管片尺寸确定

管片尺寸确定
管片尺寸确定

3.1 管片尺寸确定

3.1.1 衬砌结构及形式的选择

盾构隧道衬砌有预制装配式衬砌、双层衬砌以及挤压混凝土整体式衬砌三大类。预制装配式衬砌是用工厂预制的构件(称为管片),在盾构尾部拼装而成的。双层衬砌是为防止隧道渗水和衬砌腐蚀,修正隧道施工误差,减少噪音和振动以及作为内部装饰,在装配式衬砌内部再做一层整体式混凝土或钢筋混凝土内衬。挤压混凝土衬砌(Extrude Concrete Lining,简称ECL)就是随着盾构向前推进,用一套衬砌施工设备在盾尾同步灌注的混凝土或钢筋混凝土整体式衬砌。

本区间采用预制装配式衬砌。

3.1.2 管片的形状尺寸

3.1.2.1 衬砌截面尺寸的确定

采用盾构法修建地下铁道区间隧道时,无论是直线还是在曲线上,均使用同一台盾构施工,中途无法更换。因此,其横截面的内轮廓尺寸在全线时统一的,故除要根据建筑限界、施工误差、道床类型、预留变形等条件决定外,还要按照线路的最小曲线半径进行验算,保证列车在最困难的条件下也能安全通过。

地铁圆形隧道限界为φ5200mm的圆。隧道内径的确定应综合考虑限界、施工误差、测量误差、线路拟合误差、不均匀沉降等因素。

结合广州地铁的成功经验,隧道的内径定为5400mm。

3.1.2.2 管片形式及厚度:

根据广州、上海等地地铁盾构法区间隧道和国外类似工程的成功经验,表明采用具有一定刚度的单层柔性衬砌是合理的。其衬砌的变形、接缝张开及混凝土裂缝开展等均能控制在预期的要求内,完全能满足地铁隧道的设计要求;且使用单层衬砌,施工工艺简单、工程实施周期短、投资省。鉴于以上理由,盾构隧道采用单层装配式衬砌,管片形式选择当前常用的平板型钢筋混凝土管片。考虑结构100年使用寿命及参照已有工程实例,管片的厚度采用300mm,采用C50混凝土。

3.1.2.3 管片的宽度

衬砌环环宽越大,即管片宽度越宽,衬砌环节缝越少,因而漏水环节、螺栓数量越少,施工速度越快,费用越省。但盾构机千斤顶的行程要大,施工难度亦有一定提高,在小半径曲线上,1.5m管片比1.2m、1.0m宽管片的设计拟合误差

大,但本工程盾构隧道最小曲线半径为1500m,拟合误差很小。

与环宽1.2m的管片相比,采用环宽1.5m的管片有以下优点:一方面,减少

了20%的环向接缝数量,降低了接缝漏水的几率,提高隧道防水质量;另一方面,

降低了接缝止水材料和连接螺栓的使用量;此外还可减少20%的拼装时间,提高

了施工速度。

根据目前广州的盾构机机械情况,综合考虑管片的制作、运输、拼装及曲线

施工的需要,决定采用了1.5m的环宽。

3.1.2.4 构成衬砌环的管片分块形式

衬砌环的组成一般有两种方式:一种是由若干标准管片(A)、两块相邻管片

(B)和一块封顶管片组成(K)组成;另一种是由若干块A型管片、一块B型管片和一块K型管片构成,相邻管片一端带坡面,封顶管片则两端或一端带坡面。

从方便施工,提高衬砌环防水效果角度来看,第一种方式较好。

衬砌环的分块主要由管片制作、防水、运输、拼装、结构受力性能等因素确

定。地铁隧道管片常用分块数为六块和七块两种。

根据隧道所处的围岩条件、荷载情况、构造特点、运输能力、制作拼装等因

素,本隧道衬砌管片采用第一种分块法,

并将衬砌环分为6块(标准块A型3×67.5°,相邻接块B型2×68.75°,

封顶块K型1×20°),根据广州地铁一、二及三号线的成功经验及现有的管片

制作精度水平,本工程确定管片拼装方式采用整体刚度大的错缝拼装形式(左右

转弯11.25°,纵横缝不设凹凸槽);封顶块采用纵向插入的拼装形式,此时封

顶块不易向内滑动,受力较好,管片拼装的顺序为先下后上,左右交叉。

17,圆曲线上需设置楔形环,本设计中楔形环的楔入量 为30mm,楔入角为'

