ansys坐标系的总结

ansys坐标系的总结
ansys坐标系的总结

ANSYS坐标系总结

直角坐标系

在平面内画两条互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y 轴。这样就说在平面上建立了平面直角坐标系,简称直角坐标系。

平面极坐标系

坐标系的一种。在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。

柱面坐标系

柱坐标系中的三个坐标变量是 r、φ、z。与直角坐标系相同,柱坐标系中也有一个z变量。各变量的变化范围是:0 ≤ r < +∞,

0 ≤φ≤ 2π

-∞

其中

x=rcosφ

y=rsinφ

z=z

球坐标系(空间极坐标系)

球坐标是一种三维坐标。

设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P 在xOy面上的投影。这样的三个数r,φ,θ叫做点P的球面坐标,

x=rsinθcosφ

y=rsinθsinφ

z=rcosθ

https://www.360docs.net/doc/061842446.html,/zhishi/184852.html

ANSYS坐标系以及工作平面的具体说明

ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。

▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2

其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0

默认。LOCAL的目的主要是为了建模方便以及选取便利。

LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。

▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN

ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点

CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点

CSYS,2 !激活全局球坐标,原点在全局坐标的原点

CSYS,4(WP) !激活工作平面,原点在工作平面的原点

CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点

▲ANSYS中定义工作平面的位置采用WPLANE或者WPAVE命令:

1)WPLANE, WN, XORIG, YORIG, ZORIG, XXAX, YXAX, ZXAX, XPLAN, YPLAN, ZPLAN 注:所有点的坐标均是全局坐标。

XORIG, YORIG, ZORIG为要定义的工作平面原点O的位置,坐标类型为全局坐标系,与当前激活的坐标类型(CSYS)无关。XXAX, YXAX, ZXAX为确定局部坐标系的X轴的方向,坐标类型为全局坐标系,局部坐标系的X轴就沿着原点O与此点的连线方向。XPLAN, YPLAN, ZPLAN为确定局部坐标系的Y轴方向,类型为全局坐标系,原点O与此点的连线确定Y轴的方向,不要求与OX垂直,只要成一弧度就可以确定。

wplane,,1,0,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X和Y方向均与全局坐标系相同。

wplane,,1,0,0,1,1,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X方向为由全局坐标(1,0,0)指向(1,1,0),Y方向为保证Z方向与全局坐标系相同的方向。

wplane,,1,0,0,0.8,0.8,0,1.2,0.2,0 !将工作平面原点平行移动到全局坐标

点(1,0,0),X方向为由全局坐标(1,0,0)指向(0.8,0.8,0),Y的方向由全局坐标(1,0,0)指向(1.2,0.2,0)的方向确定。Z方向不一定与全局坐标系相同。

2)WPAVE, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3

将工作平面的坐标原点O移动到由上述三点所确定的平面的中心(坐标的算术平均)

注:所有坐标均是针对当前激活的坐标系类型而言。

wpave,0.5,0,0 !将工作平面的坐标原点移动到当前激活坐标系类型(假定为笛卡尔类型,CSYS,0)下的点(0.5,0,0)处

wpave,0.5,0,0,0.5,90,0 !将工作平面的坐标原点移动到当前激活坐标系类型(假定为笛卡尔类型,CSYS,1)下的点(0.5,0,0)与点(0.5,90,0)的连线(为该坐

标系下的连线,不为直线,为圆弧形)中点处。

wpave,0.5,0,0,0.5,90,0,0.7,45,0 !将工作平面的坐标原点移动到当前激活

坐标系类型(假定为笛卡尔类型,CSYS,1)下的点(0.5,0,0)、点(0.5,90,0)与点(0.7,45,0)的平面的几何中心处(形心)。

问题1:

在圆柱的周围沿径向加一圈位移载荷,如何利用柱坐标加载。

解决方法:

CSYS,1 !转化当前坐标为柱坐标

NSEL,... !选取所要加载或约束节点

NROTAT,ALL !转化节点坐标与当前平行(关键指令)

然后加载即可,

注:

1、NROTAT:将节点坐标系旋转到激活坐标系的方向。即节点坐标系的X轴转成平行于激活坐标系的X轴或R轴,节点坐标系的Y轴旋转到平行于激活坐标系的Y或θ轴。节点坐标系的Z轴转成平行于激活坐标系的Z或Φ轴。

