共点力平衡、力矩平衡

一、物体的平衡

物体的平衡有两种情况:

(1)质点静止或做匀速直线运动,物体的加速度为零;

(2)物体不转动或匀速转动(此时的物体不能看作质点)。

点评:静止的物体一定平衡,但平衡的物体不一定静止.

还需注意,不要把速度为零和静止状态相混淆,静止状态是物体在一段时间内保持速度为零不变,其加速度为零,而物体速度为零可能是物体静止,也可能是物体做变速运动中的一个状态,加速度不为零。由此可见,静止的物体速度一定为零,但速度为零的物体不一定静止.因此,静止的物体一定处于平衡状态,但速度为零的物体不一定处于静止状态。

总之,共点力作用下的物体只要物体的加速度为零,它一定处于平衡状态,只要物体的加速度不为零,它一定处于非平衡状态

二、共点力作用下物体的平衡

1.共点力

几个力作用于物体的同一点,或它们的作用线交于同一点(该点不一定在物体上),这几个力叫共点力。

2.共点力的平衡条件

在共点力作用下物体的平衡条件是合力为零,即F合=0或F x合=0,F y合=0

3.判定定理

物体在三个互不平行的力的作用下处于平衡,则这三个力必为共点力。(表示这三个力的矢量首尾相接,恰能组成一个封闭三角形)

共点力平衡随堂练:

1.用手施水平力将物体压在竖直墙壁上,在物体始终保持静止的情况下

A.压力加大,物体受的静摩擦力也加大

B.压力减小,物体受的静摩擦力也减小

C.物体所受静摩擦力为定值,与压力大小无关

D.不论物体的压力改变与否,它受到的静摩擦力总等于重力

2.如下图所示,木块在水平桌面上,受水平力F1 =10N,F2 =3N而静止,当撤去F1后,木块仍静止,则此时木块受的合力为

A.0 B.水平向右,3N

C.水平向左,7N D.水平向右,7N

3.氢气球重10N,空气对它的浮力为16N,用绳拴住,由于受水平风力作用,绳子与竖直方向成30°角,则绳子的拉力大小是__________,水平风力的大小是________.

4.如图甲所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗

口是光滑的。一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处

于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°。两小球的质量比1

2m m 为

A .33

B .32

C .23

D .22

5.重G 的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针缓慢转

到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2各如何变化?

6.如图7所示整个装置静止时,绳与竖直方向的夹角为30o。AB 连线与OB 垂直。

若使带电小球A 的电量加倍,带电小球B 重新稳定时绳的拉力多大?

8.用与竖直方向成α=30°斜向右上方,大小为F 的推力把一个重量为G 的木块压在粗糙

竖直墙上保持静止。求墙对木块的正压力大小N 和墙对木块的摩擦力大小f 。

9.有一个直角支架AOB ,AO 水平放置,表面粗糙, OB 竖直向下,表面光滑。AO 上套有

小环P ,OB 上套有小环Q ,两环质量均为m ,两环由一根质量可忽略、不可伸长的细绳相

连,并在某一位置平衡(如图所示)。现将P 环向左移一小段距离,两环再次达到平衡,那

么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力F N 和摩擦力f 的变化

情况是

A .F N 不变,f 变大

B .F N 不变,f 变小

C .F N 变大,f 变大

D .F N 变大,f 变小

三、力矩平衡

1、力臂:从转动轴到力的作用线(不是力作用点)的垂直距离。

2、力矩:力F和力臂L的乘积叫力对转动轴的力矩。即M=FL单位是Nm

=0(或顺时针力矩等于逆时3、力矩平衡条件:物体所受外力的力矩代数和为零,即M

针力矩,即M顺=M逆)

4、用力矩平衡条件解题的步骤.

用力矩平衡条件解题的步骤与用共点力平衡条件解题的步骤相似:

①确定研究对象;②对研究对象进行受力分析;③找出各力的力臂,各力的力矩方向;

④列力矩平衡方程;⑤解方程并判断解的合理性.

与应用共点力平衡条件解题相比,除多了第③步外,在受力分析时也有些区别,应用力矩平衡条件解题时,过转动轴的力不产生力矩,所以不用分析.

5、平衡条件的选择.

在用共点力平衡条件解决的问题时,总是可以把物体看成质点的,因为不涉及到力的作用点,所以往往不涉及到物体的形状和大小;而用力矩平衡条件解的问题必须确定力臂,也就是必须确定各力的作用点,因而不能把物体看成质点了,在题中往往给出“均匀”、“力作用在物体的某处”等条件;当然,对有固定转动轴物体的平衡问题就更明显了,因为研究对象有明显的固定转动轴.

一、用力的分解简化力矩计算.

例1、如图所示,T字形架子ABO可绕过O点且垂直于纸面的转动轴自由转动.现在其A端与B端分别施以图示方向的力F1和F2,则关于F1和F2的力矩M1和M2,下列说法中正确的是( )

A.都是顺时针的.

B.都是逆时针的.

C.M1是顺时针的,M2是逆时针的.

D.M1是逆时针的,M2是顺时针的.

解析:本题中力F1和F2的力矩方向较难判断,但如果把F1按图所示分解成两个分力F11和F12.F1的力矩与F11和F12共同产生的力矩是等效的,而F11的作用线过转动轴,所以没有力矩,于是只要看F12的力矩就行了,而F12的力矩很明显是逆时针的,所以F1的力矩应为逆时针的.同理可以得出F2的力矩也是逆时针的,故应选B.

注意:这种方法在力矩计算时也可以用,有时可以避开较复杂的力臂的确定.

二、动态平衡

例2如图所示,一均匀直角三角形木板abc,可绕垂直纸面通过c点的水平轴转动.现用一始终沿直角边ba的作用于a点的力F,使bc边缓慢地由水平位置转至竖直位置,在此过程中,力F的大小随α角变化的图线是图中的()

解析三角形木板除转轴c 处外,受到重力G 和力F 的作用,如图(a )所示.一开始力F

是由b 指向a 的.当α增大时,重力G 的力臂减小,其力矩也减小,但力F 的力臂不变,因

而力F 也减小;当转到图(b )所示位置时,重力恰好过转动轴c ,此时力F 为零,当a 再增

大时,重力G 的力矩变为顺时针方向了,此时力F 应由a 指向b 了,如图(c )所示;当a 再

增大时,重力G 的力臂增大,其力矩也增大,但力F 的力臂不变,因而力F 也增大.由此可

见选项A 、B 都不对,而选项C 和D 的区分,只要看三角形板转到图(c )位置前的一段过程

中的变化是否线性的就可以了.由力矩平衡方程FL F =GL G “可知,G 和L F 是不变的,而L 。

的变化显然不是线性的,故应选A

.