为了工程上的方便,全程采用同一种楔形环,在不满足要求的地方,在标准陈琦

环背向盾构千斤顶的环面上,分段覆贴不同厚度的石棉橡胶板,以调整衬砌环的

拟合精度。

3.1.3 管片连接

衬砌环内管片之间以及各衬砌环之间的连接方式可分为:①柔性连接:允许

相邻管片间产生微小的转动和压缩,使衬砌环能按内力分布状态产生相应的变

形,以改善衬砌的受力状态。②刚性连接:通过增加连接螺栓的排数,在构造上

使接缝处的刚度与管片本身相同。目前较为通用的是柔性连接,常用的有单排螺

栓连接、销钉连接、无连接件连接三种形式。

在该隧道中管片采用单排弯螺栓连接,螺栓分为纵向连接螺栓和环向连接螺栓两种。在柔性连接中,纵、环向的连接螺栓布置一排,其中纵向连接螺栓布置为沿圆周等距离分10个布

置,环向连接螺栓分2个布置,螺栓孔的布置不降低管片强度,并方便螺栓紧固作业。本隧道所采用的螺栓直径为27mm,螺栓孔的直径大于螺栓直径5mm。为了均匀地向衬砌背后进行回填注浆,在管片的中心设置一个内径为50mm注浆孔,兼作为起吊孔使用。

管片尺寸确定

3.1 管片尺寸确定 3.1.1 衬砌结构及形式的选择 盾构隧道衬砌有预制装配式衬砌、双层衬砌以及挤压混凝土整体式衬砌三大类。预制装配式衬砌是用工厂预制的构件(称为管片),在盾构尾部拼装而成的。双层衬砌是为防止隧道渗水和衬砌腐蚀,修正隧道施工误差,减少噪音和振动以及作为内部装饰,在装配式衬砌内部再做一层整体式混凝土或钢筋混凝土内衬。挤压混凝土衬砌(Extrude Concrete Lining,简称ECL)就是随着盾构向前推进,用一套衬砌施工设备在盾尾同步灌注的混凝土或钢筋混凝土整体式衬砌。 本区间采用预制装配式衬砌。 3.1.2 管片的形状尺寸 3.1.2.1 衬砌截面尺寸的确定 采用盾构法修建地下铁道区间隧道时,无论是直线还是在曲线上,均使用同一台盾构施工,中途无法更换。因此,其横截面的内轮廓尺寸在全线时统一的,故除要根据建筑限界、施工误差、道床类型、预留变形等条件决定外,还要按照线路的最小曲线半径进行验算,保证列车在最困难的条件下也能安全通过。 地铁圆形隧道限界为φ5200mm的圆。隧道内径的确定应综合考虑限界、施工误差、测量误差、线路拟合误差、不均匀沉降等因素。 结合广州地铁的成功经验,隧道的内径定为5400mm。 3.1.2.2 管片形式及厚度: 根据广州、上海等地地铁盾构法区间隧道和国外类似工程的成功经验,表明采用具有一定刚度的单层柔性衬砌是合理的。其衬砌的变形、接缝张开及混凝土裂缝开展等均能控制在预期的要求内,完全能满足地铁隧道的设计要求;且使用单层衬砌,施工工艺简单、工程实施周期短、投资省。鉴于以上理由,盾构隧道采用单层装配式衬砌,管片形式选择当前常用的平板型钢筋混凝土管片。考虑结构100年使用寿命及参照已有工程实例,管片的厚度采用300mm,采用C50混凝土。 3.1.2.3 管片的宽度 衬砌环环宽越大,即管片宽度越宽,衬砌环节缝越少,因而漏水环节、螺栓数量越少,施工速度越快,费用越省。但盾构机千斤顶的行程要大,施工难度亦有一定提高,在小半径曲线上,1.5m管片比1.2m、1.0m宽管片的设计拟合误差

