铝合金电缆直流电阻检测

铝合金电缆直流电阻检测
铝合金电缆直流电阻检测

铝合金电缆在直流电阻检测时的误判

0.6/1kV铝合金导体电力电缆在国内市场上已初步得到了认可。产品应用大量增加的同时,也带来了一系列和安装有关的上游和下游的新问题。各地质监部门、建筑工程检测机构对建筑市场上的铝合金电缆进行了产品抽检。导体直流电阻检测是电缆电气性能的指标检测中最重要的一个环节。对于铝合金电缆的直流电阻检测以哪个标准为合格指标,检测方法与常用铜缆相比有何区别,按照常规方法检测是否会出现误判,本文就这些问题展开讨论。

铝合金导体电力电缆的主要特点是在电工铝中加入合金元素,同时通过工艺调整,使得铝合金导体的机械性能大幅提高,避免纯铝导体的伸长率低、抗蠕变性能差、柔韧性差的问题,增加电缆系统的连接可靠性。另外,保持铝合金的电气性能与电工铝导体持平,在61%IACS以上。

铝合金电导体的直流电阻考核指标可参考GB/T3956-2008《电缆的导体》中实心导体或绞合导体的直流电阻值。

1997年版的电缆导体标准中虽然也允许铝或铝合金线作为导体材料之一,但并没有指明铝合金导体的直流电阻值。2008年新版标准中,除保留铝合金线作为导体材料外,还将铝合金导体的直流电阻值等同铝导体,这样给评判铝合金导体的电气性能提供了依据。

很多电缆质检机构的试验室多年来检测的绝大多数样品均为

240mm2以下的铜缆,常取试样1.3米,一批试样全部剥除两端头绝缘和保护隔离层,导体两端处于松散状态,电流引入采用QJ-57

双臂电桥螺栓传动的合抱型夹具(与试验人员的用力大小有直接影响、进而对测量结果产生巨大影响)。由于大截面铝合金电缆本身的特点,两端暴露在空气中会很快生成致密的高电阻的氧化膜,影响测试电流在导体中均匀流过,采用常规铜缆检测方法,得出的结果不能反映真实值。继续采用习惯做法来检测大截面铝合金电缆产生的误差会非常大,常常导致严重的误判发生。

出现问题的原因在于铝合金导体在空气中会迅速形成一层薄而致密的氧化膜,这层氧化膜虽然能防止氧气对下面的铝金属继续氧化起到保护作用,但其本身的电阻非常高,对于10A至50A厚的Al2O3膜的范围为106~107欧姆。氧化膜造成连接夹具与被测试样的接

触电阻增加;同时,由于这层氧化膜的隔绝作用,测量电流并未沿导体的所有截面均匀流过,而是沿单线成螺旋状流动,而且处于外层单线电流密度大于内层单线电流密度的状态,两个间距1米的电位电极测得其间导体的电压差要大于电流密度均匀的电压差,所以最终的测量值会高于实际值。

反观铜电缆的直流电阻测量,虽然铜的氧化膜不具有钝化功能,随着时间延续,氧气会继续对氧化膜下面的铜进行氧化腐蚀。但铜的氧化物膜电阻(通常是Cu2O)在10A至50 A厚时为0.01~0.1

欧姆。测量电流在导体的全部截面均匀流过,所以测得的直流电阻值会更接近真实值。

去除铝合金导体的氧化膜,减小接触电阻;改变电流引入的方法,让测试电流均匀地流过除所有导体截面,可以大幅减小测量误差,使测量值更接近真实值。

国家标准GB/T3048.4-2007 《电线电缆电性能试验方法第4部分:导体直流电阻试验》4.4.1 型式试验的试验长度中规定:“推荐采用试样长度:导体截面(95~185mm2),取3m;导体截面240mm2及以上,取5m。”4.4.2 电流端和电位端中规定:“铝绞线的电流引入端可采用铝压接头(铝鼻子),并按常规压接方法压接,以使压接后的导体与接头融为一体。”

对于试验室检测电缆直流电阻来说,采用铝合金电缆端部冷压接是一个方便操作、简单易行、经济合理,又能保证结果相对精确的方法。

试验结果表明,电缆两端电缆端部进行压接,电流引入端自线鼻子引入确实能够得到较低的直流电阻值,使实测结果更接近真实值。

对于大截面铝或铝合金电缆的直流电阻检测特别有必要按照标准规定的方法执行。因为电缆在实际安装和运行时,也是采用端部冷压接之后为电力系统供电的。这种做法让测试结果更接近铝合金导体的实际电阻值。

铝合金电缆直流电阻检测

铝合金电缆在直流电阻检测时的误判 0.6/1kV铝合金导体电力电缆在国内市场上已初步得到了认可。产品应用大量增加的同时,也带来了一系列和安装有关的上游和下游的新问题。各地质监部门、建筑工程检测机构对建筑市场上的铝合金电缆进行了产品抽检。导体直流电阻检测是电缆电气性能的指标检测中最重要的一个环节。对于铝合金电缆的直流电阻检测以哪个标准为合格指标,检测方法与常用铜缆相比有何区别,按照常规方法检测是否会出现误判,本文就这些问题展开讨论。 铝合金导体电力电缆的主要特点是在电工铝中加入合金元素,同时通过工艺调整,使得铝合金导体的机械性能大幅提高,避免纯铝导体的伸长率低、抗蠕变性能差、柔韧性差的问题,增加电缆系统的连接可靠性。另外,保持铝合金的电气性能与电工铝导体持平,在61%IACS以上。 铝合金电导体的直流电阻考核指标可参考GB/T3956-2008《电缆的导体》中实心导体或绞合导体的直流电阻值。 1997年版的电缆导体标准中虽然也允许铝或铝合金线作为导体材料之一,但并没有指明铝合金导体的直流电阻值。2008年新版标准中,除保留铝合金线作为导体材料外,还将铝合金导体的直流电阻值等同铝导体,这样给评判铝合金导体的电气性能提供了依据。