2、我的理解:如果没有NROTAT那条指令加载失败的原因是,载荷的施加都是施加在节点坐标系的,虽然CSYS,1指定了当前坐标系为柱坐标系,但单元坐标系仍然没有改变(平行于总体卡式坐标系),NROTAT的作用就是将单元的节点坐标系方向指定为当前坐标系方向。

https://www.360docs.net/doc/061842446.html,/s/blog_4ccc6da00100a0au.html

工作平面(Working Plane)

工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)

总体坐标系

在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为:

CS,0: 总体笛卡尔坐标系

CS,1: 总体柱坐标系

CS,2: 总体球坐标系

数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。

局部坐标系

局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径

Workplane>Local CS>Create LC来创建。

激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径 Workplane>Change active CS to>。

节点坐标系

每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。

例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用 "rep7>Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径

Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。

注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。

单元坐标系

单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。

结果坐标系

/Post1通用后处理器中 (位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总体笛卡尔在坐标系表达。无论节点和单元坐标系如何设定。要恢复径向和环向应力,结果坐标系必须旋转到适当的坐标系下。这可以通过菜单路径

Post1>Options for output实现。 /POST26时间历程后处理器中的结果总是以节点坐标系表达。

显示坐标系

显示坐标系对列表圆柱和球节点坐标非常有用(例如, 径向,周向坐标)。建议不要激活这个坐标系进行显示。屏幕上的坐标系是笛卡尔坐标系。显示坐标系

为柱坐标系,圆弧将显示为直线。这可能引起混乱。因此在以非笛卡尔坐标系列表节点坐标之后将显示坐标系恢复到总体笛卡尔坐标系

https://www.360docs.net/doc/061842446.html,/s/blog_622430b30100fhct.html

ansys坐标系的总结

ANSYS坐标系总结 直角坐标系 在平面内画两条互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y 轴。这样就说在平面上建立了平面直角坐标系,简称直角坐标系。 平面极坐标系 坐标系的一种。在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。 柱面坐标系 柱坐标系中的三个坐标变量是 r、φ、z。与直角坐标系相同,柱坐标系中也有一个z变量。各变量的变化范围是:0 ≤ r < +∞, 0 ≤φ≤ 2π -∞

x=rsinθcosφ y=rsinθsinφ z=rcosθ https://www.360docs.net/doc/061842446.html,/zhishi/184852.html ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0 默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点

ANSYS中的坐标系

ANSYS中的坐标系 坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。同一时刻只能有一个坐标系被激活。 总体坐标系:用于确定几何结构的空间位置,是绝对参考系。如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。 局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。删除局部坐标系(CSDELE)。查看局部坐标系(CSLIST)。 节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。显示节点坐标系(NLIST)。此外节点复制(NGEN)时,节点坐标系也一并复制。 单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。修改面单元和体单元坐标系方向(ESYS)。 显示坐标系:用于节点和单元PLOT LIST采用的坐标系,默认采用总体笛卡尔坐标系。设置显示坐标系的方法(DSYS)。 结果坐标系:用于结果数据显示采用的坐标系,默认采用总体笛卡尔坐标系。设置结果坐标系的方法(RSYS)。 节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。 例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用"Prep7> Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。 注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。 有限元分析中的很多相关量都是在节点坐标系下解释的,这些量包括: 输入数据: 1 自由度常数 2 力 3 主自由度 4 耦合节点 5 约束方程等 输出数据: 1 节点自由度结果 2 节点载荷 3 反作用载荷等 但实际情况是,在很多分析中,自由度的方向并不总是与总体笛卡尔坐标系平行,比如有时需要用柱坐标系、有时需要用球坐标系等等,这些情况下,可以利用ANSYS的“旋转节点坐标系”的功能来实现节点坐标系的变化,使其变换到我们需要的坐标系下。具体操作可参见ANSYS联机帮助手册中的“分析过程指导手册->建模与分网指南->坐标系->节点坐标系”中说明的步骤实现。

ANSYS坐标系和工作平面介绍

!总体和局部坐标系:用来定位几何形状参数(节点,关键点)的空间位置 !显示坐标系:用于几何形状参数的列表和显示 !节点坐标系:定义每个节点的自由度方向和节点结果数据的方向!单元坐标系:确定材料特性主轴和单元坐标系结果数据的方向 !结果坐标系:用来列表,显示或在统一后处理操作中将节点或单元转换到一个特定的坐标系 1局部坐标系定义方法:workplane-local coordinate system-create local cs- at specified loc (1)局部坐标系的激活,workplane –change active cs to-specified coord sys (2)显示坐标系:workplane –change display cs to –specified coord sys (3)节点坐标系:节点坐标系用于节点自由度的方向,每个节点 都有自己的节点坐标系 Preprocessor –modeling- move modify-rotate node cs to-active cs (4)单元坐标系:加面压力和结果的输出方向preprocessor –modeling-move-elements- modify attribute (5)结果坐标系:general postprocessor –options for output List –results- options