液压缸尺寸计算Word版

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的载 荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册 选取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时:

----------液压缸工作腔压力(Pa) ----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=0.7(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=0.7) 综上可得:D=82.8mm,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其 压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故

汽车设计时整车主要尺寸的确定

1.外廓尺寸 GBl589—89汽车外廓尺寸限界规定汽车外廓尺寸长:货车、越野车、整体式客车不应超过12m,单铰接式客车不超过18m,半挂汽车列车不超过16.5m,全挂汽车列车不超过20m;不包括后视镜,汽车宽不超过2.5m;空载、顶窗关闭状态下,汽车高不超过4m;后视镜等单侧外伸量不得超出最大宽度处250mm;顶窗、换气装置开启时不得超出车高300mm。 不在公路上行驶的汽车,其外廓尺寸不受上述规定限制。 轿车总长是轴距L、前悬和后悬的和。它与轴距L有下述关系:=L/C。式中,C为比例系数,其值在0.52~0.66之间。发动机前置前轮驱动汽车的C值为0.62~0. 66,发动机后置后轮驱动汽车的C值约为0.52~0.56。 轿车宽度尺寸一方面由乘员必需的室内宽度和车门厚度来决定,另一方面应保证能布置下发动机、车架、悬架、转向系和车轮等。轿车总宽与车辆总长之间有下述近似关系:=(/3)+ (195±60)mm。后座乘三人的轿车,不应小于1410mm。 影响轿车总高的因素有轴间底部离地高,地板及下部零件高,室内高和车顶造型高度等。 轴间底部离地高入m应大于最小离地间隙。由座位高、乘员上身长和头部及头上部空间构成的室内高一般在l120~1380mm之间。车顶造型高度大约在20~40mm范围内变化。 2.轴距L 轴距L对整备质量、汽车总长、最小转弯直径、传动轴长度、纵向通过半径有影响。当轴距短时,上述各指标减小。此外,轴距还对轴荷分配有影响。轴距过短会使车厢(箱)长度不足或后悬过长;上坡或制动时轴荷转移过大,汽车制动性和操纵稳定性变坏;车身纵向角振动增大,对平顺性不利;万向节传动轴的夹角增大。 原则上轿车的级别越高,装载量或载客量多的货车或客车轴距取得长。对机动性要求高的汽车轴距宜取短些。为满足市场需要,工厂在标准轴距货车基础上,生产出短轴距和长铀距的变型车。不同铀距变型车的轴距变化推荐在0.4~0.6m的范围内来确定为宜。

盾构隧道管片质量检测技术准则CJJ/T

盾构隧道管片质量检测技术标准(C J J/T164-2011) 说明: 目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T164-2011)”的word版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。 该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。 1总则 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2术语 2.0.1管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验

对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。 2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边 模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥砂浆。 拼接面 采用某种方式将盾构隧道管片连接起来,管片与管片之间的接触面。 环向 盾构隧道管片拼装成环后,环的切线方向。 纵向 盾构隧道管片拼装后,环与环的中心连线方向。 渗漏检验装置 在渗漏检验中,用于固定由凝土管片试件,并能在管片外弧面与试验架钢板之间形成密闭区间进行充水加压试验的试验台座。渗漏检验装置由检验架钢板、刚性支座、横压件、紧固螺杆、橡胶密封垫等组成。 3基本规定 3.0.1盾构隧道管片检测,应在接受委托后,进行现场和有关资料调查,制定检测方案并确认仪器设备状况后进行现场检测,根据计算分析和结果评价判断是否进行扩大抽检,并应出具检测报告(见图3.0.1)。 图3.0.1盾构隧道管片检测工作程序 初检结果不

盾构隧道管片高质量检测技术实用标准(CJJ/T164-2011).