很多电缆质检机构的试验室多年来检测的绝大多数样品均为 240mm2以下的铜缆,常取试样1.3米,一批试样全部剥除两端头绝缘和保护隔离层,导体两端处于松散状态,电流引入采用QJ-57 双臂电桥螺栓传动的合抱型夹具(与试验人员的用力大小有直接影响、进而对测量结果产生巨大影响)。由于大截面铝合金电缆本身的特点,两端暴露在空气中会很快生成致密的高电阻的氧化膜,影响测试电流在导体中均匀流过,采用常规铜缆检测方法,得出的结果不能反映真实值。继续采用习惯做法来检测大截面铝合金电缆产生的误差会非常大,常常导致严重的误判发生。 出现问题的原因在于铝合金导体在空气中会迅速形成一层薄而致密的氧化膜,这层氧化膜虽然能防止氧气对下面的铝金属继续氧化起到保护作用,但其本身的电阻非常高,对于10A至50A厚的Al2O3膜的范围为106~107欧姆。氧化膜造成连接夹具与被测试样的接 触电阻增加;同时,由于这层氧化膜的隔绝作用,测量电流并未沿导体的所有截面均匀流过,而是沿单线成螺旋状流动,而且处于外层单线电流密度大于内层单线电流密度的状态,两个间距1米的电位电极测得其间导体的电压差要大于电流密度均匀的电压差,所以最终的测量值会高于实际值。 反观铜电缆的直流电阻测量,虽然铜的氧化膜不具有钝化功能,随着时间延续,氧气会继续对氧化膜下面的铜进行氧化腐蚀。但铜的氧化物膜电阻(通常是Cu2O)在10A至50 A厚时为0.01~0.1

铝合金电缆和铜电缆应用对比

铝合金电缆和铜电缆应用对比 一、概述 早期纯铝电缆因电阻率高、接头易氧化发热、抗疲劳性能不佳、电化学腐蚀、蠕变等原因逐渐被铜电缆所淘汰。随着铝合金材料性能的改善,出现了以AA-8000系列铝合金材料为导体,采用特殊紧压工艺和退火处理等先进技术生产的铝合金电缆。这 种铝合金电力电缆弥补了以往纯铝电缆的不足,解决了纯铝导 体电化学腐蚀、蠕变等问题,提高了铝合金电缆的弯曲性能、抗疲劳性能、抗蠕变性能和耐腐蚀性能等,能够保证电缆在长时间过载和过热时保持连续性能稳定,目前生产厂家越来越多,在相关场合又有所应用。 二、基本性能对比 铝合金与铜物理性能差异如表一所示。 在同样的电气性能要求下,传统铝合金电缆线径要远远超过铜电缆。近年来电缆厂家通过新制作技术(超常规的紧压技术),通过最大极限的紧压,弥补铝合金在体积导电率上的不足,使目前铝合金电缆在同等电气性能要求的情况下截面是传统铜芯电 缆的1.1-1.25倍,重量是铜芯电缆的一半。 三、应用对比 经过查阅资料、厂家技术交流,结合现场实际情况,铝合金

电缆和铜电缆应用要求对比如下: 三、应用情况 从1968年开始,美国南方电缆公司开始研制生产合金电力电缆,在美国、加拿大、墨西哥等国家开始推广应用。主要应用于机场、军事基地、办公大楼、住宅、酒店、超市、院校、体育场、医院、工厂厂房等建设工程。 我国应用铝合金电缆只有4-5年,且多用于民用建筑上,在冶金行业的业绩很少。 四、注意事项 从上可看出铝合金电缆的使用场合日益扩大,且各厂家宣称在满足同等电气性能的前提下,铝合金电缆的价格比传统的铜芯电缆低20%~40%。但经过查阅资料、厂家技术交流,在铝合金电缆的使用中还需注意如下问题: 1、目前国家“稀土高铁铝合金导线”标准还未出台,各家生产单位应用的是企业标准,不同企业产品个性化较强,产品质量参差不齐。 2、由于铝合金电缆的弯曲性能、抗疲劳性能、抗蠕变性能和耐

电力电缆检测报告模板

电力电缆检测报告模板 篇一:电线电缆检验报告(masuwww标准版) 电线电缆检验报告 TEST REPORT 编号:京监12-3809 (XX)国认监字(35)号 XX(A02-1000)号 Product 铜芯阻燃交联聚乙烯绝缘聚录乙烯护套电力电缆—————————————————————————样品名称 Model//1KV5×10 —————————————————————————规格型号 北京世纪中玺电线电缆有限公司Applicant ————————————————————————— 委托单位 北京世纪中玺电线电缆有限公司Manufacturer ————————————————————————— 标称生产单位 委托检验 Type of Test —————————————————————————检测类别 北京市产品质量监督检验所(章)

Beijing Products Quality Suprevision and inspection lnstitute 北京市产品质量监督检验所 Beijing Products Quality Suprevision and inspection lnstitute 检验报告 共4页第1页 批准:审核:主检: Approver Verifier Main inspect 北京市产品质量监督检验所 Beijing Products Quality Suprevision and inspection lnstitute 检验报告 共4页第2页 北京市产品质量监督检验所 Beijing Products Quality Suprevision and inspection lnstitute 检验报告 共4页第3页 北京市产品质量监督检验所 Beijing Products Quality Suprevision and inspection lnstitute

变压器直流电阻测试方法

变压器直流电阻测试方法 Prepared on 22 November 2020

变压器直流电阻测试方法 变压器的预防性试验项目很多。主要包括常规的绝缘特性试验,油中溶解气体色谱分析,以及绕组直流电阻测量等。在《电力设备预防性试验规程》中测量绕组直流电阻这一项目仅次于色谱分析排在第二位,可见其重要性,多年来的实践证明,测量变压器绕组的直流电阻能有效检查绕组焊接质量,分接开关接触是否良好,引出线及绕组有无折断、关联支路是否正确、层间有无短路等缺陷。正常的变压器三相直流电阻基本平衡,差值最大不超过三项平均值的2%或4%。然而在实际测试过程中经常会遇到一些特殊情况,这些情况综合来看无非就是两大方面,一是不平衡,二是测不准。华天电力从原理出发给出这些特殊情况的分析及处理方法。 1.概述 测量直流电阻无非两种方法:一是电压降法,二是电桥法。对一般导体而言两种方法均可快速测量出数据,但是,由于变压器绕组的引线结构各不相同;导线质量、连接情况、分接位臵等诸多因素的影响,再加上绕组本身还是一个大的电感,所以实际测量中会出现许多特殊情况,下面就两大方面具体分析: 2.变压器绕组直流电阻不平衡率超标的原因分析防止措施: 原因之一:引线电阻的差异 中小型变压器的引线结构示意图如附图所示。 由附图可见,各线绕组的引线长短不同,因此各项绕组直流电阻值就不同;有可能导致其不平衡率超标。 防止措施: 为消除引线差异的影响采取下列措施:

(1)在保证机械强度和电气绝缘距离的情况下,尽量增大附压套管间的距离,使a、c相的引线短,因而引线电阻减小。这样可以使三项引线电阻尽量接近。 (2)适当增加a、c相首尾引线铜排(铝排)的厚度或宽度。如能保证各相的引线长度和截面之比近似相等,则三相电阻值也近似相等。 (3)适当减小b相极引线的截面。在保证引线允许截流量的条件下,适当减小b相引线截面使三相引线电阻近似相等,这也是一种可行的办法。 (4)寻找中性点引线的合适焊点。对a、b、c三相末端连接铜(铝)排,用仪器找出三相电阻相平衡的点,然后将中性点引出线焊在此点上。 (5)在最长引线的绕组末端连接线上并联铜板(如图1ZY引线之间)以减少其引线电阻。 (6)将三个线圈中电阻值最大的线圈套在b相,这样可以弥补b相引线短的影响。 (7)对上述方法,在实际中可以选择其中之一单独使用,也可综合使用。 原因之二:导线质量 实测证明,有的变压器绕组的直流电阻偏大,有的偏差较大,其主要原因是某些导线的铜和银的含量低于国家标准规定限额。有时即使采用合格的导线,但由于导线截面尺寸偏差不同,也可以导致绕组直流电阻不平衡率超标。 原因之三:连接不紧。 测试实践表明,引线与套管导杆或分接开关之间连接不紧都可能导致变压器直流电阻不平衡率超标。 综合上述所写说明,变压器直流电阻测量方法虽然简单,但是数据分析时要考虑全面,特别是对异常数据的分析,要掌握其中的技巧,深刻理解变压器的原理。认真、冷

铝合金电缆的六大优势

铝合金电缆的六大优势 安徽华联采用具有自主独立研发的生产工艺生产的高强度铝合金电力电缆性能达到国际电工委员会(IEC)标准要求。已在国内国家级大型工程项目上予以大量应用,2011年我公司生产的中压(10KV)铝合金电缆与国家电网形成合作,其优良的综合电气性能取得了良好的经济效益与社会效益~~~. 1、安全性能 1、在中国上海电缆研究所,安徽华联铝合金电缆通过了《按照长期运行(大于30年)所制定的IECl000次连接头热循环测试标准》。 2、在北美,铝合金电缆通过了权威测试实验室《按照长期运行(大于30年)所制定的IECl000次冷水急冷连接头热循环测试标准》。 2.导电性能 安徽华联铝合金导体的导电率是最常用基准材料铜(IACS)的61%。其导电热性能仅次于银、铜和金。因此成为目前国内外广泛应用、产量最大的导电材料。 安徽华联采用具有自主独立研发的生产工艺生产的高强度铝合金电力电缆性能达到国际电工委员会(IEC)标准要求。生产及用量日增,目前应用于各个领域,取得极好的经济效益,节约大量的成本而且提高了线路的质量。 3、防腐性能 安徽华联铝合金电缆表面与空气接触时立即形成薄而坚固的致密的氧化层。这种氧化层特别耐受各种形式的腐蚀。铝合金具有承受最恶劣环境的特性,所以铝合金作为托盘内电缆的导体被广泛应用。在含硫的环境中,例如:铁路隧道和其它类似地方,铝合金电缆的抗腐蚀性能大大优于铜电缆。 4、机械性能 1、安徽华联铝合金电缆的反弹性能比铜电缆小40%; 2、安徽华联铝合金电缆的柔韧性能比铜电缆高25%; 3、安徽华联铝合金电缆有很好的弯曲性能,敷设半径远小于铜电缆要求,因此更容易进行敷设和端子连接;

电线电缆检验项目

圆线同心绞架空导线检验项目汇总 1、检验规则:产品的检验分为抽样试验、型式试验、例行试验 型式试验(T):在产品设计、生产工艺变化之后,从抽样检验合格批中抽样进行的检验;试验只做一次,并且仅当其设计或工艺改变之后试验才重做。 抽样试验(S):在成品的电缆上或取至成品电缆的元件上进行的试验,以证明成品电缆符合设计规范。 例行试验(R):由制造方在成品电缆的所有制造长度进行的试验,以检验电缆是 从成盘或成卷绞线的距端头1米处取1.5米长;如全部的试样的检验项 目全部合格,则该生产批合格;如有1项及以上项目不合格,则该生 产批产品不合格,对该生产批的产品进行全检,合格品可以出货。 1kV架空绝缘电缆检验项目 1、检验规则:产品的检验分为抽样试验、型式试验、例行试验 型式试验(T):在产品设计、生产工艺变化之后,从抽样检验合格批中抽样进行的检验;试验只做一次,并且仅当其设计或工艺改变之后试验才重做。 抽样试验(S):在成品的电缆上或取至成品电缆的元件上进行的试验,以证明成品电缆符合设计规范。 例行试验(R):由制造方在成品电缆的所有制造长度进行的试验,以检验电缆是否符合规定的要求。

10kV架空绝缘电缆检验项目 1、检验规则:产品的检验分为抽样试验、型式试验、例行试验 型式试验(T):在产品设计、生产工艺变化之后,从抽样检验合格批中抽样进行的检验;试验只做一次,并且仅当其设计或工艺改变之后试验才重做。 抽样试验(S):在成品的电缆上或取至成品电缆的元件上进行的试验,以证明成品电缆符合设计规范。 例行试验(R):由制造方在成品电缆的所有制造长度进行的试验,以检验电缆是否符合规定的要求。

变压器直流电阻测量及其注意事项

浅谈变压器线圈直流电阻测量及其注意事项 魏晓东 (江苏省电力建设第一工程公司,南京市,210028) [摘要]变压器绕组直流电阻是变压器主要参数之一,测量变压器绕组直流电阻,能有效反映绕组匝间短路、绕组断股、分接开关接触状态以及导线电阻的差异和接头接触不良等缺陷故障,也是判断各相绕组直流电阻是否平衡、调压开关档位是否正确的有效手段。本文介绍了变压器线圈直流电阻的测量方法、注意事项及规范要求,对影响变压器绕组直流电阻准确度的因素进行了分析比较,提出了解决问题的建议和方法。 [关键词]变压器绕组直流电阻测量方法注意事项 变压器绕组直流电阻的检测是一项很重要的试验项目,在《电气装置安装工程电气设备交接试验标准》(GB 50150-2006)中试验次序排在变压器试验项目的第二位。规程规定它是变压器大修时、无载开关调级后、变压器出口短路后和1~3年1次等必试项目,在变压器的所有试验项目中是一项较为方便而有效的考核绕组纵绝缘和电流回路连接状况的试验,它能够反映绕组匝间短路、绕组断股、分接开关接触状态以及导线电阻的差异和接头接触不良等缺陷故障,也是判断各相绕组直流电阻是否平衡、调压开关档位是否正确的有效手段。长期以来,绕组直流电阻的测量一直被认为是考查变压器纵绝缘的主要手段之一,有时甚至是判断电流回路连接状况的唯一办法。 1.直流电阻测量方法 1.1.中、小型变压器的测量方法 在中、小型变压器的实际测量中,大多采用直流电桥法。双臂电桥的测量步骤如下:测量前,首先调节电桥检流计机械零位旋钮,置检流计指针于零位。接通测量仪器电源,具有放大器的检流计应操作调节电桥电气零位旋钮,置检流计于零位。接入被测电阻时,双臂电桥的电压桩头要靠近被测电阻,电流桩头要接在电压桩头的上面。测量前,应先估计被测线圈的电阻值,将电桥倍率选钮置于适当位置,将非被测线圈短路并接地,然后打开电源开关充电,待充足电后按下检流计开关,