@ 工作平面 工作平面是一个无限平面,有原点,二维坐标系,捕捉增量和显示栅格。当定义一个新的工作平面就会删除已有的工作平面,工作平面与坐标系是独立的,它们可以有不同的原点和旋转方向 定义一个新的工作平面 Workplane –align Wp with-specified coord sys 移动工作平面 workplane-offset wp to-global original 工作平面旋转:workplane-offset wp by increment

ANSYS坐标系以及工作平面的区别联系

ANSYS坐标系以及工作平面的区别联系 基本概念: 工作平面(Working Plane) 工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 总体坐标系 在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系 数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。 局部坐标系 局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径Workplane>Change active CS to>。 节点坐标系 每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。 例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用"Prep7>Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。 注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。 单元坐标系 单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。 结果坐标系 /Post1通用后处理器中(位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总体

ANSYS第三章 坐标系

第三章坐标系 3.1坐标系的类型 ANSYS程序提供了多种坐标系供用户选取。 2 总体和局部坐标系用来定位几何形状参数(节点、关键点等)的空间位置。 2 显示坐标系。用于几何形状参数的列表和显示。 2 节点坐标系。定义每个节点的自由度方向和节点结果数据的方向。 2 单元坐标系。确定材料特性主轴和单元结果数据的方向。 2 结果坐标系。用来列表、显示或在通用后处理(POST1)操作中将节点或单元结果转换到一个特定的坐标系中。 工作平面与本章的坐标系分开讨论,以在建模中确定几何体素,参见§4中关于工作平面的详细信息。 3.2总体和局部坐标系 总体和局部坐标系用来定位几何体。缺省地,当定义一个节点或关键点时,其坐标系为总体笛卡尔坐标系。可是对有些模型,定义为不是总体笛卡尔坐标系的另外坐标系可能更方便。ANSYS程序允许用任意预定义的三种(总体)坐标系的任意一种来输入几何数据,或在任何用户定义的(局部)坐标系中进行此项工作。 3.2.1总体坐标系 总体坐标系统被认为是一个绝对的参考系。ANSYS程序提供了前面定义的三种总体坐标系:笛卡尔坐标、柱坐标和球坐标系。所有这三种系统都是右手系。且由定义可知它们有共同的原点。它们由其坐标系号来识别:0是笛卡尔坐标,1是柱坐标,2是球坐标(见图总体坐标系)

图3-1总体坐标系 2 (a) 笛卡尔坐标系(X, Y, Z) 0 (C.S.0) 2 (b)柱坐标系(R,θ, Z com ponents) 1 (C.S.1) 2 (c) 球坐标系(R,θ,φcomponents) 2 (C.S.2) 2 (d)柱坐标系 (R,θ,Y components) 5 (C.S.5) 3.2.2局部坐标系 在许多情况下,有必要建立自己的坐标系。其原点与总体坐标系的原点偏移一定的距离,或其方位不同于先前定义的总体坐标系(如图3-2所示用局部、节点或工作平面坐标系旋转定义的一个坐标系的例子)。用户可定义局部坐标系,按以下方式创建: 图3-2欧拉旋转角 2按总体笛卡尔坐标定义局部坐标系。 命令:LOCAL GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>At Specified Loc 2通过已有节点定义局部坐标系。 命令:CS GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Nodes 2通过已有关键点定义局部坐标系。 命令:CSKP GUI : Utility Menu>WorkPlane>Local Coordinate Systems>Create Local CS>By 3 Keypoints 2在当前定义的工作平面的原点为中心定义局部坐标系。 命令:CSWPLA

