在该处活检发现非典型增生或甚至癌变的可能性较大。如局部破损区太广,应先治疗数日待皮损大部愈合后,再选择活检部位以提高诊断准确率。 3、病理诊断依据:除了解疾病的主要临床症状外,还应对疾病的发病 机理有一定的认识,因为导致外阴白斑皮肤瘙痒及色素的减退或脱色的疾病有很多种,不只是外阴白斑一种,它们的表现虽有些不同,但用肉眼不易区别开来,所以当遇到外阴有病损不典型或慢性皲裂、局限性增厚、溃破等症状的患者时,必须依靠活组织病理检查确诊。

温控器设置及操作说明-民熔

温控器设置及操作-民熔 一。下限偏差报警设置:按set键选择并显示“SLP”,绿色显示该参数的值,选择shift、ENGASE、DERANCE键设置或修改该参数。此参数表示报警点低于主控设定值的差值。 2。上限偏差报警设置:按set键选择“SHP”,绿色显示显示该参数值。选择shift、increase 和reduce键来设置或修改此参数。此参数表示报警点和主控制设定点之间的差异。 三。标度范围设置:按set键选择显示“P”,绿色显示该参数的值,选择shift、GANCE、DENCE键设置或修改该参数。“P”值越高,恒温控器主控制继电器输出的灵敏度越低。“P”值越低,恒温器主控制继电器输出的灵敏度越高。 四。积分时间设置:按set键选择显示“I”,绿色显示该参数的值,选择shift、INCEASE、decrease键设置或修改该参数。集成时间越短,集成效果越强。 5。差分时间设置:按set键选择显示“d”,绿色显示该参数的值,选择shift、INCRASE、decrease键设置或修改该参数。微分时间越长,校正越强。 6。比例循环设置:按set键选择显示“t”,绿色显示该参数的值,选择shift、GANSE、DENCE 键设置或修改该参数。 7号。自整定:按set键选择并显示“aτ”,绿色显示屏显示该参数的值,选择shift、GANCE、decrease键设置或修改该参数;设置为“00”表示自整定关闭,设置为“01”表示自整定开

8。锁定参数设置:按set键选择并显示“Lok”,绿色显示锁定状态,选择shift、INCEASE、decrease键设置或修改参数;设置为“00”表示不锁定,设置为“01”表示只锁定主控以外的参数,并设置为“02”表示所有参数都已锁定。参数锁定后,其他人不能修改。如果需要修改,则应解锁,即设置为“00”。 9。主控温度上限设定:按set键选择并显示“SOH”,绿色显示该参数值,选择shift、ADVANCE、DEVANCE键设置或修改该参数,该参数表示主控继电器的工作温度不能高于该值,否则主控设置的温度无效 10。温度校正设置:按set键选择并显示“SC”,绿色显示该参数的值,选择shift、GANSE、decrease键设置或修改该参数;当温度控制器长时间运行后出现测量偏差时,此函数可用于更正错误。如果测量值小于2℃,则该参数可设置为02。如果测量值大于2℃,则参数可设为-2。 在第二设置区,按下set键5秒以上,系统保存设置参数,退出设置状态,返回正常状态。设置好设置状态后,如果没有按照正确的操作退出设置状态,30秒后,系统将自动退出设置状态,您之前设置的参数将被声明为无效。 1. 手动 / 自动无扰动切换 按 A/M 键, MAN 指示灯亮, 进入手动状态。 当前 SV 显示器数值即为输出百分比, PV 显示器为测量值。用“向左” 、 “向上” 和“向下”键可手动修改输出百分比。再按

壁挂炉温控器使用说明书

壁挂炉温控器使用说明书 1、产品描述 2、对码 (1)按住温控器取消键5s,温度区显示0值,信号图标闪烁,非正常工作状态图标点亮,其余与正常状态时同,如下所示图案:

(2)按住接收器按键5s,此时温控器与接收器进行对码,对码时温度区显示值由0不断增加,表示温控器接收到的对码信号个数。 (3)对码成功时,温控器上温度区数字不再变化,而是闪烁显示对码成功后的通讯通道值,此时按确定键,温控器恢复正常状态。 (4)按接收器一次,接收器退出对码。 (5)对码成功,温控器与接收器之间可进行通讯。 3、按键功能 3.1选择编程键,可进入用户编程模式,由用户设置所需各个时间段温度。此状态下编程状态图标及非正常工作状态图标被点亮。 按编程键一次,进入编程模式。

进入编程模式后,会显示编程区P1状态,P1点亮,时间区和时间段上0处时间点闪烁显示,且时间显示为0点,即当时时间段上闪烁点的时间。温度值不变仍然显示当前温度。 (1)进入编程模式后按增加键,会在时间段上顺时针选择移动目标时间点。 如图示,如果在时间段上选择3点处时间点时,时间区显示时间也会随之作相应变化,现在为当前选中时间点与时间闪烁显示。 (2)按减少键,会在时间段上逆时针选择时间点。 (3)同时按设置键和增加键,顺时针点亮目标时间点,点亮一点后自动跳到下一个点,并将此点作为目标时间点。

如图示,按设置键再按增加键将从目标时间点3点处开始设置点亮,停止时,停止点闪烁,此时时间区闪烁显示时间段上当前闪烁时间。 (4)同时按设置键和减少键,熄灭目标时间点,熄灭点后自动跳到下一个点,并将此点作目标时间点。 如图示,按设置键再按减少键将从目标时间点6点处开始熄灭点亮,停止时,停止点闪烁,此时时间区闪烁显示时间段上当前闪烁处时间。 (5)在编程状态下,设置任意时刻按确定键,可保存当前设置,并跳转到另一可编程模式P2。

妇科良方_第二章 外阴白色病变及外阴瘙痒症方

外阴白色病变方 外阴白色病变包括由于各种因素影响所致之外阴部皮肤及粘膜的不同程度变白及(或)粗糙、萎缩的状态。1975年国际外阴病研究会改称“外阴白斑”为“慢性外阴营养不良”,并根据其组织病理变化的不同而分为增生型营养不良(包括无非典型增生、非典型增生两类)、硬化苔藓型营养不良、混合型营养不良(亦包括无非典型增生、非典型增生两类)三种类型。 外阴瘙痒为本病主要症状,搔抓可造成局部破溃与感染而出现烧灼感、疼痛、流液。增生型皮肤增厚似皮革,粗糙,或有鳞屑、湿疹样改变,表面颜色多暗红或粉红,夹杂有界限清晰的白色斑块;硬化苔藓型皮肤或粘膜变白变薄,甚至裂开,阴道口萎缩者可致性交痛;混合型是在外阴萎缩的基础上又有增厚的斑块或疣状增生灶。各型均以病检为主要诊断依据。 西医治疗可内服维生素A、B2、B6、鱼甘油等;局部用药以止痒、消炎、润肤和改善局部营养为目的,用药应依据病理类型。如增生型可用肤轻松、氢化可的松等软膏涂擦;硬化苔藓型给予1~2%丙酸睾丸酮鱼甘油软膏;混合型则用丙酸睾素软膏与可的松软膏合用或先后使用。氦氖激光照射对外阴硬萎有一定疗效。 本病一般属中医“阴痒”、“阴蚀”等病证范畴。其发病机理,常因肝肾阴血不足,不能滋养阴器,血虚生风化燥,而致阴部奇痒难忍;或因脾气亏虚,一则气虚血少,不能滋养阴部,脾虚又可生湿,流注于下,形成气血不足而湿浊停滞的虚实夹杂局面;或因湿热内盛,热蕴阴部肌肤而致阴痒阴肿;久病入络,气血运行不畅而成瘀滞,与湿浊相互胶结,而见苔癣、奇痒、干裂诸候,且经久难愈。治疗当结合病因病机,或滋养肝肾,养血熄风止痒;或清热利湿,祛风止痒;或活血化瘀软坚;或健脾祛湿杀虫等。 本节选介消斑膏丸方、蛇桑坐浴方等治疗外阴白色病变验方共13首。 1.消斑膏丸方 【药物组成】①外用消斑膏:A、消斑膏1号:补骨脂、仙灵脾各9g,生狼毒、白藓皮各6g,蛇床子、徐长卿各15g,薄荷1g。用其酒精渗出液,回收浓缩后,制成霜剂;B、消斑膏2号:即1号去薄荷,加0.1%强的松粉拌匀而成(制法同上);C、消斑膏3号:即1号去狼毒、薄荷,加白花蛇舌草、一枝黄花各30g(制法同上);D、消斑膏4号:即1号去薄荷加丙酸睾丸酮做成0.2%的霜剂(制法同上)。 ②内服消斑丸:黄芪、丹参、当归、菟丝子、仙灵脾、白蒺藜各3g,白藓皮4g,木香 0.2g。共研细末,做成蜜丸或煎成汤剂(以上为1日量)。 【治疗方法】①外用消斑膏:1号适用于外阴无破溃或皲裂者;2号适用于对1号有过敏反应但无癌变可能者;3号适用于局部有感染、破溃或皲裂,或有霉菌,滴虫感染者;4号适用于外阴萎缩或有粘连者。 以上软膏均每日外涂阴部1~2次。 ②内服消斑丸:每日2次,每次10g。所有病例均服此丸。 膏剂外用和丸剂内服,均以3个月为1疗程。一般用药1~3个疗程。