注意:本题的关键是力F 的方向可以改变的,其实在题中给出”现用一始终沿直角边ba

的作用于a 点的力F ”,而不是说沿ba 方向的力F ,已经给出了暗示.

练习1、如图所示,一根均匀直棒AB ,A 端用光滑铰链固定于顶板上,B 端搁在一块表面粗

糙的水平板上,现设板向上运动而棒AB 匀速转动,则木板对棒的弹力说法正确的是

( )

(A )逐渐变大, (B )先变大后变小,

(C )先变小后变大, (D )逐渐变小。

三、整体法和隔离法.

例3、如图所示,重为G 、半径为R 的均匀球,用长为R 的细线悬挂在L 形直角支架的C

点,L 形支架的AB 边是2R ,BC 边长为R 32,且竖直而光滑,支架重力不计,B 处有固

定转动轴.为使它们保持平衡,则在A 点所加最小力为

,方向 ,此时B 轴受到

的压力为

解析:取小球、支架和细线整体为研究对象,除转轴B 处外,只受到球的重力G 和A 端

的作用力F ,为使力F 最小,则需竖直向下加力F 就行了,由力矩平衡条件得

可以解得 2G

F =.

而要求B 轴处受到的压力时,就不能用力矩平衡条件解了,因为整体就受到重力、作用力

和B 轴处的作用力N ,由共点力平衡条件可知,N 必竖直向上,且 23G

F G N =+=.

注意:本题现用整体法是很简便的,但如果采用隔离法,对球列共点力平衡方程,对杆列力

矩平衡方程,那是很烦的

例4、如图所示,质量为m 的匀质木杆,上端可绕固定水平光滑轴O 转动,下端在木板上,

木板置于光滑水平地面上,杆与竖直方向成45°角,杆与木板间的滑动摩擦系数为21

为使木

板向右作匀速运动,所加的水平拉力F 等于( )

A .2mg .

B .3mg

. C .4mg

. D .6mg

.

力矩平衡随堂练习:

1、光滑水平面上有一长木板,一均匀杆质量为m ,上端铰于O 点,下端搁在板上,杆与板

间的动摩擦因数为μ=1/2,杆与竖直方向成45?角,

(1)为使板向右匀速运动,向右的水平推力F 应多大?

(2)为使板向左匀速运动,向左的水平推力F 应多大?

2、一木板长8 m ,重500 N ,固定在直角三角形轻支架ABC 上,支架高3 m 底边长4 m ,

可绕过C 点的水平轴无摩擦转动,另一重为200 N 的小物体,从木板底端沿木板向上冲物

体与木板间的动摩擦因数为0.2,求小物体冲上多高时长

木板将翻倒。

(11年长宁二模)3、如图T 形金属支架与固定轴O 相连,AB 水平,CO 与AB 垂直,B

端由竖直细绳悬吊,AC=CO=0.2m

CD=0.3m ,支架各部分分布均匀,小滑块质量为m=0.5㎏,静止于A 端时细线恰不受力,

现给小滑块初速度使其水平向右滑动,滑块与AB

(1) 支架的重力相对转轴O 的力矩

(2) 小滑块滑至C 点时细线对B 的拉力 A B

4、(11年普陀二模)AB 两个质量均为m 的小球,被一轻杆AB 固定,轻杆AB=L ,OA=3

L ,杆可绕O 点的水平轴无摩擦滑动,初始时杆静止在竖直位置,如图所示,今在B 球上施加

一水平方向恒力mg 2

F ,求:

(1)转过90°过程中恒力做了多少功? A

(2)在转动过程中B 球获得的最大速度时AB 杆与竖直方向夹角是多大?

(3)在转动过程中B 球获得的最大速度是多少?

B F

5、根均匀直杆AB 长1m ,重量为G ,它可以绕过O 点的水平轴在竖直面内自由转动,O 点

到A 端的距离为0.25m .现在A 端施加一水平作用力F ,杆静止时,杆的方向偏离竖直方向

a 角(a <90°),如图4-17所示.求:

(1)水平力F 的大小;

(2)转轴O 对杆的作用力的大小.

6、如图所示,重为600N的均匀木板搁在相距为2.0m的两堵竖直墙之间,一个重为800N 的人站在离左墙0.5m处,求左、右两堵墙对木板的支持力大小.

课后作业

1、物体同时受几个力的作用,如果这几个力都作用于物体的或者它们的作用线交于,这几个力叫共点力。

2、一个物体在共点力作用下,如果保持或运动,则该物体处于平衡状态.

3、把重20N的物体放在倾角为30°的粗糙斜面上,物体右端与固定在斜面上的轻弹簧相连接,如图所示,若物体与斜面间的最大静摩擦力为 12 N,则弹簧的弹力为()

A.可以是22N,方向沿斜面向上

B.可以是2N.方向沿斜面向上

C.可以是2N,方向沿斜面向下

D.可能为零

4、两个物体A和B,质量分别为M和m,用跨过定滑轮的轻绳相连,A静止于水平地面

上,如图所示,不计摩擦力,A对绳的作用力的大小与地面对A的作用力的大小分别为()

A.mg,(M-m)g

B.mg,Mg

C.(M-m)g,M g

D.(M+m)g,(M-m)g

5、如图所示,当倾角为45°时物体m处于静止状态,当倾角θ再增大一些,物

体m仍然静止(绳子质量、滑轮摩擦不计)下列说法正确的是()

A.绳子受的拉力增大

B.物体m对斜面的正压力减小

C.物体m受到的静摩擦力可能增大

D.物体m受到的静摩擦力可能减小

6、如图所示,两光滑硬杆AOB成θ角,在两杆上各套上轻环P、Q,两环用细绳

相连,现用恒力F沿OB方向拉环Q ,当两环稳定时细绳拉力为()

A.F sinθB.F/sinθ

C.F cosθD.F/cosθ

7、如图所示,一个本块A放在长木板B上,长木板B放在水平地面上.在恒

力F作用下,长木板B以速度v匀速运动,水平弹簧秤的示数为T.下列关于

摩擦力的说法正确的是()

A.木块A受到的滑动摩擦力的大小等于T

B.木块A受到的静摩擦力的大小等于T

C.若长木板B以2v的速度匀速运动时,木块A受到的摩擦力大小等于2T

D.若用2F的力作用在长木板上,木块A受到的摩擦力的大小等于T

8、用轻质细线把两个质量未知的小球悬挂起来,如图(a)所示.现对小球a施加一个向左偏下30°的恒力,并对小球b施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是下图(b)中的( ).