盾构隧道管片质量检测技术标准(CJJ/T 164-2011) 说明: 目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T 164-2011)”的word 版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。 该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。

1总则 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2 本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3 盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2 混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3 钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4 水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验 对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。 2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边 模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥

液压缸计算公式

液压缸计算公式 1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: 4,F4== D,3.14,,p F:负载力 (N) 2A:无杆腔面积 () mm P:供油压力 (MPa) D:缸筒内径 (mm) :缸筒外径 (mm) D1 2、缸筒壁厚计算 π×,??ηδσψμ 1)当δ/D?0.08时 pDmax,,(mm) 02,p 2)当δ/D=0.08~0.3时 pDmax,,(mm) 02.3,-3ppmax 3)当δ/D?0.3时 ,,,,0.4pDpmax,,,,(mm) 0,,2,1.3p,pmax,, ,b,, pn δ:缸筒壁厚(mm) ,:缸筒材料强度要求的最小值(mm) 0 :缸筒内最高工作压力(MPa) pmax :缸筒材料的许用应力(MPa) ,p :缸筒材料的抗拉强度(MPa) ,b :缸筒材料屈服点(MPa) ,s

n:安全系数 3 缸筒壁厚验算 22,(D,D)s1(MPa) PN,0.352D1 D1P,2.3,lg rLsD PN:额定压力 :缸筒发生完全塑性变形的压力(MPa) PrL :缸筒耐压试验压力(MPa) Pr E:缸筒材料弹性模量(MPa) :缸筒材料泊松比 =0.3 , 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免 塑性变形的发生,即: ,,(MPa) PN,0.35~0.42PrL 4 缸筒径向变形量 22,,DPDD,1r,,D,,,,(mm) 22,,EDD,1,,变形量?D不应超过密封圈允许范围5 缸筒爆破压力 D1PE,2.3,lg(MPa) bD 6 缸筒底部厚度 Pmax,(mm) ,0.433D12,P :计算厚度处直径(mm) D2 7 缸筒头部法兰厚度 4Fbh,(mm) ,(r,d),aLP F:法兰在缸筒最大内压下所承受轴向力(N) b:连接螺钉孔的中心到法兰内圆的距离(mm) :法兰外圆的半径(mm) ra

盾构隧道管片材料检验方案

盾构隧道管片材料检验 盾构隧道管片中涉及的主要材料有水泥、集料、水、混凝土外加剂、掺合料、钢筋、钢纤维和混凝土等,为时时掌控管片质量,必须对其材料实施严格控制,因此在制作管片前,对这些材料应进行检验。遵循现行标准,制定的具体检验方法如下所列: 1 水泥 水泥宜采用强度等级不低于42.5的硅酸盐水泥、普通硅酸盐水泥,其检测参数、取样方法、检测频率和检测方法应符合表1的规定。 表1 水泥的检测参数、检测频率、取样方法和检测方法 2 钢筋 钢筋直径大于10mm时宜采用热轧螺纹钢筋,直径小于或等于10mm时宜采用低碳钢热轧圆盘条。其检测参数、取样方法、检测频率和检测方法应分别符合表2、表3的规定。当发现钢筋脆断、焊接性能不良或力学性能显著不正常等现象时,应对该批钢筋进行化学成分检验或其他专项检验。 表2 热轧螺纹钢筋的检测参数、检测频率、取样方法和检测方法

表3 低碳钢热轧圆盘条的检测参数、检测频率、取样方法和检测方法 钢筋焊接前须消除焊接部位的铁锈、水锈和油污等,钢筋端部的扭曲处应矫直或切除,施焊后焊缝表面应平整,不得有烧伤、裂纹等缺陷。钢筋焊接接头的检测参数、取样方法、检测频率和检测方法应符合表4的规定。 表4 钢筋焊接接头的检测参数、检测频率、取样方法和检测方法

3 集料 细集料宜采用中砂,细度模数为2.3~3.0,含泥量不应大于2%,砂的检测参数、取样方法、检测频率和检测方法应符合表5的规定。 表5 砂的检测参数、检测频率、取样方法和检测方法 粗集料宜采用碎石或卵石,其最大粒径不宜大于30mm且不应大于钢筋骨架最小净间距的3/4,针片状含量不应大于15%,含泥量不应大于1%。石的检测参数、取样方法、检测频率和检测方法应符合表6的规定。 表6 石的检测参数、检测频率、取样方法和检测方法

液压缸尺寸计算

液压缸尺寸计算 The following text is amended on 12 November 2020.