智能温控仪表说明书

XMT □7000 系列智能温度调节器 使用说明书 一、概述 XMTX7000型智能温度调节器一种高性能、高可靠性的经济型智能型工业温度调节仪表,广泛应用于机械、化工、陶瓷、轻工、冶金、石化、热处理等行业的自动温度控制。 二、技术规格 ●测量精度:0.5级(±0.5%F ±1); 注:仪表对B 分度号热电偶在0-400℃范围内可进行测量,但无法保证测量精度。 ●采样速率: >2次/秒 ●调节方式:智能PID 调节,依据不同的PID 参数可组成P (二位式)、PI 、PD 、PID 调节; ●输出方式:继电器触点、电平信号、过零脉冲、模拟量等可定制。 ●报警方式:上限(或上偏差)、下限(或下偏差); ●具有手动控制功能,且手动自动无扰切换。 ●电源:190V ~240V(AC),/50-60HZ 。 ●电源消耗: ≤5W ●环境温度:0-50℃,35%~85%RH (无冷凝) ●测量范围: K (-50-+1350℃)、S (-50-+1750℃)、T (-200—+400℃)、E (-50—1000℃)、 J (-50-1000℃)、B (50—1800℃)、N (-20—1300℃)、WRe(-20-2300℃)、 CU50(-50.0-+150.0℃)、PT100(-200—+650℃)、PT100(-199.9—199.9℃), 线性输入:-1999—+9999由用户定义 ●面板尺寸:96×96mm 、160×80mm 、80×160mm 、48×96mm 、96×48mm 、72×72mm 、48×48mm ●开口尺寸:92×92mm 、152×76mm 、76×152mm 、45×92mm 、92×45mm 、68×68mm 、44×44mm 三、面板说明(72X72面板为例) 四、操作说明 仪表上电后,PV 窗口显示输入类型,SV 窗口显示量程,然后PV 窗口显示测量值,SV 窗口显示设定值。这是仪表的标准显示方式。 在标准显示方式下,仪表可能闪动交替PV 值及以下字符: HHHH :表示输入信号正超量程,可能因传感器规格错误、输入开路等引起; LLLL :表示输入信号负超量程,可能由传感器规格错误,反接,短路等引起; (一)参数设定流程 1、PV :测量值显示窗(红) 2、SV :设定值显示窗(绿) 2、 指示灯:ON/OFF:主控制开关指示 AT:自整定指示 AL1:AL1动作时点亮对应的灯(红) AL2:AL2动作时点亮对应的灯(红) 3、 按键:SET :参数设定键 ?:数据移位 ▼:数据减少键 ▲:数据增加键 输入类型显示