9、固定在水平面上的光滑半球,球心O的正上方固定一小定滑轮,细线一端拉着一只小球A,另一端绕过定滑轮.今将小球从图所示的初位置缓慢地拉至B点.在小球到达B点前的过程中,小球对半球的压力N及细线的拉力T的大小变化是()

(A)N变大,T变大(B)N变小,T变大

(C)N不变,T变小(D)N变大,T变小

2006典型例题分析--第6章 力矩分配法

第6章 力矩分配法 §6 – 1 基本概念 力矩分配法适用于无结点线位移的刚架和连续梁结构,是位移法求解问题的一种特殊情况,有线位移结构不能直接利用力矩分配法求解。 6-1-1 名词解释 (1)转动刚度AB S :表示抵抗转动的能力,其值等于转动端产生单位转角所需施加的力矩,单跨梁转动刚度如图6-1。 静定结构(或静定部分)的转动刚度为零,即对转动无抵抗能力。 图6-2所示结构有一个转角位移未知数,各杆的转动刚度为: 4433DA DA DC DC S i i S i i ==== 30DB DB DF S i i S === (2)分配系数Di μ:某一杆端的分配系数等于,该杆端转动刚度在同一结点各个杆端转动刚度中所占的比例值。图6-2结构的分配系数为: 0.4DA DA DA DB DC DF S S S S S μ==+++ 0.3DB DB DA DB DC DF S S S S S μ= =+++ 0.3DC DC DA DB DC DF S S S S S μ= =+++ 图6-2无侧移刚架结构 )b () c ( (a) 3AB S i =4AB S =AB S =(d) 图6-1等截面单跨梁转动刚度

2 结构力学典型例题解析 0DF DF DA DB DC DF S S S S S μ= =+++ (3)弯矩符号规定:力矩分配法在计算过程中不需要画弯矩图,只是以数值形式进行计算,因此,需要事先对力矩和弯矩符号进行规定,具体规定如下: 固端弯矩:顺时针为正。 结点外力偶:顺时针为正。 (4)固端弯矩F i j M :将转动结点固定变成位移法的基本体系,外荷载在基本体系上产生的杆端弯矩。如图6-2结构的固端弯矩为: F F F F F F 0DA DA DB BD CD FD M M M M M M ====== F 2 145kN m 8 DC M ql -= =-? F 30kN m DF M =-? (5)不平衡力矩u D M :不平衡力矩为转动结点所连杆端 的固端弯矩之和,其值等于刚臂反力矩。如图6-3为荷载引起的不平衡力矩u D M ,此时就是位移法典型方程的 1P R : F F F F 1P u D DA DB DC DF M R M M M M ==+++ 75kN m u D M =-? (6)被分配力矩M :M 等于不平衡力矩u D M 的负值; 若该转动结点有外力矩,外力矩可以直接进行分配,此时外力矩是被分配力矩的一部分。如图6-3被分配力矩为: 75kN m u D M M =-=? (7)分配弯矩Di M :某一杆端的分配弯矩Di M 等于该杆端的分配系数Di μ乘以被分配力矩 M 。如图6-3结构的分配弯矩为: 30kN m DA DA M M μ==? 22.5k N m D B D B M M μ==? 22.5kN m DC DC M M μ==? 0D F D F M M μ== (8)传递系数AB C :传递系数AB C 只与另一端(远端,即B 端)的支座情况有关,远端为定向支座时其值为-1,远端为固定支座时其值为0.5,远端为铰支座(包括自由端)时其值为0。如图6-3结构的传递系数为: 0.5DA C = 1DB C =- 0DC C = 0DF C = 图6-3不平衡力矩 F DC F M DB F

力矩与力矩平衡

力矩和力矩平衡 一.内容黄金组. 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 二.要点大揭秘 1.转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。 明确转轴很重要: 大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB,现给B端加一个竖直向上的外力使杆刚好离开 地面,求力F的大小。在这一问题中,过A点垂直于杆的水平直线是杆的转轴。象这样,在解决问 题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩 平衡条件。 2.力矩: 力臂:转动轴到力的作用线的垂直距离。 力矩:力和力臂的乘积。 计算公式:M=FL 单位:Nm 效果:可以使物体转动 (1)力对物体的转动效果 力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 (2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上; ②力的方向垂直于力作用点与转轴的连线。 (3)力矩的计算: ①先求出力的力臂,再由定义求力矩M=FL 如图中,力F的力臂为L F=Lsinθ 力矩M=F?L sinθ ②先把力沿平行于杆和垂直于杆的两个方向分解,平 行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的 力矩为该分力的大小与杆长的乘积。 如图中,力F的力矩就等于其分力F1产生的力矩,M =F sinθ?L 两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。 3.力矩平衡条件: 力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转动的力矩之和。 ∑M=0或∑M 顺=∑M 逆 F F2

力矩力偶练习题

一、多项选择题 1.力矩的大小取决于()。 A.力的大小B.力矩的大小 C.力矩的转向D.力的方向E.力臂的大小 2.改变矩心的位置,下列()将改变。 A.力的大小B.力矩的大小 C.力矩的转向D.力的方向 E.力臂的长度 3.力偶的特性是()。 A.两个力的大小相等B.两个力的方向相反 C.两个力的大小不等D.两个力的方向相同 E.两个力的作用线平行 4.有关力偶的性质叙述不正确的是___________。 A.力偶对任意点取矩都等于力偶矩,不因矩心的改变而改变。 B.力偶有合力,力偶可以用一个合力来平衡。 C.只要保持力偶矩不变,力偶可在其作用面内任意移转,对刚体的作用效果不变。 D.只要保持力偶矩不变,可以同时改变力偶中力的大小与力偶臂的长短, 5.力偶矩的单位是()。 A.B. C.N/mD.kN/m E.kN

6.下列关于力偶的性质正确的是( ) A.力偶不是力B.力偶能与力等效 C.力偶不能与力等效D.力偶不能与力平衡 E.力偶能与力平衡 7.力偶使物体产生的转动效应,取决于()。 A.二力的大小B.力偶的大小 C.力偶的转向D.力的方向 E.二力之间的距离 二、单选题 1.力使物体绕某点转动的效果要用( )来度量。 A.力矩B.力 C.弯曲D.力偶 2.力矩的单位是( )。 A.N B.m C.N·m D.N/m 3.( )是力矩中心点至力的作用线的垂直距离。 A.力矩B.力臂 C.力D.力偶 4.当力的作用线通过矩心时,力矩( )。 A.最大B.最小 C.为零D.不能确定 5.改变矩心的位置,力矩的大小将( )。 A.变大B.变小 C.不变D.变化,但不能确定变大还是变小 6.力矩平衡条件是:对某点的顺时针力矩之和( )反时针力矩之和。 A.大于B.等于 C.小于D.不能确定 7.可以把力偶看作一个转动矢量,它仅对刚体产生( )效应。 A.转动B.平动