Ansys学习总结

5、ANSYS输出mnf文件 模型单位要统一,最好都适用国际单位米制的,那么弹性模量、密度也要统一单位。然后进行单元添加:solid45、beam4、mass21给beam4设置实常数(real constant):基本都是1e-12(米制单位,毫米要相应改变) 给mass21设置实常数(real constant):基本都是1e-12(米制单位,毫米要相应改变) 添加材料设置:包括两种材料,一种是实体需要的材料,即为应该模型材料。 一种就是需要刚度大但是质量轻的材料,一般用的是密度为1e-12,弹性模量比模型实体的高出5个数量级(这个数值对能否导成功有直接影响,可以进行试算,用高5个数量级保证了稳定输出)。 在attachpoint铰链位置添加两个keypoint,然后用mass21去划分网格。可以得到node 1、node2,然后对模型整体用solid45划分。现在要把这两个孔刚化,就需要用到刚性梁单元。 用beam4单元连接孔上每一个节点与孔中心节点(需要成为attachpoint的点)。 6、ansys中的add、glue、overlap的区别及联系 1、相加(add):相加是指对所有图元进行叠加,包含原是个图元的所有部分,生成一个新图元,各个原始图元的公共边界将被清除,形成一个单一的整体。在ansys的面相加中只能对共面的图元进行操作.

对两个已经存在的面进行相加操作 命令:aadd,na1,na2,na3,na4,na5,na6,na7,na8,na9 2)对两个已经存在的体进行相加操作命令: vadd,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv9 3)对两条已经存在的线进行操作 命令:lcomb,nl1,nl2,keep keep表示保留进行相加操作的图元,deleted表示进行相加操作后删除原始图元。 2、搭接(overlap):搭接食指将分离的同阶图元转变为一个连续体,其中图元的所有重叠区域将独立成为一个图元。搭接与相加操作类似,但相加操作是由几个图元生成一个图元整体,而搭接则是由几个图元生成更多的图元,相交的部分则被分离出来。 1)、线和线之间进行搭接操作 命令:lovlap,nl1,nl2,nl3,nl4,nl5,nl6,nl7,nl8,nl9 2)、面和面之间进行搭接操作 命令:aovlap,na1,na2,na3,na4,na5,na6,na7,na8,na9 3)、体和体之间进行搭接操作 命令:vovlap,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv9 3、粘结(glue)粘结操作是将多个图元组合成一个连续体,图元之间仅在公共边界处相连,其公共边界的维数低于原始图元一维。粘结操作与加操作类似,但不同的是这些图元之间仍然相互独立,只是在边界上连接。粘结操作通常还与搭接操作配合使用。

ANSYS坐标系以及工作平面几点心得

ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。 CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点 CSYS,4(WP) !激活工作平面,原点在工作平面的原点 CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点 ▲ANSYS中定义工作平面的位置采用WPLANE或者WPAVE命令: 1)WPLANE, WN, XORIG, YORIG, ZORIG, XXAX, YXAX, ZXAX, XPLAN, YPLAN, ZPLAN 注:所有点的坐标均是全局坐标。 XORIG, YORIG, ZORIG为要定义的工作平面原点O的位置,坐标类型为全局坐标系,与当前激活的坐标类型(CSYS)无关。XXAX, YXAX, ZXAX为确定局部坐标系的X轴的方向,坐标类型为全局坐标系,局部坐标系的X轴就沿着原点O与此点的连线方向。XPLAN, YPLAN, ZPLAN为确定局部坐标系的Y轴方向,类型为全局坐标系,原点O与此点的连线确定Y轴的方向,不要求与OX垂直,只要成一弧度就可以确定。 wplane,,1,0,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X和Y方向均

ansys工作平面和坐标

ansys工作平面和坐标 ANSYS坐标系总结 工作平面(Working Plane) 工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格) 4.1什么是工作平面 尽管光标在屏幕上只表现为一个点,但它实际上代表的是空间中垂直于屏幕的一条线。为了能用光标拾取一个点,首先必须定义一个假想的平面,当该平面与光标所代表的垂线相交时,能唯一地确定空间中的一个点。这个假想的平面就是工作平面。从另一种角度想象光标与工作平面的关系,可以描述为光标就象一个点在工作平面上来回游荡。工作平面因此就如同在上面写字的平板一样。(工作平面可以不平行于显示屏) 工作平面是一个无限平面,有原点、二维坐标系,捕捉增量(下面讨论)和显示栅格。在同一时刻只能定义一个工作平面(当定义一个新的工作平面时就会删除已有的工作平面)。工作平面是与坐标系独立的。例如,工作平面与激活的坐标系可以有不同的原点和旋转方向。见§4.3.5,详细讨论了如何迫使激活的坐标系跟踪工作平面。 4.2生成一个工作平面 进入ANSYS程序时,有一个缺省的工作平面,即总体笛卡尔坐标系的X-Y平面。工作平面的X、Y轴分别取为总体笛卡尔坐标系的X轴和Y轴。 4.2.1生成一个新的工作平面 用户可利用下列方法生成一个新的工作平面。 ·由三点生成一个工作平面或能过一指定点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:WPLANE GUI : Utility Menu>WorkPlane>Align WP with>XYZ Locations ·由三节点定义一个工作平面或通过一指定节点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:NWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Nodes ·由三关键点定义一个工作平面或能过一指定关键点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:KWPLAN GUI : Utility Menu>WorkPlane>Align WP with>Keypoints ·由过一指定线上的点的垂直于视向量的平面定义为工作平面,用下列方法: 命令:LWPLAN GUI: Utility Menu>WorkPlane>Align WP with>Plane Normal to Line ·还可以通过现有坐标系的X─Y(或R─θ)平面上定义工作平面。 命令:WPCSYS GUI : Utility Menu>WorkPlane>Align WP with>Active Coord Sys Utility Menu>WorkPlane>Align WP with>Global Cartesian