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷F F=59036N(活塞杆在抬腿过程中始终受压) 2、惯性载荷F F=0(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载荷) 3、密封阻力F F=(1?F F)F,其中F是作用于活塞上的载 荷,且F=F F ,F F是外载荷,F F=F F+F F,其中F F是 F F 液压缸的机械效率,取F F=0.95 综上可得:外载荷F F=59036N,密封阻力F F=2952N,总 载荷F=61988N。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为F=12MPa1(由于 总载荷为61988N大于50000N,故根据手册选取工作压力 为12MPa) 2、选择执行元件液压缸的背压力为F2=1MPa(由于回油路 带有调速阀,且回油路的不太复杂,故根据手册选取被压 压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: F=F1F1?F2F2 F1----------液压缸工作腔压力(Pa)

F 2----------液压缸回油腔压力(Pa ) F 1----------无杆腔活塞有效作用面积,F 1= πD 24,D 为活塞直径(m ) F 2----------有杆腔活塞有效作用面积,F 2= π4(D 2?d 2),d 为活塞杆直径 (m ) 选取d/D=(由于工作压力为12MPa 大于5MPa ,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm , d=60mm 。 校核活塞杆的强度,其中活塞杆的材料为45钢,故[σ]=100MPa。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩 强度即可。σ= F 14πd 2=21.9MPa<[σ]=100MPa,故满足强度要求。 即d=60mm ,则D=90mm 。 由此计算得工作压力为: F 1=10.3MPa 根据所选取的活塞直径D=90mm ,可根据手册选的液压缸的外径为 108mm ,即可得液压缸壁厚为δ =9mm。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故[σ]= 100MPa。 由于该缸处于低压系统,故先按薄壁筒计算,σ=F F F 2δ,其中工作压 力P =F =12MPa ≤16MPa 1,可取F F =1.5F 1,则σ=90MPa<[σ]= 100MPa,故满足强度要求。 又由于D /δ=10,故可将该缸筒视为厚壁,则δ的校核应按下面公式 进行。

盾构管片选型设计

智慧城站~神舟路站区间管片选型设计 1、管片选型的原则 1.1 管片选型适合隧道设计线路; 1.2 管片选型适应盾构机的姿态; 2、遵从隧道设计线路 2.1 管片技术参数 2.2 管片布置方式 本区间设计部署三种圆曲线,平面半径分别为R=600米、R=615米、R=800米、R=1000米;竖曲线形式为R=5000米、R=10000米。依照曲线的圆心角与弯环偏角关系,各种施工段的的布置方式管片为: (1)直线段:8+1模式 由于没有设计平、纵曲线,故仅考虑盾构机在掘进过程中,出现蛇行纠偏所表示的工况。即8个标准环加1个右(左)弯环配置。因为纠偏环多在缓和曲线到曲线之间,到曲线前就需提前安装纠偏环进行调整,以减少进曲线发生纠偏过急现象。 (2)R=600m段:1+1模式 在600m半径的圆曲线上,每隔3.80m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+2环转弯环。 (3)R=615m段:1+1模式 在615m半径的圆曲线上,每隔3.89m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+2环转弯环。 (4)R=800m段:2+1模式 在800m半径的圆曲线上,每隔5.06m要用一环转弯环,标准环与转弯环的拼装关系为2环标准环+1环转弯环。 (5)R=100m段:4+1模式 在1000m半径的圆曲线上,每隔6.33m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+1环转弯环。