铝合金电缆与铜电缆的对比(最终版)20110906

铝合金电缆与铜芯电缆的性能比较 1.铝合金电缆与铜芯电缆的性能比较 1.1.1导电能力 首先可以肯定的说,铝和铜一样在导电方面是性价比高的金属,在北美地区的电力传输链中,高压架空线电力传输电缆100%为铝导体,中压传输电缆99%采用铝导体。 由于导体的电导率与导体截面积成反比,在相同载流量下,相同尺寸的铝合金电缆的重量仅为铜电缆的一半,如果按铜的电导率是100%计算,铝合金的电导率约为61.2%,铝合金的比重为2.7t/m3,铜的比重为8.9t/m3。则(8.9/2.7)×(0.612/1)=2,即2㎏的铜的电阻与1㎏铝合金的电阻相当,因此铝合金电缆的截面积是铜电缆的1.5倍时其电气性能相同,又由于铝合金电缆采用特殊的紧压工艺,经过逐层紧压后,导体的填充系数达到95%以上,而铜芯电缆经过一次紧压成型,填充系数一般仅能达到80%,所以其外径仅比铜电缆大1~18㎜,由此可知铝合金电缆在略增大外径的前提下电导率已经完全达到铜芯电缆的导电能力,具体比较结果如下表所示。 铝合金电缆与铜芯电缆的重量比较 铝合金电缆(㎏/㎞)铜芯电缆(㎏/㎞) 电缆规格重量重量扇形缆型号YJHLV22 4×25 686 1076 YJV22-4×16 YJHLV22 4×35 854 1519 YJV22-4×25 YJHLV22 4×50 1151 1957 YJV22-4×35 YJHLV22 4×70 1503 2759 YJV22-4×50 YJHLV22 4×120 2332 3678 YJV22-4×70 YJHLV22 4×150 **** **** YJV22-4×95 YJHLV22 4×185 **** **** YJV22-4×120 YJHLV22 4×240 4291 7186 YJV22-4×150 YJHLV22 4×300 5217 8807 YJV22-4×185 YJHLV22 4×400 6800 11268 YJV22-4×240 在相同的电气性能条件下,铝合金电缆的重量是铜芯电缆的46%~63%

电力电缆漏电流检测

第一章绪论 (2) 1.1 研究背景 (2) 1.2电力电缆漏电流检测重要性 (3) 1.3测试注意事项...................................................................错误!未定义书签。 1.4本文的研究内容 (4) 第二章原理分析 (4) 2.1在线检测tg 的电桥法: (4) 2.2电压跟随器 (8)

第一章绪论 1.1 研究背景 随着我国城市电网改造和升级的计划的实施,使得电力电缆越来越多的应用于各种电压等级的输电线路和配电网中。据不完全统计,已投入运行的110kV 及以上的高压电缆线路达数百公里,而35kV及以下电压等级多达50万公里之多,最高电压等级已达500kv。通常电力电缆是由导电线芯、绝缘、护套、屏蔽层、铠装等几部分组成。电力电缆的导电线芯常用铜或铝;电缆的绝缘和护套常用有机绝缘材料,如粘性油纸、橡胶、塑料、交联聚乙烯等,对于更高电压等级的电缆,可以采用充油或充气绝缘;电缆的屏蔽层常用半导电材料,在电缆中起到均匀电场的作用;电缆的铠装是为了保护电缆的绝缘免受外力的损伤,常用钢带、钢丝、铅套、铝套等作电力电缆的铠装。电力电缆按导电线芯的数量和形状可分为:单芯结构、三相圆芯电缆、三相扇形电缆、四芯扇形电缆等在电力系统中常将电力电缆按绝缘材料分为:油纸绝缘电缆、橡塑绝缘电缆、充油电缆、充气电缆等。其中油纸绝缘电缆已经逐步退出运行,橡塑绝缘电缆使用量逐年增加,特别是交联聚乙烯电缆近年来已经成为中高压输电系统中的主要品种。 泄漏电流的检测是考核电缆电气性能优劣的一项重要指标,其测试目的是为了鉴别电缆绝缘的品质和发现绝缘中的缺陷。当被测试样的导电线芯与绝缘层外金属护套之间加上直流电压时,会有微量泄漏电流Iv从导线,经绝缘层流向金属护套(屏蔽接地层),这种电流称为电缆的泄漏电流。与其相对应的绝缘体积电阻(或绝缘电阻)Rv=U/Iv。因此,电缆的绝缘电阻越小,其泄漏电流越大,说明其绝缘性能越差。电缆在实际运用中,如果泄漏电流过大,电缆输送的工作电流会减小,损耗会增大。这将会使绝缘发热损耗,既限制了电缆的载流量,又加速了绝缘的老化,最终造成电缆热或电击穿。因此,电缆的泄漏电流是考核电缆绝缘的电气性能重要指标之一,电缆制造厂通常以绝缘电阻的指标来加以考核。根据国家标准GBJ232—82“电气装置安装工程施工及验收规范”的规定:电缆长度为250m,其泄漏电流Iv ≯50μA;三相泄漏电流的不平衡系数不大于2(即任意二相的泄漏电流之比)。电线电缆制造厂一般按国家产品标准 GB12976—91的规定:只对电缆的绝缘电阻进行测试,并以绝缘电阻值作为考核指标,而对产品的泄漏电流及其不平衡系数均不作规定。从上述可知,使用部门在电缆线路开通之前都要进行泄漏电流试验,而电缆制造厂的产品出厂试验却只对其