受力分析及物体平衡典型例题解析

受力分析及物体平衡典型例题解析

专练 3 受力分析 物体的平衡 、单项选择题 1.如图 1所示,质量为 2 kg 的物体 B 和质量为 1 kg 的物体 C 用轻弹簧连接并竖直地静置于水平地面上. 再将一个质 量为 3 kg 的物体 A 轻放在 B 上的一瞬间, 弹簧的弹力大 小为(取 g =10 m/s 2)( ) A .30 N C .20 N D .12 N 答案 C 2.(2014 ·上海单科, 9)如图 2,光滑的四分之一圆弧轨道 AB 固 定在竖直平面 内, A 端与水平面相切,穿在轨道上的小球在 拉力 F 作用下,缓慢地由 A 向 B 运动,F 始终沿轨道的切线 方向,轨道对球的弹力为 F N ,在运动过程中 ( ) A .F 增大,F N 减小 B .F 减小, F N 减小 C .F 增大,F N 增大 D .F 减小, F N 增大 解析 对球受力分析,受重力、支持力和拉力,根据共点力平 衡条件,有: F N =mgcos θ和 F =mgsin θ,其中 θ为 支 持力 F N 与竖直方向的夹角;当物体向上移动时, θ 变 大,故 F N 变小, F 变大;故 A 正确, BCD 错误. 答案 A (2014 ·贵州六校联考, 15)如图 3 所示,放在粗糙水平面 上的物体 A 上叠 放着物体 B.A 和 B 之间有一根处于压 缩状态的弹簧,物体 A 、B 均处于静止状态.下列说 法中正确的是 ( ) C .地面对 A 的摩擦力向右 D .地面对 A 没有摩擦力 解析 弹簧被压缩,则弹簧给物体 B 的弹力水平向左,因此物体 B 平衡 时必 受到 A 对 B 水平向右的摩擦力, 则 B 对 A 的摩擦力水平向左, 故 A 、 B .0 3. A .B 受到向左的摩擦力 B .B 对 A 的摩擦力向右

力矩平衡

1.力矩 力的三要素是大小、方向和作用点。由作用点和力的方向所确定的射线称为力的作用线。力作用于物体,常能使物体发生转动,这时外力的作用效果不仅取决于外力的大小和方向,而且取决于外力作用线与轴的距离——力臂(d )。 力与力臂的乘积称为力矩,记为M ,则M Fd =,如图1,O 为垂直于纸面的固定轴,力F 在纸面内。 力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴转动没有作用。若力F 不在与轴垂直的平面内,可先将力分解为垂直于轴的分 量F ⊥和平行于轴的分量F ∥,F ∥对转动不起作用,这时力F 的力矩为M F d ⊥=。通常规定 绕逆时方向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。 某个力的力矩定义为力臂与力的叉乘,即M r F =? 力矩M 是矢量,其方向通常按右手螺旋定则确定:力矩M 同时垂直于力臂r 与力F ,当右手螺旋从r 的方向转到F 的方向时大拇指的方向即为M 的方向. 叉乘a ×b =c c 称“矢量的叉积”,它是一个新的矢量。叉积的大小:c =absinα,其中α为a 和b 的夹角。意义:c 的大小对应由a 和b 作成的平行四边形的面积。叉积的方向:垂直a 和b 确定的平面,并由右手螺旋定则确定方向,如图所示。显然,a ×b ≠b ×a ,但有:a ×b =-b ×a 【注意】转轴可以随意选取,力矩计算的核心技巧是巧选转轴,总的原则是 未知力作用线不能通过转轴,其次是其他未知力作用线尽量过轴。 通常不考虑形变的物体都称作刚体, 刚体平衡必须满足两个条件其 一:力的矢量和等于零,即0Fi ∑= 这就保证了刚体没有平动. 其二:作用于刚体的力对于矩心O 的合力矩也为零,即0Mi ∑= 知识点睛 10.1力矩平衡 第10讲 力矩平衡

力矩以力矩平衡

力矩和力矩平衡 一:力矩的概念 力矩是改变转动物体的运动状态变化的物理量,门、窗等转动物体从静止状态变为转动状态或从转动状态变为静止状态时,必须受到力的作用。但是,我们若将力作用在门、窗的转轴上,则无论施加多大的力都不会改变其转动状态,可见物体的转动运动状态的变化不仅与力的大小有关,还与受力的方向、力的作用点有关。力的作用点离转轴越远,力的方向与转轴所在平面越趋于垂直,力使转动物体运动状态变化得就越明显。在物理学中力对转动物体运动状态变化的影响,用力矩这个物理量来表示,因此,力矩被定义为力与力臂的乘积。力矩概括了影响转动物体运动状态变化的所有规律,力矩是改变转动物体运动状态的物理量。 力矩是表示力对物体产生转动作用的物理量,是物体转动转动状态改变的原因。它等于力和力臂的乘积。表达式为:M=FL,其中力臂L是转动轴到F的力线的(垂直)距离。单位:Nm 效果:可以改变转动物体运动状态。 转轴: 物体转动时,物体上的各点都沿圆周运动,圆周的中心在同一条直线上,这条直线就叫转轴。 特点:1,体中始终保持不动的直线就是转轴。 2,体上轴以外的质元绕轴转动,转动平面与轴垂直且为圆周, 圆心在轴上。 3,转轴相平行的线上各质元的运动情况完全一样。 大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB,现给B端加一个竖直向上的外力使杆刚好离开地面,求力F的大小。在这一问题中,过A点垂直于杆的水平直线是杆的转轴。象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。