(6)R=5000m竖曲线段:20+1模式 在5000m半径竖曲线上,每隔31.65m要用一环转弯环,标准环与转弯环的拼装关系为20环标准环+1环转弯环。 (7)R=10000m竖曲线段:41+1模式 在10000m半径竖曲线上,每隔63.31m要用一环转弯环,标准环与转弯环的拼装关系为41环标准环+1环转弯环。

盾构隧道管片质量检测标准

盾构隧道管片质量检测技术标准 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2 本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3 盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2 混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3 钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4 水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验 对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边 模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥砂浆。 2.0.10 拼接面 采用某种方式将盾构隧道管片连接起来,管片与管片之间的接触面。 2.0.11环向 盾构隧道管片拼装成环后,环的切线方向。 2.0.12纵向 盾构隧道管片拼装后,环与环的中心连线方向。 2.0.13渗漏检验装置 在渗漏检验中,用于固定由凝土管片试件,并能在管片外弧面与试验架钢板之间形成密闭区间进行充水加压试验的试验台座。渗漏检验装置由检验架钢板、刚性支座、横压件、紧固螺

液压缸设计计算

第一部分 总体计算 1、 压力 油液作用在单位面积上的压强 A F P = Pa 式中: F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2 m 从上式可知,压力值的建立是载荷的存在而产生的。在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。 额定压力(公称压力) PN,是指液压缸能用以长期工作的压力。 最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。通常规定为:P P 5.1max ≤ MPa 。 耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。通常规定为:PN P r 5.1≤ MPa 。 液压缸压力等级见表1。 2、 流量 单位时间内油液通过缸筒有效截面的体积: t V Q = L/min 由于310?=At V ν L 则 32104 ?= =νπ νD A Q L/min 对于单活塞杆液压缸: 当活塞杆伸出时 32104 ?= νπ D Q 当活塞杆缩回时 32210)(4 ?-=νπ d D Q 式中: V ——液压缸活塞一次行程中所消耗的油液体积,L ;

t ——液压缸活塞一次行程所需的时间,min ; D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。 3、速比 液压缸活塞往复运动时的速度之比: 2 2 2 12d D D v v -==? 式中: 1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。 4、液压缸的理论推力和拉力 活塞杆伸出时的理推力: 626 11104 10?= ?=p D p A F π N 活塞杆缩回时的理论拉力: 6226 2210)(4 10?-= ?=p d D p F F π N 式中: 1A ——活塞无杆腔有效面积,2 m ; 2A ——活塞有杆腔有效面积,2m ; P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 5、液压缸的最大允许行程 活塞行程S ,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。为了计算行程,应首先计算出活塞的最大允许计算长度。因为活塞杆一般为细长杆,由欧拉公式推导出: k k F EI L 2π= mm 式中:

基础底面尺寸的确定

基础底面尺寸的确定 即满足持力层和下卧层承载力要求。 1. 按持力层承载力确定基底尺寸 作用在基底形心的荷载只有竖向荷载,没有力矩荷载存在的情况,为轴心受压基础。在轴心荷载作用下,要求基底压力小于或等于修正后的地基承载力特征值,即: a k f p ≤ (2-6) 即 f A Ad F G k ≤+γ (2-7) d f F A G a k γ-≥ (2-8) 式中 F k —相应于荷载效应标准组合时,上部结构传至基础顶面的竖向荷力值; γG —基础及基础上填土的平均重度,一般取γG =20kN/m 3计算,在地小水下取γ G =10kN/m 3 计算 d —基础平均埋置深度; a f —持力层修正后的承载力特征值; A —基础底面积。 对单独基础,轴心荷载作用下常采用正方形基础,式(2-8)可变为: d f F A b G a k γ-≥= (2-9) 式中 b ——正方形基础边长; 对条形基础,沿基础长度方向取1m 作为计算单元,式(2-8)可变为: d f F b G a k γ-≥ (2-10) 式中 b ——条形基础基底宽度; F k —相应于荷载效应标准组合时,上部墙体传至基础顶面的竖向力值。 需要说明,按(2-8)、(2-9)和(2-10)式计算时,承载力特征值a f 只能先按基础埋深d 确定。待基底尺寸算出之后,再看基底宽度b 是否超过3.0m ,若b >3.0m 时,需重新修正承载力特征值,再确定基底尺寸,可参看例题。 [教材例题2-2] 某粘性土重度γm 为18.2kN /m 3 ,孔隙比e=0.7,液性指数I L =0.75。地基承载力特征值f ak 为220kPa 。现修建一外柱基础,作用在基础顶面的轴心荷载Fk=830kN ,基础埋深(自室外地面起算)为1.0m ,室内地面高出室外地面0.3m ,试确定方形基础底面宽度。 (二)偏心受压基础