温控器使用说明书

一周编程电子智能室温控器LOGIC 578001使用指南 引言 感您选择了我们的产品及对我们的信任与支持。本装置是电子式定时恒温器,可设置一星期为周期的运行程序。通过该装置,可对安装环境的温度进行十分精确的调节控制,满足用户对创造一个舒适生活环境的要求。 符合标准:符合欧盟法令: EN 60730-1 标准及其修订容欧盟B.T.73/23/EEC号法令EN 60730-2-7 标准欧盟E.M.C.89/336/EEC号法令及93/68/EEC修改法令 EN 60730-2-9 标准 产品规格: 电源:二节LR6型1.5V碱性电池 温度调节围:10至35℃ 显示屏显示之环境温度:0至40℃(分辩率0.1℃) 温度修正频率:每分钟一次 微分:0.2至0.4K 探针传感器:NTC3% 保护等级:IP20 绝缘等级: 热梯度:1K/15分 输出:转换继电器

触点容量:8(2.5)A250V~ 作用类型:1BU 绝缘条件:正常环境 最大工作温度:50℃ 储存温度:0-60℃ 防冻温度:6℃恒定 运行程序:以一星期为周期设置 软件等级:A 液晶显示屏 夏季/冬季(采暖/空调)切换 程序设置中的最小增减允许时间:1小时 安装:壁式安装 安装及连接: 安全预防措施 在进行定时恒温器的连接之前,请确认受其控制的设备系统(采暖锅炉、泵和空调系统等)电源已断开,并需检查这些设备的使用电压是否与定时恒温器底座上表明的电压相符(最大250V~).(图4) 安装位置 定时恒温器须安装在远离热源(暖气装置、、厨房)和门窗之处,安装高度离地面约1.5米。(图5) 安装

见图6-7-8 电气连接 将受定时恒温器控制的设备系统电线与定时恒温器的1号及2号接线柱连接见接线图10所示U=受定时恒温器控制的设备 1=共用接线柱 2=常开接线柱 3=常闭接线柱 重要事项: 请务必严格遵照相关现行法律的规定及安全规安装定时恒温器。 电池更换: 当在显示屏上闪烁显示“”标志时,定时恒温器还可正常工作约一个月左右,然后将会停止工作并固定显示“”。 更换电池时,请打开恒温器的前板按照前板上的说明进行操作,电池寿命为一年。(图9) 提示:建议在采暖设备开启时更换电池。(一年更换一次)完成电池更换以后,装回电池座的盖子,按RESET键,按照“时钟设置”的说明重新设定时间。

女性警惕五种常见外阴疾病

女性警惕五种常见外阴疾病 *导读:女性的阴部柔软,脆弱,不好好呵护就容易受伤。外阴损伤是常见的外阴疾病,常因遭到猛烈碰撞导致。此外,还有外阴损伤、尖锐湿疣、外阴肿瘤等外阴疾病女性也要警惕。…… *1、外阴损伤 外阴损伤是女性常见的症状之一。发病原因多数为骑跨式跌伤,如骑男式自行车时意外的急刹车,或上下车时阴部遭到猛烈碰撞,外阴部位受到暴力打击等等。 在这种情况下,外阴部有严重的挫伤,可有疼痛,能见到皮下淤血或血肿。 *2、*尖锐湿疣 尖锐湿疣是一种性传播疾病,一般与不洁性交有关。发病时,外阴瘙痒,分泌物增加。早期外阴部的皮肤、粘膜粗糙不平,随后可摸到小结节或肿块,样子为毛刺状,或者像大小不等的菜花状、鸡冠花状的灰白色肿物,多分布在小阴唇的内侧、大小阴唇之间的唇间沟、会阴和肛门。 *3、假性湿疣 假性湿疣不是性传播疾病。在阴唇内侧可以看到有小米粒大小的淡红色疹子,两侧对称,分布均匀。 *4、*外阴肿瘤 女性外阴的良性肿瘤,如乳头瘤、纤维瘤等,并不多见。它