电线电缆导体直流电阻测量的误差分析

电线电缆导体直流电阻测量的误差分析 摘要:对于电线电缆产品,根据GB/T3048.4-2007标准要求和实际检测工作,对电线电缆中导体电阻项目的原理、实验过程、影响实验结果的因素及检测中应注意的事项进行探讨。 关键词:电线电缆;直流电阻;截面积;电流;温度 引言 在诸多电线电缆质量检验项目中,导体电阻是重要的检测项目之一。实际检测过程中往往由于忽略某些因素,导致测量结果的偏离。本文通过多年检测实践,分析对测量结果产生影响的因素并给出了相应的解决办法,与大家共同探讨。 1.概述 电线电缆直流电阻测量的依据是GB/T3048.4-2007《电线电缆电性能实验方法第4部分:导体直流电阻试验》。试验的方法如下:从被测电线电缆上按要求切取不小于1m的试样,去除试验导体外表的绝缘、护套或其他覆盖物,露出导体。在试样接入测量系统前,清洁其连接部位的导体表面,去除附着物和油污,连接处表面的氧化层尽可能除尽后,将导体试样固定在专用四端卡具上,双臂电桥的四个测试端与导体两端可靠连接后闭合直流电源开关,仪器完成预热后开始测量。调节电桥平衡。读取电桥读数,记录至少四位有效数字,关闭试验电源后准确测量卡具间被测导线的实际长度,记录环境温度,将测量结果换算到20℃时1km导体长度的电阻数值作为最终的报出值。 2.系统误差 一般情况下,我们检测的样品的导体电阻都远小于1Ω/m,通常采用双臂电桥和专用的四端测量卡具,再配合试样、标准电阻、检流计、变阻器、电流表、连接导线、开关、温度计等实验器材,组合成一个测量系统进行检测。不难看出,检测设备的精度、检定及校准是造成系统误差的主要原因。如何减少系统误差呢?我们应定期对检测设备进行检定和校准,以保证所有设备的精度都能满足检测的需要。使用双臂电桥时,标准电阻和试样间的导线电阻应明显小于标准电阻和试样的电阻。否则应采取适当的方法予以补偿,如导线补偿,使线圈和引线阻值比例达到足够平衡。对卡具的要求是每个电位接点与相应的电流接点之间的距离应不小于试样截面周长的1.5倍。 3.过程误差 过程误差我们也可以称之为方法误差,就是在整个测量过程中,由于方法使用不当,或测量程序出错为导致的误差。标准中,对导体电阻的检测做出了明确的规定。(一)取样。试样的制备很重要,涉及到试样表面处理、电流引入方式、

变压器直流电阻测试

变压器直流电阻测试方法与分析判断 1 测试周期与意义 《规程》中规定变压器绕组直流电阻的测量是在大修时、无励磁分接开关变换分接头后,经出口短路和1-3年1次等必试项目。通过直阻测量,可以检查引线的焊接或连接质量、绕组有无匝间短路或开路以及分接开关的接触是否良好等情况。 2 绕组连同套管的直流电阻测试方法 2.1 测试方法 a)使用变压器直流电阻测试仪进行测量 b)试验原理接线图(参照各直流电阻测试仪试验接线) 2.2 一般性试验步骤 1)变压器各绕组短路接地充分放电。 2)记录变压器编号、铭牌等相关参数。 例1、某台变压器型号为OSFPSZ-120000/220,表明这是一台自耦、三相、风冷、__________________、三绕组、有载调压、额定容量为120000kVA、额定电压为220kV的________线圈(绕组)电力变压器。 3)测量并记录上层油温及环境温度和湿度。 4)将测量设备或仪表通过测试线与被测绕组有效连接,开始测量。 5)直阻显示测量数据后,一般应继续等待2-3min,进一步确认数据稳定后 方可记录,对大容量变压器的低压绕组尤其要如此(避免凑数现象)。 6)测试完毕应使用测量设备或仪表上的“放电”或“复位”键对被测绕组 充分放电。 7)在更改接线或拆线前,还应用接地线人为放电。 2.3 试验结果判断依据(或方法) 1)按公式R2= R1(T+t2)/ (T+t1)将测量值换算到同一温度(式中R1、R2分

别为在温度

t1、t2下的电阻值,t1可取为交接试验时的变压器绕组温度;T为电阻温度常数,铜导线取235,铝导线取225)。 2) 1.6MV A以上的变压器,各相绕组电阻相互间的差别,不应大于三相平均 值的2%;无中性点引出的绕组,线间差别不应大于三项平均值的1%。 3) 1.6MV A及以上变压器,相间差别一般不应大于三相平均值的4%;线间 差别一般不应大于三相平均值的2%。 4)各相绕组电阻与以前相同部位、相同温度下的历次结果相比,不应有明 显差别。 5)三相不平衡率是判断的重要标准,各种标准、规程都作了详细明确的规 定。交接时与出厂时比较三相不平衡率应无明显变化,否则即使小于规定值也不能简单判断为合格。 2.4 注意事项 1)测量一般应在油温稳定后进行。只有油温稳定后,油温才能等同绕组温 度,测量结果才不会因温度差异而引起温度换算误差。 2)根据变压器绕组电压等级选择合适的测试电流。 3)对于大型变压器测量时充电过程很长,应予足够的重视,可考虑使用去 磁法或助磁法。 4)应注意在测量后对被测绕组充分放电。 5)测试时非被试绕组应处于自然状态,不应短路。 2.5 典型的直流电阻测试仪面版及操作流程

