SG3525逆变器电路图

SG3525逆变器电路图
SG3525逆变器电路图

SG3525逆变器电路图

在中小容量变频电源的设计中,采用自关断器件的脉宽调制系统比非自关断器件的相控系统具有更多的优越性。第一代脉宽调制器SG3525A应用于交流电机调速、UPS电源以及其他需要PWM脉冲的领域。其外围电路可对串联谐振式逆变电源进行多功能控制,实现H 桥式IGBT脉宽调制PWM信号的生成和逆变电源的保护功能,以及变频电源工作过程中谐振频率的跟踪控制。

控制电路(图4.1)的核心为PWM控制器SG3525A,用SG3525A发出的PWM脉冲,来控制逆变器VT1、 VT4和VT2、VT3轮流导通,从而控制逆变电压和逆变频率。图4.1中SG3525A的6脚连接电阻R,改变R的大小,这样就可调控SG3525输出的PWM脉冲频率。同时通过调节SG3525的9脚电压来改变输出脉宽。3525逆变器电路图

反馈电路如上图4.1所示,当电流互感器从负载端感应出交流电流,通过桥式整流器把他转化为直流电,在滑动变阻器PR2上产生电压。由滑动端输出的信号接到SG3525A的10脚上,当脚10电压大于0. 7V时,芯片将进行限流操作,当脚10电压超过1.4V时,将使PWM锁存器关断,直至下一个时钟周期才能够恢复。

以下分别独立介绍感应加热电源控制电路各个组成部分的基本原理、功能及参数计算。

由SG3525组成的300W正弦波逆变电路图:

逆变器自己制作过程大全

通用纯正弦波逆变器制作 概述 本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。 该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。使用方便,并且本逆变器空载小,效率高,节能环保。 设计目标 1、PCB板对12V、24V、36V、48V低压直流输入通用; 2、制作样机在12V输入时可长时间带载1000W; 3、12V输入时最高效率大于90%; 4、短路保护灵敏,可长时间短路输出而不损坏机器。 逆变器主要分为设计、制作、调试、总结四部分。下面一部分一部分的展现。 第一部分设计 1.1 前级DC-DC驱动原理图 DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。其外围电路按照pdf里面的典型应用搭起来就OK。震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。不过频率低,不利于器件的小型化,高压直流纹波稍大些。 电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。保护电路均是比较器搭建的常规电路。DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。如图1.1所示,是DC-DC驱动电路原理图。

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

逆变器原理及电路图

逆变器原理及电路图 2009-09-10 21:52 场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 [img]https://www.360docs.net/doc/053185253.html,/UploadFiles/200942618167800.jpg[/img] 1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。 [img]https://www.360docs.net/doc/053185253.html,/UploadFiles/2009426181249965.jpg[/img] 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。

逆变器的原理图

当前位置:首页 > 资料下载 > 逆变器的原理图 逆变器的原理图 https://www.360docs.net/doc/053185253.html, 2009-09-04 10:38 来源:网络 【免责声明】本站部分文章来源于网络,其版权归原作者所有,本站搜集整理仅供网友学习参考之用。如侵犯到您的权益,请联系我们。 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变电源产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变电源的输出功率为70W-150W,逆变电源电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变电源电路原理图见图1。 车载逆变电源的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V 左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交

流电。 1.车载逆变电源电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz 整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为 220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变电源的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。

逆变器电路图

逆变器电路图 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。 电容器 C1、C2用涤纶电容,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。变压器B的绕制请参考逆变器的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。功率管要加适当的散热片,例如用100*100*3MM铝板散热。如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。 晶体管的选择:考虑到安全因素,要具有一定的安全系素。经验资料如下: 直流电源电压:晶体管集射极耐压BV CEO 6~8V≥20~30V 12~14V≥60~80V 24~28V≥80~100V 计算晶体管集电极电流:I CM(A)=输出功率P(W)÷ 输入电压V(V)× 效率。

式中输入电压即电源电压。效率与选择的电路有关,一般在百分之60~80之间。 铁芯截面积:S(平方厘米)=k×变压器额定功率的平方根,k的选择见下表 P(VA) 5-10 10-50 50-100 100-500 500-1000 k 2-1.75 1.75-1.5 1.5-1.35 1.35-1.25 1.25-1 变压器铁芯的选择:业余制作对变压器铁心要求并不严格。不过硅钢片最好选用薄而质地脆的,或者采用铁氧体磁心。漆包线用高强度的,绕线需用绕线机紧密平绕。 安插硅钢片时要严格平整。初级绕组两端电压与铁心截面积和工作频率等参数的 关系可以用公式表示如下:V=4.44×10-8SKFBN 式中 S --- 铁心截面积(平方厘米); K --- 硅钢片间隙系数(0.9~0.95); F --- 逆变器工作频率(赫兹); B --- 饱和磁通密度(T); N --- 线圈的匝数(圈); V --- 初级绕组的电压(伏特)。 K的数值与硅钢片的厚度及片与片之间的间隙有关,铁心层迭越紧,K值越高 一般K取0.9即可。逆变器的工作频率,主要由所选择的铁心决定。采用硅钢片铁心,逆变器工作频率低于2KH Z。采用不同的铁氧体磁心,工作频率在2KH Z~40KH Z之 间。如果工作频率超出了磁心的固有频率,则高频损耗十分严重。饱和磁通密度