们是生长在大阴唇外侧的单个肿瘤。 常见的恶性肿瘤是“外阴鳞状上皮癌”。在外阴部能摸到硬结或肿物,常伴有疼痛或瘙痒,有的病人在外阴部位,还会长有经久不愈的溃疡。 *5、*外阴白色病变 外阴白色病变,也称为“慢性外阴营养不良”。 有一种外阴白色病变,一般发生在30~60岁的妇女,主要症状是外阴奇痒难忍,抓破以后伴有局部疼痛。外阴皮肤增厚,颜色多为暗红色或粉红色中夹杂有界限清晰的白色斑块。 如果发现有外阴白斑,应当去详细检查治疗。过去,曾经认为它可以癌变,所以主张早期切除。现在,虽然医生们已经不主张早期切除,但是,还是要病人积极治疗。 有白色病变的人,更要保持外阴部位的清洁干燥,不要用肥皂或其他刺激性药物清洗外阴,也不要用手去搔抓,不要吃辛辣的食物,衣服要宽大,不要穿不透气的人造纤维内裤。

XMT系列智能数显温控仪使用说明书

XMT-系列智能数显温控仪使用说明书 XMT-7000系列智能数显温控仪使用说明书 操作注意 ·断电后方可清洁仪器。 1.1 1.2 1.3 1.4采样周期:3次/sec,按需可达到8次/sec1.5报警功能:上限,下限,上偏差,下偏差上下限,上下偏差,范围内及待机状态报警 1.6报警输出:继电器触点AC250V3A(阻性负载) 1.7控制方式:模糊PID控制、位式控制

1.8控制输出:继电器触点(容量:220VAC3A) SSR驱动电平输出(DC0/5V) 过零触发脉冲:光偶可控硅输出1A600V 移相触发脉冲:光偶可控硅输出1A600V 1.9 1.10 1.11 XMT S:160×80E:96×48F:48×96A:96×96G:48×48D:72×72空:80×160 ②主控控制方式 0二位式 2三位式

3位式PID 4PID继电器输出 5PID固态继电器输出 6PID移相可控硅触发 7PID 8 9PID 1 2 3 6 7过零触发脉冲输出,PID调节 8逻辑电平输出,PID调节,驱动SSR ④输入信号: 1热电偶输入

2热电阻输入 ⑤⑥~⑦传感器分度号和测量范围 例:XMTE-7431K0~400℃为PID位式控制,继电器输出,配用K分度号热电偶,量程0~400℃,带上限报警和下限报警,面板尺寸为96×96mm的经济性智能仪表。 (1 (2 ②设定值(SV)显示器(橙色) ·显示设定值(SV)·显示参数内容·测量回路异常表示 ③指示灯

·自整定指示灯(AT)(绿)工作输出时闪烁。 ·控制输出指示灯(OUT1OUT2)(绿)OUT1:控制工作输出时亮 ·报警输出指示灯(ALM1ALM2)(红) ALM1:第一报警输出时点亮。ALM2:第二报警输出时点亮 ·SV ·3秒。 A/M) ·在参数设定状态下,作减数键 ⑦加数键(▼) ·在参数设定状态下,作加数键

温度控制器的工作原理

温度控制器的工作原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID 模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar 三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控