(完整版)物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 2α β A B O

力与物体的平衡典型例题与习题

力与物体的平衡 题型一:常规力平衡问题 解决这类问题需要注意:此类题型常用分解法也可以用合成法,关键是找清力及每个力的方向和大小表示!多为双方向各自平衡,建立各方向上的平衡方程后再联立求解。 [例1]一个质量m 的物体放在水平地面上,物体与地面间的摩擦因数为μ,轻弹簧的一端系在物体上,如图所示.当用力F 与水平方向成θ角拉弹簧时,弹簧的长度 伸长x ,物体沿水平面做匀速直线运动.求弹簧的劲度系数. [解析]可将力F 正交分解到水平与竖直方向,再从两个方向上寻求平衡关系!水平方向应该是力F 的分力Fcos θ与摩擦力平衡,而竖直 方向在考虑力的时 候,不能只考虑重力和地面的支持力,不要忘记力F 还有一个竖直方向的分力作用! 水平: F cos θ=μF N ① 竖直:F N + F sin θ=mg ② F =kx ③ 联立解出:k = ) sin (cos θμθμ+x mg [变式训练1] 如图,质量为m 的物体置于倾角为θ的斜面上,先用平行于斜面的推力F 1作用于物体上,能使其能沿斜面匀速上滑,若改用水平推力作用于物体上,也能使物体沿斜面匀速上滑,则两次力之比F 1/F 2=? 题型二:动态平衡与极值问题 解决这类问题需要注意: (1)三力平衡问题中判断变力大小的变化趋势时,可利用平行四边形定则将其小和方向均不变的一个力,分别向两个已知方向分解,从而可从图中或用解析法判断出变力大小变化趋势,作图时应使三力作用点O 的位置保持不变. (2)一个物体受到三个力而平衡,其中一个力的大小和方向是确定的,另一个力的方向始终不改变,而第三个力的大小和方向都可改变,问第三个力取什么方向这个力有最小值,当第三个力的方向与第二个力垂直时有最小值,这个规律掌握后,运用图解法或计算法就比较容易了. [例2] 如图2-5-3所示,用细线AO 、BO 悬挂重力,BO 是水平的,AO 与竖直方向成α角.如果改变BO 长度使β角减小,而保持O 点不动,角α(α < 450)不变,在β角减小到等于α角的过程中,两细线拉力有何变化? [解析]取O 为研究对象,O 点受细线AO 、BO 的拉力分别为F 1、F 2,挂重力的细线拉力 F 3 = mg .F 1、F 2的合力F 与F 3大小相等方向相反.又因为F 1的方向不变,F 的末端作射线平 行于F 2,那么随着β角的减小F 2末端在这条射线上移动,如图2-5-3(解)所示.由图可以看出,F 2先减小,后增大,而F1则逐渐减小. [变式训练2]如图所示,轻绳的一端系在质量为m 的物体上,另一端系在一个圆环上,圆环套在粗糙水平横杆MN 上,现用水平力F 拉绳上一点,使物体处在图中实线位置.然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来位置不动,则在这一过程中,水平拉力F 、环与横杆的摩擦力f 和环对杆的压力N 的变化情况是( ) A.F 逐渐减小,f 逐渐增大,N 逐渐减小 B.F 逐渐减小,f 逐渐减小,N 保持不变 图2-5-3

平衡力距力矩与杠杆原理

平衡、力距 「力學」是一門研究物體的運動規律及其應用的學科,有的將其獨立成科,有的將其歸類為物理學的一個分支。查實,古人通過對天文、自然現象的觀察及機械的製作早已對力學有研究,天文、數學及力學基本上不可分割,眾多的「數學大師」如阿基米德(Archimedes)、拉普拉斯(Laplace)、拉格朗日(Lagrange)、牛頓(Newton)、帕斯卡(Pascal)與及較近代的龐加萊(Poincar′e ),介紹他們的時候,除了稱他們為數學家外,亦有稱他們為天文學家、物理學家或力學家。 以牛頓運動定律為基礎的力學稱為「牛頓力學」或「經典力學」,而通常說的「力學」,一般就是指「牛頓力學」或「經典力學」。 「力學」亦有很多分支,按研究問題的性質,可分為:靜力學(statics)、運動學(kinematics)和動力學(dynamics)1。 本欄的主要討論對象為靜力學,討論物體在外界的作用下,機械運動狀態保持不變(平衡)的條件。一件物件能夠保持平衡(equilibrium)的條件: 1.它所受外力的矢量和(vector sum)為零; 2.這些外力對任何軸所產生的力矩(moment of force)互相抵 消。 力矩與槓杆原理 力矩是量度「力」使物體產生轉動作用的量,亦是引致物體轉動狀態改變的原因。如圖,在B 點的力F 作用到A 點的力距M 為F 的大小與力臂d 的乘積,即 M =F d  其中「力臂」是指從轉軸到力的垂直距離。 力矩愈大,使物體轉動的作用愈明顯,如使用扳手擰螺絲 帽,愈長手柄的扳手,因力臂可以更長,用相同的力,會產 生更大的力距,會更易扭動螺絲帽。如圖,槓杆的「支點」為P , 左右懸掛了物件A 與B ,槓杆 平行的條件為 F 1d 1=F 2d 2 這條件亦稱為「槓 杆原理」。 F 12d d P 1礙于筆者對物理學的認知非常少,未能道出Dynamics 和Kinetics 的分別 1

难点3力矩平衡条件及应用

难点3: 力矩平衡条件及应用 力矩平衡以其广泛的实用性,再次被考纲列为考查的内容,且以此知识点为素材的高考命题屡次再现于近几年高考上海卷及全国理综卷中.其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等。 ●难点考场 1.(★★★★)如图3-1所示,一根长为L 的轻杆OA ,可绕水平轴O 在竖直平面内自由转动,左端A 挂一质量为m 的物体,从杆上一点B 系一不可伸长的细绳,将绳跨过光滑的钉子C 与弹簧K 连接,弹簧右端固定,这时轻杆在水平位置保持平衡,弹簧处于伸长状态,已知OB =OC = 3 2 L ,弹簧伸长量恰等于BC ,由此可知,弹簧的劲度系数等于______. 2.(★★★★★)(1997年上海,6)如图3-2所示是一种手控制动器,a 是一个转动着的轮子,b 是摩擦制动片,c 是杠杆,O 是其固定转动轴.手在A 点施加一个作用力F 时,b 将压紧轮子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说法正确的是 A.轮a 逆时针转动时,所需的力F 较小 B.轮a 顺时针转动时,所需的力F 较小 C.无论逆时针还是顺时针转动,所需的力F 相同 D.无法比较F 的大小 ●案例探究 [例1](★★★★★)如图3-3所示,长为L 质量为m 的均匀木棒,上端用绞链固定在物体上,另一端放在动摩擦因数为μ的小车平台上,小车置于光滑平面上,棒与平台的夹角为θ,当: (1)小车静止时,求棒的下端受小车的支持力; (2)小车向左运动时,求棒的下端受小车的支持力; (3)小车向右运动时,求棒的下端受小车的支持力. 命题意图:题目出示的物理情境,来考查考生受力分析能力及力矩平衡条件的应用能力.B 级要求. 错解分析:对“车的不同运动状态使棒所受摩擦力大小方向的变化”理解分析不透,从而错列力矩平衡方程. 解题方法与技巧:(1)取棒为研究对象.选绞链处为固定转动轴,除转动轴对棒的作用力外,棒的受力情况如图3-4所示,由力矩平衡条件知: F N 1Lc os θ=mg 2 L c os θF N 1=21mg 图3—4 图3—5 (2)小车向左运动,棒另外受到一个水平向左的摩擦力F 1作用,受力如图3-5所示,则有2N F Lc os θ=mg 2 L cos θ+μ2N F L sin θ 所以2N F = ) tan 1(2θμ-mg ,则2N F >1N F (3)小车向右运动时,棒受到向右的摩擦力F 2作用,受力如图3-6所示,有 3N F L cos θ+μ3N F L sin θ=mg 2 L cos θ 解得3N F = ) tan 1(2θμ+mg 所以3N F <1N F 本题的关键点是取棒作为研究对象,由于车有不同的运动方向,故棒所受摩擦力的方向也不同,从而导致弹力的不同. [例2](★★★★★)(2002年上海卷)如图3-7所示,一自行车上连接脚踏板的连杆长R 1,由脚踏板带动半径为r 1的大齿盘,通过链条与半径为r 2的后轮齿盘连接,带动半径为R 2的后轮转动. 图3-1 图3-2 图3-3 图3—6

典型共点力平衡问题例题汇总

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少?