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

盾构隧道管片拼装施工选型与排版总结

盾构隧道管片拼装施工选型与排版总结 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR ①

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=0.334°。 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720mm ③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。

地铁区间盾构隧道管片嵌缝防水技术精编版

地铁区间盾构隧道管片嵌缝防水技术 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

地铁区间盾构隧道管片嵌缝防水技术摘?要:回顾了盾构隧道管片嵌缝防水在轨道交通区间隧道工程技术发展各阶段的应用情况,通过分析其在工程施工与运营实践中的利弊,论述了嵌缝止水与嵌缝导水等技术演变的过程,并结合地铁运营特点,指出了嵌缝技术当前的发展趋势。 关键词:轨道交通;盾构隧道;嵌缝防水;受电弓;接触网 盾构法隧道防水的重点是衬砌接缝防水,而衬砌接缝防水的关键是接缝面防水密封材料及其设置。 盾构隧道管片防水技术已有百余年的发展史,自20世纪70年代始,管片接缝密封垫被确认为是接缝防水的主要防线,甚至被逐渐认知为唯一的防线。辅助防水中的嵌缝防水则逐渐被弱化,或用以发挥疏排水功效,或有取消的趋势,这是由于嵌缝要求发挥功效发生衍变的结果。 对于盾构隧道结构,在研讨嵌缝防水的功效时,首先必须确定嵌缝设计的理念。设计要明确嵌缝究竟应起到防水止水还是疏排水的功效,显然,只有嵌缝使所有环、纵向接缝全封闭,才能发挥防水止水功效,否则,局部、有限的嵌填只能发挥泄压、疏排的功效。其次,嵌缝防水应分清是迎水面防水还是背水面防水。例如,对于输水隧道构筑物而言,结构内面嵌缝主要是承受输水水压,而在施工阶段作为背水面材料也要承受地层中的水压,因而有双向防水的要求。但对于地铁区间盾构隧道的嵌缝而言,只要防止地层中的地下水渗入、漏入,因此总是进行背水面防水。

此外,地铁区间盾构隧道的嵌缝还有其结构构造和运营使用上的特点:仰拱管片上有道床混凝土及轨枕;拱顶位置悬有供电接触网,这就对它的嵌缝材料与工艺有特殊的要求。 现着重阐述地铁区间盾构隧道管片嵌缝密封防水的衍变过程,并试析其原因。 1早期的地铁砌块嵌缝密封防水 20世纪上半叶,尤其是20世纪30年代前,地铁区间盾构隧道预制衬砌主要是钢、铸铁等金属砌块,大多仅在预制衬砌内侧留设的嵌缝槽采用填缝材料密封防水,而不依靠管片环、纵面设密封材料防水。这一时期,由于化学建材尤其高分子化工建材尚未诞生,故嵌缝密封材料多为与钢、铸铁管片对应的铅条、铝粉、铁粉;用混凝土砌块或金属混凝土复合砌块时,则采用相应的石棉水泥、膨胀水泥等无机材料,利用捣、压、击等方法嵌实,并适当借助材料的微胀机理密封止水。这在英国与西欧早期地铁建设中有不少工程实例。 此后,管片接缝防水进入粘结防水、塑性防水时期,因其防水效果有限,故还借助嵌缝防水作为重要的辅助防线,例如采用低黏度的聚氨酯化合物浸渍麻丝或黄麻嵌入嵌缝槽,其方式是对全部接缝充实密封。 2中期的地铁管片嵌缝密封防水本文把 20世纪50年代至90年代看作为“中期”。这时期地铁盾构隧道衬砌越来越多地采用了钢筋混凝土管片,并逐步发展为高精度钢模制作的高精度管片,管片接缝防水的理念也从粘结防水、塑性防水发展为采用密封垫(弹性密封垫与遇水膨胀密封垫)压密防水,从环、纵面全断面防水