温控表说明书

轻/重油燃烧机温控表使用说明书

可设定多路输入 XP系列–多点控制的伺服马达控制器 结构说明书 MIU.XP – 5/96.12/E COD.J30 154 1AXP ING ASCON spa

目录 1 型号确认 (1) 2 键盘功能及显示器 (3) 3 安装尺寸 (6) 4 电路 (7) 5 Y2 – Y3辅助输出信号 (12) 6 密码 (14) 7 程序设置(见附页) 配置 参数 8 操作指导(见附页) 设定位点 自动/ 操纵 锁定/ 记忆 自动–控制 9 操作状态变更 (15) 12 技术数据 (16) 实时通讯 (见结构说明书额外提供的“实时通讯补充说明”)

1. 型号确认 XP系列仪表属于最新一代的以控制为基础的微处理器,它是通用的,功能强大,但使用简单。 它装有自动–控制装置,可协助系统启动向网络端口输入实时通讯信号。 其性能完备是由于所有可能潜在的变量都是实时的。 可根据程序要求来决定仪器的操作模式。 1.1 型号确认 型号编号配置编号刻度的始与终 电源 实时通讯 无 20mA C.L. Std Ascon协议 选20mA C.L. Modbus/Jbus协议 反馈信号Y4 无 配备(4…20mA或0…10Vdc) 项设定位点 标准 (至4mem.或Loc./Rem.) 时间-可编程 (11节点)

1.2 配置编号 配置编号刻度的始与终型号编号 第输入信号X 一 部主输出信号Y1 分 第辅助输出信号Y2 二辅助输出信号Y3 部反馈信号Y4 分设定位点W 刻度的始与终 (仅用于设备的数值范围) 控制器在工厂进行正规的配置 若在打开电源时出现该信号 则控制器没有装配好 为了装配好控制器,请按照随附的装配程序说明来完成.

妇科病史及检查、外阴白色病变练习题

妇科病史及检查、外阴白色病变单项选择题 1解析纠错 A、基础体温单相型 B、阴道脱落细胞反映为轻度雌激素影响 C、宫颈粘液有羊齿状结晶 D、子宫内膜呈增殖期变化 E、子宫内膜呈分泌期变化 2解析纠错 A、B超检查 B、阴道细胞学检查 C、基础体温测定 D、子宫内膜病理检查 E、X线检查 3解析纠错 A、宫颈粘液干燥后形成羊齿状结晶 B、尿雌三醇测定 C、子宫内膜呈增殖期变化 D、阴道脱落细胞中大部分为角化细胞 E、基础体温高温相

4解析纠错 A、盆腔检查前应首先排空膀胱 B、每检查一个病人应更换臀垫 C、查内诊前应消毒外阴 D、避免月经期内诊检查 E、未婚者禁内诊检查 5解析纠错 A、双合诊 B、三合诊 C、直肠腹部诊 D、腹部扪诊 E、肛诊 6、女,36岁。孕3个月自然流产后7天,阴道出血不多,但分泌物呈脓血性,有气味,发热伴小腹疼痛5天,今晨疼痛加剧。体检:体温39.6℃,痛苦病容,腹痛拒按,子宫略大而软,压痛,右侧附件区压痛明显,触及一边界不清囊性肿块,约5cm×6cm×4cm大小,左侧轻压痛,白细胞 1.5×109/L,中性0.9,血红蛋白10g解析纠错 A、急性盆腔炎,盆腔脓肿形成 B、右侧卵巢囊肿继发感染 C、流产诱发急性阑尾炎 D、异位妊娠 E、卵巢囊肿蒂扭转 7、女,30岁。外阴肿物疼痛一周,加剧5小时。查:右侧前庭腺红肿,触痛(+),波动(+), 解析纠错