(3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。 设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得 T≈8N, (2)圆环将要滑动时,得 m G g=Tctgθ, m G=0.6kg。

高考物理力矩和力矩平衡专题训练

力矩和力矩平衡 一. 内容黄金组. 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 二. 要点大揭秘 1. 转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。 明确转轴很重要: 大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB ,现给B 端加一个竖直向上的外力使杆刚好离开地面,求力F 的大小。在这一问题中,过A 点垂直于杆的水平直线是杆的转轴。象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。 2. 力矩: 力臂:转动轴到力的作用线的垂直距离。 力矩:力和力臂的乘积。 计算公式:M =FL 单位: Nm 效果:可以使物体转动 (1)力对物体的转动效果 力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力 矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 (2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上; ②力的方向垂直于力作用点与转轴的连线。 (3)力矩的计算: ①先求出力的力臂,再由定义求力矩M =FL 如图中,力F 的力臂为L F =Lsin θ 力矩M =F ?L sin θ ②先把力沿平行于杆和垂直于杆的两个方向分解,平 行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。 如图中,力F 的力矩就等于其分力F 1产生的力矩,M =F sin θ?L 两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。 3. 力矩平衡条件: 力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转动的力矩之和。 F F 2

高中物理竞赛力矩和力矩平衡知识点讲解

高中物理竞赛力矩和力矩平衡知识点讲解 力矩是表示力对物体产生转动作用的物理量,是物体转动转动状态改变的原因。它等于力和力臂的乘积。表达式为:M=FL,其中力臂L是转动轴到F的力线的(垂直)距离。单位:Nm 效果:可以使物体转动. 正确理解力矩的概念 力矩是改变转动物体的运动状态变化的物理量,门、窗等转动物体从静止状态变为转动状态或从转动状态变为静止状态时,必须受到力的作用。但是,我们若将力作用在门、窗的转轴上,则无论施加多大的力都不会改变其运动状态,可见转动物体的运动状态的变化不仅与力的大小有关,还受力的方向、力的作用点的影响。力的作用点离转轴越远,力的方向与转轴所在平面越趋于垂直,力使转动物体运动状态变化得就越明显。物理学中力的作用点和力的作用方向对转动物体运动状态变化的影响,用力矩这个物理量综合表示,因此,力矩被定义为力与力臂的乘积。力矩概括了影响转动物体运动状态变化的所有规律,力矩是改变转动物体运动状态的物理量。 力矩是矢量,在中学物理中,作用在物体上的力都在同一平面内,各力对转轴的力矩只能使物体顺时针转动或逆时针转动,这样,求几个力矩的合力就简化为代数运算。 力对物体的转动效果 使物体转动改变的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上; ②力的方向垂直于力作用点与转轴的连线。 力矩的计算: ①先求出力的力臂,再由定义求力矩M=FL

(完整版)第三讲力矩平衡条件及应用(竞赛辅导—含答案)

第三讲力矩平衡条件及应用(竞赛辅导—含答案) 一、力矩 1.力和转动轴之间的距离,即从转动轴到力的作用线的距离,叫做力臂。 2.力矩:定义力F与其力臂L的乘积叫做力对转动轴的力矩。用字母M表示。 表达式M=FL。 二、物体平衡条件 力矩的平衡条件: 有固定转动轴物体的平衡条件是力矩的代数和等于零。 即M1+M2+M3+ 0 或者:M合=0 力矩平衡以其广泛的实用性, 其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等. 实际上一个物体的平衡,应同时满足F合=0和M合=0.共点力作用下的物体如果满足F合=0,同时也就满足了M合=0,达到了平衡状态;而转动的物体只满足M合=0就不一定能达到平衡状态,还应同时满足F合=0方可. 三、有固定转动轴物体平衡问题解题步骤 1.明确研究对象,即明确绕固定转动轴转动的是哪一个物体. 2.分析研究对象所受力的大小和方向,并画出力的示意图. 3.依题意选取转动轴,并找出各个力对转动轴的力臂,力矩的大小和方向. 4.根据平衡条件(使物体顺时针方向转动的力矩之和等于使物体逆时针方向转动的力矩之和)列方程,并求解. 【解题方法指导】 例1.一个重要特例:请分析杆秤上的刻度为什么是均匀的? 例2. 如图所示,重G的均匀木杆可绕O轴在竖直平面内转动, 现将杆的A端放在光滑地面上的木块上面,杆与竖直方向的夹角为 30°,用水平力F=G/20匀速拉动木块,求杆和木块间的动摩擦因 数。 【典型例题分析】 例1.如下图是半径分别为r和2r的两个质量不计的圆盘,共轴固定连结在一起,可以绕水平轴O无摩擦转动,大圆盘的边缘上固定有一个质量为m的质点,小圆盘上绕有细绳。开始时圆盘静止,质点处在水平轴O的正下方位置。现以水平恒力F拉细绳,使两圆盘转动,若恒力F=mg,两圆盘转过的角度θ=时,质点m的速度最大。