ANSYS 坐标系实用方法

ANSYS 坐标系实用方法 一、总体坐标系 在每开始进行一个新的ANSYS分析时,已经预先定义了四个坐标系。它们位于模型的总体原点。四种类型分别为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系,以总体z 轴为轴线 CS,2: 总体球坐标系 CS,5: 总体柱坐标系,以总体y 轴为轴线 数据库中节点坐标总是以总体笛卡尔坐标系表示,无论节点是在什么坐标系中创建的。 这4个坐标系都是ANSYS 预先定义的,它们的原点都在总体直角坐标系的原点,使用时只需选择,不要重新定义。参见CSYS 命令。 二、局部坐标系 局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径: Workplane > Local CS > Create LC 来创建,其编号从11 开始。 三、激活坐标系 激活坐标系或当前坐标系是分析中特定阶段的参考坐标系。缺省为总体笛卡尔坐标系。当创建一个新的坐标系时,新坐标系变为激活坐标系。这是随后的操作所使用的坐标系。也可以使用激活坐标系的命令(csys) 来改变激活坐标系。菜单中激活坐标系的路径: Workplane > Change active CS to > 选择一个已经定义的坐标系。

四、工作平面坐标系 可以以工作平面作为参考的直角坐标系,其x,y 轴在工作平面上,z 轴垂直工作平面,由右手定则确定。工作平面坐标系的初始状态与总体直角坐标系相同,即:初始的原点在总体坐标系的原点,三个坐标轴与总体直角坐标系一致;以后,随着工作平面的移动、旋转而改变。 注意:其它坐标系,在定义(ANSYS 预先定义或用户自己定义) 后,其方向和原点就不再改变,除非重新定义,而工作平面坐标系也属于预先定义的坐标系,但是会随着工作平面的移动或旋转而改变,即它的原点和方向都不是固定的。 工作平面坐标系的编号为 4 (或用WP 表示),参见CSYS 命令。 五、节点坐标系 每一个节点都有一个附着的坐标系。无论当前的激活坐标系是什么,节点坐标系缺省总是笛卡尔坐标系。节点力和节点位移边界条件(约束)指的是节点坐标系的方向。时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果,默认是在总体笛卡尔坐标系中,但可以使用RSYS 命令修改节点结果显示时所使用的坐标系。 例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个局部柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用: Prep7 > Move/Modify > Rotate Nodal CS to active CS, 使所选择节点的节点坐标系与激活坐标系的方向一致。未被选择的节点保持原来坐标系方向不变。 节点坐标系的显示可以使用菜单路径: Pltctrls > Symbols > Nodal CS。 这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。 注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。

个人总结ansys命令流

Q235 属性:弹性模量E=2.1e5 N/mm2 密度=7.85e-6kg/mm3 泊松比=0.3 mp,ex,1,2.1e5 mp,prxy,1,0.3 mp,dens,1,7.85e-6 1,ksymm 镜像点 2,arsym 镜像面 3,kgen 复制点 4.adele删除面 6,kdist,k1,k2 测量两关键点的距离 7,adele,a,,,1 删除area and below 8,创建圆柱面: circle 创建圆 然后创建直线 然(轴线) 利用拉伸命令创建圆柱面creat__areas__by Lines adrag 线拉伸成面modeling>operate>extrude>lines>>along lines VDRAG 面拉伸成体modeling>operate>extrude>areas>>along lines !创建空心圆柱体 这个命令 CYLIND, RAD1, RAD2, Z1, Z2, THETA1, THETA2 Main Menu>Preprocessor>Modeling>Create>Volumes>Cylinder>By Dimensions Main Menu>Preprocessor>Trefftz Domain>TZ Geometry>Create>Volume>Cylinder>By Dimensions 9,aptn 分割面 10,asbw 用工作平面切割面 11.wpoffs 12.wprota