从检验到项目 电缆基本性能测试全解析

1、检验方式 例行试验:是制造厂对全部成品电缆进行的实验。其目的是检查产品质量是否符合技术条件的要求,以便发现制造过程中的偶然性的缺陷。它是非破坏性的实验,如导线的直流电阻、绝缘电阻时间。和耐压试验局部放电检测等。 型式试验:是制造厂家定期对产品进行全面的性能检验,特别是对一种新产品在定型成批生产之前,或对一种产品的结构、材料和主要工艺有了变更而可能影响电缆的性能时进行的试验。通过型式试验:可检验该产品能否满足运行的要求,并可与老产品进行比较。如绝缘和护套的热老化性能、电力电缆长期稳定性试验等。 验收试验:是电缆安装敷设后对电缆进行的验收试验,以便检查安装质量,发现施工中可能生的损伤。如安装后的耐压试验等。 2.试验项目 2.1导线直流电阻的测试 电线电缆的导电线芯主要传输电能或电信号。导线的电阻是其电气性能的主要指标,在交流电压作用时线芯电阻由于集肤效应、邻近效应面比直流电压作用时大,但在电眼频率为50Hz 时两者相差很小,现在标准规定那个均只能要求检测线芯的直流电阻或电阻率是否超过标准中的规定的值,通过此项的检查可以发现生产工艺中的某些缺陷:如导线断裂或其中部分单线断裂;导线截面不符合标准;产品的长度不正确等。对电力电缆,还可检查其是否会影响电线电缆产品的运行中允许载流量。 对导体直流电阻的测量有单臂直流电阻法和双臂直流电桥法,后者的准确度较前者高一些。测试步骤也较前者复杂。 2.2 绝缘电阻的测试 绝缘电阻式反映电线电缆产品绝缘特性的重要指标,它与该产品的耐电强度,介质损耗,以及绝缘材料在工作状态下的逐渐劣化等均有密切的关系。对于通信电缆,线间绝缘电阻过低还会增大回路衰减、回路间的串音及在导电线芯上进行远距离供电泄露等,因此都要求绝缘电阻应高于规定值。 测定绝缘电阻可以发现工艺中的缺陷,如绝缘干燥不透或护套损伤受潮;绝缘受到污染和有导电杂质混入;各种原因引起的绝缘层开裂等。在电线、电缆的运行中,经常要检测绝缘电阻和泄漏电流,以此作为是否能够继续安全运行的主要依据。 目前电线电缆绝缘电阻的测量,除了用欧姆计(摇表)外,常用的有检流计比较法高阻计法(电压——电流法)。 2.3电容及损耗因数的测量

变压器直流电阻测试方法原理

变压器直流电阻测试方法原理 发布时间:10-10-08 来源:点击量:1739 字段选择:大中小直流电阻的测量,是检查绕组焊接质量和绕组有匝间短路;分接开关位置是否良好及其实际位置与指示是否相符;引出线有无断裂、松动;并股线并绕的绕组有无断股等。 直流电阻的测量是变压器在大修、预试和改变分接开关位置后必不可少的试验项目,也是故障后的重要检查项目。 因此,该项试验必须精心操作,尽量减少测量误差。规程规定,16 0kVA以上的变压器,相间电阻差别一般不大于三相平均值的2%,线间电阻差别一般不大于三相平均值的1%;160kVA及以下的变压器,相间电阻差别一般不大于三相平均值的4%,线间电阻差别一般不大于三相平均值的2%;测得的相间差比以前相应部位测得的相间差比较其变化也不应大于2%。 当直流电阻测得的阻值超标时: ①要首考虑有无测量误差(如外引线是否有连接,试验引线是否过长或太细,接触是否良好、电桥内电池电压足不足等)。 ②直流电阻阻值受温度影响较大,所以必须换算至同一温度(一般以20℃为准,R20=(T+20)/(T+t),T铜=235)进行对比、且一般以上层油温为依据。

③目前使用的三相配电变压器,高压绕组采用Y形接线,阻值超标时,也可按下列公式[RA=(RAB+RAC-RBC)/2,RB=(RAB+RBC-RAC)/2,RC(RB C+RAC-RAB)/2],以便找出缺陷相。 ④分接开关接触不良,造成阻值偏高较为普遍,如开关不清洁电镀脱落、弹簧压力不足,受力不均、以及过电压时触点有积碳等,都将会造成阻值偏高。这时,应将分接开关盖打开,往返转动几次,一般可消除。 经以上检查处理后仍超标时,说明内部故障,很有可能是绕组与引线虚焊、脱焊、断线等,或层间短路,或绕组烧毁。现场无法处理,需送检修房进行吊芯大修。

助磁法直流电阻测试仪

助磁法直流电阻测试仪 一、概述 变压器的直流电阻是变压器制造中半成品、成品出厂试验、安装、交接试验及电力部门预防性试验的必测项目,能有效发现变压器线圈的选材、焊接、连接部位松动、缺股、断线等制造缺陷和运行后存在的隐患。为了满足变压器直流电阻快速测量的需要,华胜公司利用自身技术优势开发研制了新一代FS系列直流电阻测试仪。该仪器采用全新第三代电源技术,具有体积小、重量轻、输出电流大等特点。整机由单片机控制,自动完成自检、数据处理、显示等功能,具有自动放电和放电指示功能。仪器测试精度高,操作简便,可实现变压器直流电阻的快速测量。 二、安全措施 1、使用本仪器前一定要认真阅读本手册。 2、仪器的操作者应具备一般电气设备或仪器的使用常识。 3、本仪器户内、户外均可使用,但应避免雨淋、腐蚀气体、尘埃过浓、高温、

阳光直射等场所使用。 4、本仪表属高精密仪表,应避免剧烈振动。 5、对本仪器的维修、维护和调试应由专业人员进行。 6、测试完毕后一定要等放电报警声停止后再关闭电源,拆除测试线。 7、测量无载调压变压器,一定要等放电报警音停止后,再切换变压器档位。 8、在测试过程中,禁止拆卸和移动测试夹和供电线路。 三、性能特点 1、本仪器输出电流大(最大可以输出40A),充电电压高(可以输出50V)。 2、测量范围宽(0Ω-40KΩ),能测量变压器、互感器等所有感性直流电阻。 3、本机具备自动助磁功能,针对铁芯五柱低压角接YND11大容量变压器 绕组的测试,采用高低压串激磁的方法进行测试,仪器内部按选定选相自动连接绕组,可实现低压绕组快速准确的测量。能满足变压器温升试验对时间的要求,双通道以及选相测量,三种温升定时取值模式,实时采样,打印输出,使温升试验成为一件简单方便的事情。 4、具有完善的保护电路,音响放电报警,指示清晰,可靠性强减少误操作。 5、彩色大屏幕,触控操作,简单方便,显示数据清晰易读。 6、仪器带有万年历、100组常规数据存储、4次温升试验数据存储,常规模式 温度自动换算等功能,关机不丢失数据。并且设有“U盘”接口方便导出温升数据以供查阅及生成温升曲线。 7、本仪器设有RS485通讯接口,配合上位机操控软件,实现远距离控制测量。 8、本仪器设有自动去磁功能,减少变压器剩磁,避免合闸困难。 9、本机具有输入误接AC380V电源保护报警功能,减少误操作对仪器的损害。 10、本机具有适用温度宽、精度高、防震、抗干扰、稳定性高、携带方便等 特点。 四、技术指标: 输出电压:50V 输出电流:40A、20A、10A、3A、1A、15 mA 测试范围:0Ω——1Ω(40A)

技术贴:电缆测试方法及电气特性指标资料

信号电缆测试方法及电气特性指标 一、综合测试 各种信号电缆在敷设前应进行单盘测试,接续前、后应进行电气测试,电缆工程结束后应进行综合测试。各项测试应认真做好记录,并妥善保存,以作为竣工验收时重要的原始记录。各主要电气特性测试结果应符合表3-1的要求。 表3-1信号电缆主要电气特性 1、用兆欧表测试绝缘可按:R x=0.001×L×R m计算。