高三物理力矩平衡经典试题

有固定转动轴的物体的平衡 3、如图所示,AC 为竖直墙面,重为G 的AB 均匀横梁处于水平位置。BC 为支撑横梁的轻杆,它与竖直方向的夹角为α,A 、B 、C 三处均用铰链连接,轻杆所受的力为( ) A 、αcos G B 、α cos 2G C 、αcos G D 、αcos 2G 4、如图所示,竖直杆AB 在绳AC 拉力作用下使整个装置处于平衡状态,若绳 AC 加长,使点C 缓慢向左移动,杆AB 仍竖直,且处于平衡状态,那么绳AC 的拉力T 和杆AB 所受的压力N 与原来相比,下列说法中正确的是( ) A 、T 增大,N 减小 B 、T 减小,N 增大 C 、T 和N 均增大 D 、T 和N 均减小 8、质量均匀的木板,对称地支承于P 和Q 上,一个物体在木板上从P 处运动到Q 处,则Q 处对板的作用力N 随x 变化的图线是( ) 9、如图所示,均匀木棒AB 的一端N 支在水平地面上,将另一端用水平拉力F 拉住,使木棒处于平衡状态,则地面对 木棒AB 的作用力的方向为( ) A 、总是竖直向上的,如F 1 B 、总是偏向木棒的右侧,如F 2 C 、总是沿着木棒的方向,如F 3 D 、总是偏向木棒的左侧,如F 4 10、如图所示,足够长的均匀木棒AB的A端铰于墙上,悬线一端固定,另一端套在木棒上跟棒垂直,并使棒保持水平.如改变悬线的长度使套逐渐向右移动,但仍保持木棒水平,则悬线所受拉力大小将( ) A.逐渐变小. B.先逐渐变大后又逐渐变小. C.逐渐变大. D.先逐渐变小后又逐渐变大. 11、如图所示,均匀细杆AB 质量为M ,A 端装有转轴,B 端连接细线通过滑轮 和质量为m 的重物C 相连,若杆AB 呈水平,细线与水平方向夹角为? 时恰能保持平衡,则杆对轴A 有作用力大小下面表达式中正确的有( ) A .mg B . Mg 2 sin ? C .M2-2Mm sin ?+m2 g D .Mg -mg sin ? 12、如图所示,均匀板一端搁在光滑墙上,另一端搁在粗糙地面上,人站在板上,人和板均静止,则( ) A.人对板的总作用力就是人所受的重力. B.除重力外板受到三个弹力和两个摩擦力作用. C.人站得越高,墙对板的弹力就越大. D.人站得越高,地面对板的弹力就越小. 13、如图所示,一端可绕O 点自由转动的长木板上方放一个物块,手持木板的另一端,使木板从水平位置沿顺时针方向 A B θ C

物理:力矩的平衡问题

力矩的平衡问题 I高考最新热门题 1 (典型例题)有人设计了一种新型伸缩拉杆秤.结构如图2-3-l,秤杆的一端固定一配重物并悬一挂钩,秤杆外面套有内外两个套筒,套筒左端开槽使其可以不受秤纽阻碍而移动到挂钩所在位置(设开槽后套筒的重心仍在其长度中点位置),秤杆与内层套筒上刻有质量刻度.空载(挂钩上不挂物体,且套筒未拉出)时,用手提起秤纽,杆秤恰好平衡.当物体挂在挂钩上时,往外移动内外套筒可使杆秤平衡,从内外套筒左端的位置可以读得两个读数,将这两个读数相加,即可得到待测物体的质量.已知秤杆和两个套筒的长度均为16cm,套筒可移出的最大距离为15cm,秤纽到挂钩的距离为2cm,两个套筒的质量均为0.1 Lg.取重力加速度g=10m/s2.求: (1)当杆秤空载平衡时,秤杆、配重物及挂钩所受重力相对秤纽的合力矩; (2)当在秤钩上挂一物体时,将内套筒向右移动5cm,外套筒相对内套筒向右移动8cm,杆秤达到平衡,物体的质量多大? (3)若外层套筒不慎丢失,在称某一物体时,内层套筒的左端在读数为1千克处杆秤恰好平衡,则该物体实际质量多大? 命题目的与解题技巧:本题是一道联系实际的问题,考查了力矩平衡条件、分析综合能力以及运用已学知识处理新情景中所提出的问题的迁移能力和创新意识。此题解题方法是,注意分析物体的受力,和力矩情

况,利用力矩平衡的条件即可求解. 【解析1 】 (1)套筒不拉出时杆秤恰好于衡,此时两套筒的重力相对秤纽的力矩与所求的合力矩相等,设套筒长度为L,合力矩 M=2mg =2×O.1 ×10×(0.08-0.02) N·m=0.12 N·m (2)力矩平衡 m1gd=mgx1+mg(x1+x2) 所以m1= (3)正常称1 kg重物时,左边的重物使得逆时针转动的力矩增加了m2gd.为了平衡,内外两个套筒可一起向外拉出x′由于套筒向外拉出 使得顺时针转动的力矩增大了2mgx′ 由力矩的平衡得:m2gd=2mgx′ 外层套筒丢失后称物,此时内套筒左端离秤纽距离为x′— d=0.08 m 力矩平衡 m2gd+M=mg(x′-d+) 所以 m2 2 (典型例题)下图2-3-2是正在治疗的骨折病人腿 部示意图.假定腿和石膏的总质量为15ke,其重心A距支点O的距离为 35cm,悬挂处B距支点O的距离为阻5cm,则悬挂物的质量为 ____________kg.(保留两位小数) **6.5 kg 指导:O点为固定转动轴,F A=M A g,L A=0.35m,F B=mg定滑轮的性质:L B=0.805 m. 据平衡条件: FA·LA=FB·LB=mgL B, 代入数据得m=6.5kg 3 (典型例题)如图2-3-3所示,一自行车上连接踏脚板的连杆长R1,

难点3 力矩平衡条件及应用

难点3 力矩平衡条件及应用 力矩平衡以其广泛的实用性,再次被考纲列为考查的内容,且以此知识点为素材的高考命题屡次再现于近几年高考上海卷及全国理综卷中.其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等. ●难点磁场 1.(★★★★)如图3-1所示,一根长为L 的轻杆OA ,可绕水平 轴O 在竖直平面内自由转动,左端A 挂一质量为m 的物体,从杆上一点B 系一不可伸长的细绳,将绳跨过光滑的钉子C 与弹簧K 连接,弹簧右端固定,这时轻杆在水平位置保持平衡,弹簧处于伸长状态,已知OB =OC =32L ,弹簧伸长量恰等于BC ,由此可知,弹簧的劲度系数等于______. 2.(★★★★★)(1997年上海,6)如图3-2所示是一种手 控制动器,a 是一个转动着的轮子,b 是摩擦制动片,c 是杠杆, O 是其固定转动轴.手在A 点施加一个作用力F 时,b 将压紧轮 子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说 法正确的是 A.轮a 逆时针转动时,所需的力F 较小 B.轮a 顺时针转动时,所需的力F 较小 C.无论逆时针还是顺时针转动,所需的力F 相同 D.无法比较F 的大小 ●案例探究 [例1](★★★★★)如图3-3所示,长为L 质量为m 的均匀木棒,上端用绞链固定在物体上,另一端放在动摩擦 因数为μ的小车平台上,小车置于光滑平面上,棒与平台的 夹角为θ,当: (1)小车静止时,求棒的下端受小车的支持力; (2)小车向左运动时,求棒的下端受小车的支持力; (3)小车向右运动时,求棒的下端受小车的支持力. 命题意图:题目出示的物理情境,来考查考生受力分析 能力及力矩平衡条件的应用能力.B 级要求. 错解分析:对“车的不同运动状态使棒所受摩擦力大小方向的变化”理解分析不透,从而错列力矩平衡方程. 解题方法与技巧:(1)取棒为研究对象.选绞链处为固定转动轴,除转动轴对棒的作用力外,棒的受力情况如图3-4所示,由力矩平衡条件知: F N 1Lc os θ=mg 2 L c os θF N 1=21mg 图 3-1 图 3-2 图3-3