https://www.360docs.net/doc/061842446.html,ng 过圆外一点做圆的切线(0°或180°) 14,nummrg 将重复的点消除 15,asba 面减去面 16,两个圆柱面的相贯线作法:做出两个相穿的圆柱面,利用APTN命令 17,选择面,不选择一部分面 asel,u,loc,z,kz(735) 18.在工作平面上生成一个矩形面 RECTING,X1,X2,Y1,Y2 X1,X2——矩形在工作平面X方向坐标值的变化范围 Y1,Y2——矩形在工作平面Y方向坐标值的变化范围 18,圆阵列 建立工作平面与圆柱的横截面平行,在工作平面情况下建立局部坐标系(柱坐标系),然后利用agen命令复制。 19,转换成局部柱坐标系 20,kfill 在两个关键点之间生成一个或多个关键点 21.网格划分 aatt,1,14,1, !aatt,mat,real,type,esys,secn aesize,all,1000 !aesize,anum,size, 单元尺寸 mshape,0,2d !mshape,key,dimension 指定划分单元形状amesh,all k,1,24000,33000,2230 k,2,24000,33000,-2230 k,3,-24000,33000,-2230 k,4,-24000,33000,2230 kfill,2,3,23,5,1,1 kfill,1,4,23,28,1,1 *do,i,5,26 l,i,i+1 *enddo

ansys中workbench周期性边界设置

周期网格分为两类:旋转周期及平移周期。在ANSYS M ESH模块中,利用坐标系来区分这两类网格类型。周期网格区域要求周期面上网格节点一一对应,在ANSYS M ESH模块中,可以很方便的通过S YMMETRY功能模块中的P ERIODIC R EGION功能达到这一目标。本例描述了如何在ANSYS M ESH模块中创建周期网格的步骤,在WORKBENCH中的项目结构如图1所示。 图1项目组织结构 一、几何模型 本例包括两个计算模型,分别对应旋转周期与平移周期,为方便起见,这里使用最简单的几何模型。如图1,图2所示分别为旋转周期几何与平移周期几何。网格划分完毕后均用FLUENT进行测试。 图2旋转周期 图3平移周期(A面与其对边的面) 二、旋转周期边界 双击A2单元格,进入MESH模块。 在进行旋转周期边界创建之前,需要创建柱坐标系。如图4所示,在属性菜单C OORDINATE S YSTEM上点击右键,选择子菜单I NSERT,在弹出的子菜单中选择C OORDINATE SYSTEM,创建新的坐标系。 图4插入坐标系 进行如图5所示设置。选择TYPE为C YLINDRICAL创建圆柱坐标系,ORIGIN设置为你的旋转中心,PRINCIPAL AXIS为径向坐标,ORIENTATION ABOUT PRINCIPAL AXIS为轴向坐标,自己根据实际情况设置。最关键的是旋转中心。 图5坐标系创建 在M ODEL上点击右键,选择I NSERT >S YMMETRY,插入对称。如图6所示。

图6插入对称 在插入的S YMMETRY节点上点击右键,选择I NSERT >P ERIODIC R EGION,插入周期区域。如图7所示。 图7插入周期区域 选择LOW BOUNDARY与HIGH BOUNDARY,这两个边界为相对应的周期边界。最好是沿着旋转方向。设置TYPE为P ERIODIC,设置C OORDINATE S YSTEM为前面创建的柱坐标系。 图8设置周期 如图9所示选择相应的面。 图9选择周期面 OK了,其他网格划分工作就没什么好说的了,该怎么划分还怎么划分。设置周期边界的作用在于保证周期面上的网格节点一致,否则在FLUENT中创建周期边界会出错。为了便于观察,这里使用四面体网格(其实这个模型在MESH中可以自动划分为六面体网格)。生成的网格如图10所示。从图中可以看出,周期面上网格节点数是映射对应的。 图10网格模型 给模型边界命名:周期边界分别命名为SIDE A与SIDE B,其他随便给个名称。主要是用于FLUENT中周期边界的创建。 关闭MESH模块,返回工程项目窗口,先更新A3元格,然后双击B2单元格进入FLUENT。在进行周期网格创建之前,先检查一下SIDE A与SIDE B所对应的ID号。 利用TUI命令MESH/MODIFY-ZONES/LIST-ZONES列举区域,如图10所示,可以看出SIZEA与SIZEB分别对应的ID号为8和9. 图11列举区域 好了,现在可以利用TUI创建周期边界了。 TUI命令:MESH/MODIFY-ZONES/MAKE-PERIODIC,如图11所示。 在弹出的提示输入PERIODIC ZONE中输入8,S HADOW ZONE中输入9,后面的参数按提示输入