A、全身抗生素治疗+支持疗法 B、脓肿挖出术+抗生素应用 C、脓肿切开引流并造口术+抗生素 D、脓肿切开引流+抗生素应用 E、局部抗生素应用+全身支持疗法 8、女,65岁。绝经8年,近两年白带增多,时而呈血性,最近半年来反复阴道少量出血,色红, 不伴腹痛。妇科检查:宫颈光,子宫正常大小,未见明显萎缩,附件(- 解析纠错 A、子宫内膜炎 B、老年性阴道炎 C、颗粒细胞瘤 D、子宫内膜癌 E、子宫颈管癌 9、女,46岁。以往月经规律,近两年月经不规律。且月经量增多。本次停经2个月余出血已15天,量仍多伴头晕。妇检查:宫颈光滑,宫体前位,正常大小,附件未及,阴道内多量鲜血和血块。 解析纠错 A、止血药加静脉抗生素 B、止血药加补充铁剂 C、大量雌激素止血并支持疗法 D、诊断性刮宫,支持疗法 E、大量孕激素并支持疗法 10、女,26岁。月经规律,现停经45天,阴道少量出血7天,时有阵阵腹痛或腰酸。妇科检查: 宫颈软,摇摆痛(+),少量血染,宫体略大而软,附件(-

第二节 外阴上皮内瘤样病变

第二节外阴上皮内瘤样病变外阴上皮内瘤样病变(vulva intraepithelial neoplasia,VIN)是一组外阴病变的病理学诊断名称。包括外阴鳞状细胞上皮内瘤样病变和外阴非鳞状细胞上皮内瘤样病变(Paget’s病,未浸浸润的黑色素细胞瘤),多见于45岁左右妇女。近年VIN 发生率有所增加。VIN很少发展为浸润癌,但60岁以上或伴有免疫抑制的年轻患者可能转变为浸润癌。 [病因] 不完全清楚。现代分子学技术检测发现80%VIN伴有HPV (16型)感染。细胞病理学变化包括病毒蛋白在细胞核周形成晕圈、细胞膜增厚以及核融合。这些改变多发生在病变的表层细胞。其它的危险因素有性病、肛门-生殖道瘤样病变、免疫抑制以及吸烟。 [临床表现] V1N的症状无特异性,与外阴营养不良一样,主要为瘙痒、皮肤破损、烧灼感、溃疡等。体征有时表现为丘疹或斑点,单个或多个,融合或分散,灰白或粉红色;少数为略高出表面的色素沉着。 [诊断] 1.活组织病理检查对任何可疑病变应作多点活组织检查。为排除浸润癌,取材时需根据病灶情况决定取材深度,一般不需达皮下脂肪层。

2.病理学诊断与分级 (1)外阴鳞状上皮内瘤样病变分3级。VIN I:即轻度不典型增生。VINⅡ:即中度不典型增生。VIN Ⅲ:即重度不典型增生,及原位癌。 (2)外阴非鳞状上皮内瘤样病变主要指外阴Paget’s 病,其病理特征为基底层可见大而不规则的圆形、卵圆形或多边形细胞,胞浆空而透亮,核大小、形态、染色不一(即所谓的Paget’s细胞),表皮基底膜完整。 [治疗] 1.外阴鳞状上皮内瘤样病变 (1)VIN I:可用:①药物治疗,5%氟尿嘧啶(5-FU)软膏,外阴病灶涂抹,每日一次。②激光治疗,此法治疗后能保留外阴外观,疗效较好。 1%.占女性生殖道癌肿的3%~5%,常见于60岁以上妇女。以外阴鳞状细胞癌最常见,其它有恶性黑色素瘤、基底细胞癌、前庭大腺癌等。绝大多数肿瘤生长在外阴皮肤表面,容易被发现,但仍有很多患者未能获早期诊断和治疗。其原因或是患者不重视外阴部症状,如瘙痒、结节状小赘生物等,或是医师不认识外阴症状的重要性,常没有先作病变部位活组织检查,确诊后再治疗,而是先盲目给予不适当治疗延误病情。

相关文档
最新文档