式中:L-电缆实际长度(m) R m-仪表测量值(MΩ) R x-换算到每千米电缆的实际绝缘电阻值(MΩ) 2、电缆如经暴晒后测量所得数据不得作为电缆电气特性的结论。 对于工程中所采用的特殊规格电缆,其电气特性应符合设计要求及其相关产品技术标准的规定。 二、普通信号电缆绝缘测试 信号电缆绝缘测试包括下列内容: 1、芯线间绝缘电阻测试 将电缆两端的芯线互相分开,测试端剥去约20㎜外皮。用500V兆欧表一线与芯线1连接,以每分钟120转的速度摇动手摇把,另一线依次与其他各芯线接触。与芯线2刚一接触时,兆欧表指针会向零偏转,但很快又回升,稳定在实际绝缘值处。指针稳定后,可读出芯线1与芯线2之间的绝缘电阻值。另一线离开芯线2与芯线3接触,测出芯线1与芯线3之间的绝缘电阻值。用同样方法测出芯线1与其他各芯线之间的绝缘电阻值。将兆欧表一线换成与芯线2连接,另一线依次与芯线3之后的各线相碰,可分别测出芯线2与其他各芯线之间的绝缘电阻值。并用依次测出其他芯线之间绝缘电阻值。 测试电缆芯线间绝缘电阻还有另一种方法:兆欧表一线于芯线1连接,其他各芯线并联后与另一线连接,只需摇动一次即可测出芯线1与其他各芯线之间的绝缘电阻值。测出芯线1的绝缘电阻值之后,从并联芯线中抽芯线2,同样方法测出其与其他各芯线间的绝缘电阻值。如测到某芯线与其他各芯线间绝缘电阻为零或低于标准时,再分开并联芯线逐一接触,以查明与其中的某一芯线绝缘不良。 2、芯线与地之间绝缘电阻测试 测试尚未敷入地下的电缆芯线与地之间绝缘时,兆欧表接地端子的表棒与电缆的铠装钢带连接(聚氯乙烯外护套型电缆需待敷设后方测试芯线对地绝缘),摇动摇把,线路端子另一表棒分别与每一芯线接触一次,即可测出芯线与地之间的绝缘。也可将全部

电力电缆的故障检测技术分析

电力电缆的故障检测技术分析 摘要:作为电能传输的核心载体,电力电缆的稳定运行对电力系统的影响特别大,为了保证电力系统运行更加稳定,采用科学的诊断检测技术特别重要,诊断 检测技术不仅能够对已经出现运行故障进行诊断与定位,而且能够更好的监测电 力电缆运行状态,准确找到电力老化与故障隐患位置,对提升电力电缆运行的安 全性有重要价值,鉴于此,本文深入研究电力电缆诊断检测技术的具体应用。 关键词:电力电缆;故障;检测技术 引言 电力电缆是对电能进行分配与传输的重要载体,相较于传统的架空线路而言,电力电缆具有人力资源投入少、节省空间占用、安全系数更高等优点,因而颇受 业界青睐。进入21世纪后,经济建设的持续稳定发展使城市规模不断扩大,城 市边界不断外延,城乡一体化进程不断加快,电力线路建设中,电缆所占比重也 在不断增加,尤其是在城市中心区域和工矿企业内部供电以及过江海水下电能传 输等方面,电力电缆的优势尤为突出。但是,电力电缆在广泛应用过程中,也经 常会有各种故障发生,因此,探讨电力电缆故障原因与检测技术的应用情况,对 于保障电力电缆工作性能的稳定是十分必要的。 1研究电力电缆诊断检测技术应用的现实意义 为了保证电力电缆的可靠、安全运行,时刻掌握电力电缆运行状态至关重要,结合电缆的运行特点,妥善控制器运行温度,保证电力电缆的运行效率得到更好 提高。通过妥善运用电力电缆诊断检测技术,能够帮助检测人员更好的了解电力 线路绝缘状态的运行情况,针对电力电缆线路运行过程之中容易出现故障的部位,进行准确定位,保证电力电缆线路运行中出现的故障问题得到更好处理。 与常规的架空线输电方式不同,电力电缆输电主要应用在不宜或者不能够使 用架空线的场所,如城市中心供电与跨海岸输电等等。由于城市化发展水平的日 益提高,电力电缆输电蓬勃发展,现已成为电力网络传输电能的主要形式。在直 流电输电领域之中,电力电缆输电优势更为显著。通过研究电力电缆诊断检测技 术的应用要点,能够保证电力电缆运行更为可靠,不断降低电力电缆出现运行故 障的概率。 2常见电力电缆故障原因以及特征 2.1机械损伤 (1)在一些市政工程、交通运输工程建设过程中,由于没有全面了解地下电力电缆铺设情况而导致电力电缆误伤。(2)电力电缆在施工作业过程中如果机 械牵引力过大会导致电力电缆出现拉伤现象,而过度的弯曲也会导致电力电缆损 坏绝缘层和屏蔽层。在电力电缆施工过程中如果存在野蛮施工现象,同样会损伤 电缆绝缘层和保护层。(3)电力电缆中间或者端头位置如果出现绝缘胶膨胀, 会导致电缆外壳或者周边电缆保护套出现胀裂现象;电力电缆的管口以及支架的 位置电缆外皮也经常会因为自由行程而导致擦伤;如果电力电缆在运行过程中出 现了土体沉降或者滑坡等现象,会导致电力电缆在拉力作用下出现断裂。 2.2绝缘损坏 绝缘损坏主要指电力电缆中间以及端头位置密封工艺不合理或者电力电缆出 现密封失效。电力电缆制造过程不符合相关标准规定要求,会导致电缆外部的保 护层出现裂纹;如果电力电缆实际选型不合理,会导致电缆长期处于高负荷运行 状态,从而导致其提前老化;如果电缆在运行过程中周边环境存在能够与电缆绝