液压缸计算

液压缸设计计算说明 系统压力为1p =25 MPa 本系统中有顶弯缸、拉伸缸以及压弯缸。以下为这三种液压缸的设计计算。 一、 顶弯缸 1 基本参数的确定 (1)按推力F 计算缸筒内径D 根据公式 3.5710D -=? ① 其中,推力F=120KN 系统压力1p =25 MPa 带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定 确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。若速比为?,则 d = ② 取?=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm 8050 D d ?===1.6 (3)最小导向长度H 的确定 对一般的液压缸,最小导向长度H 应满足 202 L D H ≥+ ③ 其中,L 为液压缸行程,L=500mm

带入③式,计算得H=65mm (4)活塞宽度B 的确定 活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定 在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2 A B C H +=- ⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径 缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1 假设此液压缸为厚壁缸筒,则壁厚1]2D δ= ⑧ 液压缸筒材料选用45号钢。其抗拉强度为σb =600MPa 其中许用应力[]b n σσ=,n 为安全系数,取n=5 将数据带入⑧式,计算得δ=8.76mm 故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算 按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其

盾构隧道管片质量检测技术标准(CJJ/T 164-2011)

盾构隧道管片质量检测技术标准(CJJ/T 164- 2011) 说明: 目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T 164-2011)”的word版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。 该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。 1总则 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2 本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3 盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2 混凝土管片

以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3 钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4 水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验 对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。 2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边

液压缸计算公式

1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: p F D π4= =??14.34= F :负载力 (N ) A :无杆腔面积 (2m m ) P :供油压力 (MPa) D :缸筒内径 (mm) 1D :缸筒外径 (mm) 2、缸筒壁厚计算 π×/≤≥ηδσψμ 1)当δ/D ≤0.08时 p D p σδ2max 0> (mm ) 2)当δ/D=0.08~0.3时 max max 03-3.2p D p p σδ≥ (mm ) 3)当δ/D ≥0.3时 ??? ? ?? -+≥max max 03.14.02p p D p p σσδ(mm ) n b p σσ= δ:缸筒壁厚(mm ) 0δ:缸筒材料强度要求的最小值(mm )

max p :缸筒内最高工作压力(MPa ) p σ:缸筒材料的许用应力(MPa ) b σ:缸筒材料的抗拉强度(MPa ) s σ:缸筒材料屈服点(MPa ) n :安全系数 3 缸筒壁厚验算 2 1221s ) (35 .0D D D PN -≤σ(MPa) D D P s rL 1 lg 3.2σ≤ PN :额定压力 rL P :缸筒发生完全塑性变形的压力(MPa) r P :缸筒耐压试验压力(MPa) E :缸筒材料弹性模量(MPa) ν:缸筒材料泊松比 =0.3 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免塑性变形的发生,即: ()rL P PN 42.0~35.0≤(MPa) 4 缸筒径向变形量 ??? ? ??+-+=?ν221221D D D D E DP D r (mm ) 变形量△D 不应超过密封圈允许范围 5 缸筒爆破压力 D D P E b 1 lg 3.2σ=(MPa)

盾构隧道管片排版总结

盾构隧道管片排版总结 Document number:PBGCG-0857-BTDO-0089-PTT1998

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。 国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。

管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR ① (D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=°。 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: β=L/R= ② △总=(R+D/2)β-(R-D/2)β=3720mm ③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为:

液压缸的设计计算

液压缸的设计计算? 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。 (3)法兰型液压缸

相关文档
最新文档