4-4力矩 力矩的平衡

4—4 力矩力矩的平衡 教学设计方案 (一)引入新课 物体的机械运动有平动和转动两种基本形式,力既能改变物体的平动状态,也能改 变物体的转动状态。(教师提出问题请同学们思考:) (1)请大家列举力改变物体转动状态的实例。 (2)演示用力推门,总结改变转动状态的原因。 (物体转动状态的改变,不仅与施加的作用有关,还与施加力的作用点、力的作用位置有关。) 我们知道,力具有三个要素:大小、方向、作用点。使物体转动,例如开关门、窗的过程,很能说明这三要素中只要有一个不同就会产生不同的效果。那么,能不能定义一个物理量,把这三要素对转动的影响全部考虑进去呢? (二)引出课程内容 1.刚体的转动 转动:物体上面的各点都绕着同一直线做圆周运动,这种运动称为转动,这条直线称为转轴。 刚体:作转动的物体,在受外力作用时,如果大小和形状都不发生变化,这种物体称为刚体。 刚体的特点:在力的作用下,不发生形变。 刚体是一种理想模型,在研究转动时,我们把物体视为刚体。固体转动时,如果固体上各点都绕轴做匀速圆周运动,则这种转动称为匀速转动。如:风扇的扇叶,齿轮、电动机的转子等正常转动时,都属于匀速转动。起动和停止过程是非匀速转动。 当游乐园的转马的大转盘做匀速转动时,它上面各匹马转动的线速度和角速度是否相同?(见图1,也可以在黑板上画示意图)

图1 物体做匀速转动时,它上面各点的线速度不同,角速度是相同的。如果物体做匀速转动时,它的角速度就是常量,我们用角速度来描述匀速转动的快慢。 2.力矩 请同学们分析怎样才能容易地打开门?结论是力对物体的转动效果不仅与力的大小有关,还和力的方向,力与门轴的距离有关。即 与力和力臂的乘积有关。 (1)力臂:从转动轴到力或力的作用线的垂直距离。 如图2所示,转盘可以绕轴O 转动,在盘上 A ,B 两点各受到1F 和2F 的作用,且1F 和2F 在垂 直于转轴的平面内,画出1F 和2F 的力臂。 1F 的力臂是图中O 点到1F 的作用线的垂直距 离d 1;2F 的力臂是图1中O 点到2F 的作用线的垂直距离d 2 (2)力矩 如图3所示,把横杆水平悬挂起来,其左端系一 质量为m 的物块,用弹簧秤在右端不同位置A 、A ′ 竖直向下拉横杆,使细线处于伸直状态,横杆恰 能转动。记下两次弹簧秤的读数1F 、2F 和A 、A ′ 与悬点O 之间的距离d 1、d 2。 实验结果:1F d 1= 2F d 2 上述实验表明,不同的力作用在一个物体上,如果这些力和对应的力臂的乘积Fd 相等,则力所产生的转动效果相同。这个实验事实告诉我们:应当Fd 用来表示力的转动效果。物理学中,用力矩(M )作为描述力所产生的转动效果的物理量。可得: ① 定义:力和力臂的乘积称为力矩。M =Fd ② 单位:牛顿米,符号是N ·m 。 (3)力矩的方向: 转动物体角速度的改变情况,就是由力矩决定的。 力矩可以使物体向不同方向转动。在图2中,1F 的力矩 1M 使转盘绕轴O 作顺时针方向转动,而2F 的力矩则使 转盘绕轴O 做逆时针方向转动。通常规定: F 1 图4

结构力学典型例题

第2章平面体系的几何构造分析典型例题 1. 对图 2.1a体系作几何组成分析。 图2.1 分析:图2.1a等效图2.1b(去掉二元体)。 对象:刚片Ⅰ、Ⅱ和Ⅲ; 联系:刚片Ⅰ、Ⅲ有虚铰A(杆、2);刚片Ⅱ、Ⅲ有虚铰C(无穷远)(杆3、4);刚片Ⅰ、Ⅱ有虚铰B(杆5、6); 结论:三铰共线,几何瞬变体系。 2. 对图2.2a体系作几何组成分析。 图2.1 分析:去掉二元体(杆12、杆34和杆56图2.1b),等效图2.1c。 对象:刚片Ⅰ和Ⅱ; 联系:三杆:7、8和9;

结论:三铰不共线,无多余约束的几何不变体系。 3. 对图2.3a体系作几何组成分析。 图2.3 分析:图2.3a 对象:刚片Ⅰ(三角形原则)和大地Ⅱ; 联系:铰A和杆1; 结论:无多余约束的几何不变体系。 对象:刚片Ⅲ(三角形原则)和大地Ⅱ; 联系:杆2、3和4; 结论:无多余约束的几何不变体系。 第3章静定结构的受力分析典型题1. 求图3.1结构的内力图。

图3.1 解(1)支座反力(单位:kN) 由整体平衡,得=100.= 66.67,=-66.67.(2)内力(单位:kN.m制) 取AD为脱离体: ,,; ,,。取结点D为脱离体: ,, 取BE为脱离体: ,,。 取结点E为脱离体:

,, (3)内力图见图3.1b~d。 2. 判断图 3.2a和b桁架中的零杆。 图3.2 分析: 判断桁架零杆的常用方法是找出桁架中的L型结点和T型结点。如果这两种结点上无荷载作用.那么L 型纪点的两杆及T型结点的非共线杆均为零杆。 解:图3.2a: 考察结点C、D、E、I、K、L,这些结点均为T型结点,且没有荷载作用,故杆件CG、DJ、EH、IJ、KH、LF均为零杆。 考察结点G和H,这两个结点上的两竖向链杆均已判断为零杆,故这两个结点的受力也已成为T型结点的情形.由于没有荷载作用,故杆件AG、BH也为零杆。 整个结构共有8根零杆.如图3.2c虚线所示。 图3.2b: 考察结点D,为“K”型结点且无荷载作用,故;对称结构对称荷载(A支座处的水平反力为 零),有,故杆件DE和DF必为零杆。

相关文档
最新文档