ansys总结

目标:熟悉ANSYS基本关键字的含义 k --> Keypoints 关键点 l --> Lines 线 a --> Area 面 v --> Volumes 体 e --> Elements 单元 n --> Nodes 节点 cm --> component 组元 et --> element type 单元类型 mp --> material property 材料属性 r --> real constant 实常数 d --> DOF constraint 约束 f --> Force Load 集中力 sf --> Surface load on nodes 表面载荷 bf --> Body Force on Nodes 体载荷 ic --> Initial Conditions 初始条件 目标:了解命令流的整体结构,掌握每个模块的标识 !文件说明段 /BATCH /TITILE,test analysis !定义工作标题 /FILENAME,test !定义工作文件名 /PREP7 !进入前处理模块标识!定义单元,材料属性,实常数段 ET,1,SHELL63 !指定单元类型 ET,2,SOLID45 !指定体单元 MP,EX,1,2E8 !指定弹性模量 MP,PRXY,1,0.3 !输入泊松比 MP,DENS,1,7.8E3 !输入材料密度 R,1,0.001 !指定壳单元实常数-厚度...... !建立模型 K,1,0,0,, !定义关键点 K,2,50,0,, K,3,50,10,, K,4,10,10,, K,5,10,50,, K,6,0,50,, A,1,2,3,4,5,6, !由关键点生成面...... !划分网格

ANSYS教程(非常有用)

第一章ANSYS的安装和配置 ANSYS程序包括两张光盘:一张是ANSYS经典产品安装盘,另一张是ANSYSWorkbench产品安装盘。本章以ANSYS10.0为例介绍ANSYS 的安装、配置、启动及ANSYS的相关知识。 第一节ANSYS的安装 一、安装ANSYS对系统的要求 安装ANSYS对计算机系统的要求如下。 1.硬件要求 ①内存至少256M; ②采用显存不少于32M的显卡,分辨率至少为1024x768,色彩为真彩色32位: ③硬盘剩余空间至少2G; ④安装网卡,设置好TCP/IP协议,并且TCP/IP协议绑定到此网卡上。注意在TCP/1P协议中要设定计算机的hostname。 2.软件系统要求 操作系统为Windows2000或WindowsXP以上。 二、安装ANSYS前的准备工作 1.拷贝文件 先将安装光盘中MAGNITUDE文件夹拷入计算机中,如D:LMAGNITUDE,用Windows的记事本打开D:~IAGNITUDE文件夹中的ansys.dat文件,该文件的第一行内容为"SERVERhostOOOOO(30000001055”,把host改为你的计算机名,如1wm是我的主机名,则host 改为Ivan。执行命令所有程序>附件,命令提示符进入DOS状态,键入1PCONFIG/ALL回车,所显示的physicaladdress即为网卡号,本例中计算机网卡的physicaladdress为000c6e10c8531055,则ansys.dat文件的第一行内容修改为“SERVERlwm000c6e10c8531055”,以原文件名存盘退出。 2.生成许可文件 运行D:\MAGNITUDE文件夹中的keygen.bat文件,生成license.dat,该文件就是ANSYS的许可文件,将它存放在指定目录下永久保存,本例中存放在D:LMAGNITUDE文件夹中。 三、安装ANSYS ①将ANSYS的安装光盘放入光驱中,出现如图1-1的画面,选择Install ANSYS 10.0开始安装AHSYS10.0。 ②开始运行ANSYS安装程序,出现ANSYS安装欢迎界面如图1-2的所示,选择Next按钮进行下一步安装。 第2页