电线电缆导体直流电阻测量误差分析

电线电缆导体直流电阻测量误差分析 在诸多电线电缆质量检验项目中,电线电缆导体电阻是重要的检测项目之一。实际检测过程中往往由于忽略某些因素,导致测量结果的偏离。对于电线电缆产品,根据GB/T3048.4-2007标准要求和实际检测工作,对电线电缆中电线电缆导体电阻项目的原理、实验过程、影响实验结果的因素及检测中应注意的事项进行分析。文章通过多年检测实践,分析对测量结果产生影响的因素并给出了相应的解决办法,与大家共同探讨。 标签:电线电缆;直流电阻;横截面积;电流;温度 1 概述 电线电缆直流电阻测量的依据是GB/T3048.4-2007《电线电缆电性能实验方法第4部分:导体直流电阻试验》。试验的方法如下:从被测电线电缆上按要求切取不小于1m的试样,去除试验导体外表的绝缘、护套或其他覆盖物,露出导体。在试样接入测量系统前,清洁其连接部位的导体表面,去除附着物和油污,连接处表面的氧化层尽可能除尽后,将导体试样固定在专用四端卡具上,双臂电桥的四个测试端与导体两端可靠连接后闭合直流电源开关,仪器完成预热后开始测量。调节电桥平衡。读取电桥读数,记录至少四位有效数字,关闭试验电源后准确测量卡具间被测导线的实际长度,记录环境温度,将测量结果换算到20℃时1km导体长度的电阻数值作为最终的报出值。 2 系统误差 一般情况下,我们检测的样品的电线电缆导体电阻都远小于1Ω/m,通常采用双臂电桥和专用的四端测量卡具,再配合试样、标准电阻、检流计、变阻器、电流表、连接导线、开关、温度计等实验器材,组合成一个测量系统进行检测。不难看出,检测设备的精度、检定及校准是造成系统误差的主要原因。如何减少系统误差呢?我们应定期对检测设备进行检定和校准,以保证所有设备的精度都能满足检测的需要。使用双臂电桥时,标准电阻和试样间的导线电阻应明显小于标准电阻和试样的电阻。否则应采取适当的方法予以补偿,如导线补偿,使线圈和引线阻值比例达到足够平衡。对卡具的要求是每个电位接点与相应的电流接点之间的距离应不小于试样截面周长的1.5倍。 3 过程误差 过程误差我们也可以称之为方法误差,就是在整个测量过程中,由于方法使用不当,或测量程序出错为导致的误差。标准中,对电线电缆导体电阻的检测做出了明确的规定。(1)取样。试样的制备很重要,涉及到试样表面处理、电流引入方式、卡具型式等。基本技术路线是减小绞合导体中因单线表面状况接触电阻的影响,使得每根单线中的分布电流均匀,以提高测量准确度。截取试样的长度应不小于1m,一边卡具之间的距离是1m,两个卡具20cm,所以我们一般取样

变压器直流电阻测试的方法

https://www.360docs.net/doc/0f3029605.html,/ 变压器直流电阻测试的方法 变压器绕组直流电阻的测量是变压器试验中既简便又重要的一个试验项目。测量变压器绕组连同套管的直流电阻,可以检查出绕组内部导线接头的焊接质量、引线与绕组接头的焊接质量、电压分接开关各个分接位置及引线与套管的接触是否良好、并联支路连接是否正确、变压器载流部分有无短路情况以及绕组有无短路现象;另外,在变压器短路试验和温升试验中,为提供准确的绕组电阻值,也需要进行直流电阻的测量。因此,绕组直流电阻的测量是变压器是变压器试验的主要项目。交接试验标准规定为必做项目;预防性试验规程规定,变压器运行1-3年后、无励磁调压变压器变换分接位置后、有载调压变压器分接开关检修后和大修后及必要时,都必须做此项试验。 一般系统的测量方法有如下三种。 第一种为电流电压法,其原理是在被测绕组中,通以适当大小的直流电流,然后测量绕组中的电流和绕组两端的电压降,再根据欧姆定律,即可算出绕组的直流电阻。测量时,所用仪表应不低于0.5级,电流表应选用内阻较小的,电压表应选用较高内阻的表,引线要有足够的截面。测量电感量较大的绕组时,还需要有足够的充电时间。绕组通过的电流应限制在绕组额定电流的百分之二十以内。该方法的主要缺点是需要较长的时间才能测出准确值。因为每相绕组可以等效成电阻和电感的串联电路,在接通电源后,电感中电流从零逐渐增加到电源电压,然后逐渐下降到稳态值,需要一个过渡过程,过渡时间的长短取决于电路的时间常数t=L/R。由于变压器铁芯的磁导率很高,L值大大增加,而线圈的直流电阻数值又很小,因此时间常数t值很大。一般来说,电流表和电压表内阻对测量结果产生一定的影响,而且经过时间大约T=3~5倍时间常数,电流才能达到稳态值,即需要几十分钟甚至更长时间,才能测出直流电阻的准确值。

铝合金电缆与铜电缆的差别

铝合金与铜芯电缆的对比 1.铝合金电缆与铜芯电缆的性能比较 1.1.1导电能力 首先可以肯定的说,铝和铜一样在导电方面是性价比高的金属,在北美地区的电力传输链中,高压架空线电力传输电缆100%为铝导体,中压传输电缆99%采用铝导体。 由于导体的电导率与导体截面积成反比,在相同载流量下,相同尺寸的铝合金电缆的重量仅为铜电缆的一半,如果按铜的电导率是100%计算,铝合金的电导率约为61.2%,铝合金的比重为2.7t/m3,铜的比重为8.9t/m3。线缆114商城(https://www.360docs.net/doc/0f3029605.html,)是一家集研发生产销售的电线电缆直销型在线采购平台,倡导:“开放透明、童叟无欺,工厂直销到用户、没有中间商环节”的直销原则。线缆114商城致力于为中国千万家企业、个人提供货真价实的电缆产品,贴身的技术增值服务,安全快捷的在线交易,帮助企业提高采购效率,降低企业的制造成本,从而提高企业的综合竞争力。 则(8.9/2.7)×(0.612/1)=2,即2㎏的铜的电阻与1㎏铝合金的电阻相当,因此铝合金电缆的截面积是铜电缆的1.5倍时其电气性能相同,又由于铝合金电缆采用特殊的紧压工艺,经过逐层紧压后,导体的填充系数达到95%以上,而铜芯电缆经过一次紧压成型,填充系数一般仅能达到80%,所以其外径仅比铜电缆大1~18㎜,由此可知铝合金电缆在略增大外径的前提下电导率已经完全达到铜芯电缆的导电能力,具体比较结果如下表所示。 铝合金电缆与铜芯电缆的重量比较 铝合金电缆(㎏/㎞)铜芯电缆(㎏/㎞) 电缆规格重量重量扇形缆型号YJHLV22 4×25 686 1076 YJV22-4×16 YJHLV22 4×35 854 1519 YJV22-4×25 YJHLV22 4×50 1151 1957 YJV22-4×35 YJHLV22 4×70 1503 2759 YJV22-4×50

相关文档
最新文档