ANSYS的坐标转换办法

Ansys的六种坐标系及其操作学习资料 原文地址:Ansys的六种坐标系及其操作作者:fyouyong Ansys的坐标系及其操作 1 总体坐标系:用来确定几何形状的参数如节点、关键点等的空间位置。 总体坐标系是一个绝对参考系,用来确定空间几何结构的位置。Ansys中有3类总体坐标系可以供用户选择,即笛卡尔坐标系、圆柱坐标系和球坐标系。这三种坐标系都属于右手坐标系,而且公用一个坐标原点。 激活坐标系后,会在主界面下状态中显示相应的坐标信息。

2 局部坐标系:用户自定义的坐标系。用户可用于建模等操作。 由于很多分析中的模型很复杂,仅使用总体坐标系是不够的,这是我们必须建立自己的坐标系,即局部坐标系。局部坐标系的原点可以与总体坐标系的原点偏移一定的距离,或者不同不同于先前定义的总体坐标系。 与总体坐标系一样,局部坐标系也可以有笛卡尔坐标系、球坐标系和圆柱坐标系。局部坐标系还可以是圆的,也可以是椭圆的,此外还可以是环形局部坐标系。

单击at specificed loc菜单项,将弹出特定点拾取对话框,用户在图形窗口拾取任意点作为自定义的坐标原点,也可以在输入文本框中输入自定义的坐标原点。 假设在图形窗口任意拾取一点作为坐标原点后,打开以下对话框。

所有的局部坐标系和总体坐标系都可以当做当前坐标系来使用,但只能有一个当前激活的坐标系。 激活坐标系可以按照如下方法: 1 每次定义一个局部坐标系后,它自动被激活成当前坐标系。 2 utility menu /workplane/change active cs to/specificed coord system 3 列表显示所有的坐标系列表 如果想查看所有的总体坐标系和局部坐标系的信息,可以通过以下方法 CSlist 或utility menu/list/other/local coord system 3 节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。

anays坐标系总结

ANSYS坐标系总结 2010-03-24 17:15 直角坐标系 在平面内画两条互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y轴。这样就说在平面上建立了平面直角坐标系,简称直角坐标系。 平面极坐标系 坐标系的一种。在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p 的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。极点的极径为零,极角不定。除极点外,点和它的极坐标成一一对应。 柱面坐标系 柱坐标系中的三个坐标变量是 r、φ、z。与直角坐标系相同,柱坐标系中也有一个z变量。各变量的变化范围是:0 ≤ r < +∞, 0 ≤φ≤ 2π

-∞

y=rsinθsinφ z=rcosθ https://www.360docs.net/doc/061842446.html,/zhishi/184852.html ANSYS坐标系以及工作平面的具体说明 ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。 ▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。输入过程中未给出值的符号用0 默认。LOCAL的目的主要是为了建模方便以及选取便利。 LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2) 【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。 ▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。这个命令影响到点(K)坐标的输入类型。工作平面(WP)与全局坐标系重合。CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点 CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点 CSYS,2 !激活全局球坐标,原点在全局坐标的原点 CSYS,4(WP) !激活工作平面,原点在工作平面的原点 CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点

ANSYS的工作平面与坐标系

工作平面WP与坐标系Cartesian的区别?如在建模area 时,创建的area的位置随Workplane的改变而改变。 回答:工作平面和坐标系是有区别的,同时通过一些操作也可以将两者联系其来。 Working Plane 是一个2D作图平面,主要用于实体模型的定向和定位。Working Plane是一个无限大的平面,有原点、2D坐标系、捕捉增量和显示栅格。在同一时刻只能定义一个Working Plane。Working Plane与坐标系无关,是独立的,如工作平面与激活的坐标系可以有不同的原点和旋转方向。在进入ANSYS时,系统有一个默认的Working Plane,即Global Cartesion 的XY平面,Cartesion坐标系的X、Y轴就是该Working Plane的WX、WY轴。 详细分析参下: 4.2. Working Plane Enhancements 4.2. 5. Working Plane Tracking If you've used working planes in conjunction with coordinate systems to define your geometry, you've probably discovered that working planes are

completely separate from coordinate systems. When you change or move the working plane, for instance, the coordinate system does not change to reflect the new working plane type or location. This can be frustrating if you are using a combination of picking (based on the working plane), and keyboard input of entities such as keypoints (based on active coordinate system). For instance, if you move the working plane from its default position, then wish to define a keypoint at the new origin of the working plane with keyboard input (that is K,1205,0,0,0), you'll find that the keypoint is located at the coordinate system origin rather than the working plane origin (see Figure 4.4: Working Plane/Coordinate System Mismatch) If you find yourself forcing the active coordinate system to follow the

相关文档
最新文档