常用逆变电源电路图

常用逆变电源电路图 收藏此信息打印该信息添加:用户发布来源:未知 双端工作的方波逆变变压器的铁心面积乘积公式为 AeAc=Po(1+η)/(ηDKjfKeKcBm)(1) 式中:Ae(m2)为铁心横截面积; Ac(m2)为铁心的窗口面积; Po为变压器的输出功率; η为转换效率; δ为占空比; K是波形系数; j(A/m2)为导线的平均电流密度; f为逆变频率; Ke为铁心截面的有效系数; Kc为铁心的窗口利用系数; Bm为最大磁通量。 图3 变压器原边的开关管S1和S2各采用IRF32055只并联,之所以并联,主要是因为在逆变电源接入负载时,变压器原边的电流相对较大,并联可以分流,可有效地减少开关管的功耗,不至于造成损坏。

PWM控制电路芯片SG3524,是一种电压型开关电源集成控制器,具有输出限流,开关频率可调,误差放大,脉宽调制比较器和关断电路,其产生PWM方波所需的外围线路很简单。当脚11与脚14并联使用时,输出脉冲的占空比为0~95%,脉冲频率等于振荡器频率的1/ 2。当脚10(关断端)加高电平时,可实现对输出脉冲的封锁,与外电路适当连接,则可以实现欠压、过流保护功能。利用SG3524内部自带的运算放大器调节其输出的驱动波形的占空比D,使D>50%,然后经过CD4011反向后,得到对管的驱动波形的D<50%,这样可以保证两组开关管驱动时,有共同的死区时间。 3DC/AC变换 如图3所示,DC/AC变换采用单相输出,全桥逆变形式,为减小逆变电源的体积,降低成本,输出使用工频LC滤波。由4个IRF740构成桥式逆变电路,IRF740最高耐压4 00V,电流10A,功耗125W,利用半桥驱动器IR2110提供驱动信号,其输入波形由SG3

正弦波逆变器电路图及制作过程

正弦波逆变器电路图及制作过程 1000W正弦波逆变器制作过程详解 作者老寿电路图献上! ! 这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W, 整体结构是学习了钟工的3000W机器具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC 升压电路的驱动板和S P W M的驱动板直插在功率主板上。

板 因为电流较大,所以用了三对6平方的软线直接焊在功率

上 如图: 在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个E C35的电感上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,P C B 下面直接搭通。

上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。 今天把S P W M驱动板插上去了,一开机,保护电路竟然误动作,蜂鸣器嘟嘟做响,后来请教了张工后,改了几个元件的数值,问题就解决了。开机成功了(这次居然没有炸管子),正弦波波形良好,我用了二个200W一个150W的灯泡做负载,电参仪上显示输出功率为617W, 算了一下,这时的效率大约在91.5-92%左右(因为空载电流稍大,有点影响效率,可惜) 本来准备明天继续加大负载到1000W左右,可是发现了一个问题,稳压部分不工作,调电位器没有反应,一查,发现是那个漂亮的取样变压器竟然没有输出,郁闷啊, 因为要换变压器,就必须把整机全部拆下来,二个小时还不一定弄得好,烦啊! 下面是几张照片: 上图是整机工作时的情形

自制家用简易逆变器电路图

自制家用简易逆变器电路图 市售的逆变电源大多采用UPS?UPK等逆变模块,输入直流电源多为12V,整体价格比较高,而且输出波形均为方波?本文介绍的逆变电源输入电源为6V,采用易购的时基电路NE555作为振荡源,输出波形是近似的正弦波,可满足电视机或白炽灯或电风扇等电器在停电时继续工作的需要? 工作原理 电路见图1?当把开关K1打向“逆变”位置时,BG1导通,由时基电路NE555及外围元件组成的无稳态多谐振荡器开始振荡,其充?放电时间常数可调节?如果选择R1=R2,则输出脉冲的占空比为50%,该多谐振荡器的振荡频率f=1.443/(R1+R2+2W)C2,图中的元件数值可使振荡频率调在50Hz,振荡脉冲由役脚输出,波形为方波,该方波经C4耦合,R3?C5积分变为三角波,这个三角波又经R4?C6,第二次积分和R5?C7第三次积分,变为近似的正弦波,通过C8耦合到BG2,由BG2放大后在B1的L2线圈上输出?当L2上端电压为正时,D4截止,D3导通,使BG4?BG6截止,BG3?BG5导通,电流由电瓶正极→B2的L1→BG5→电瓶负极;当L2上端电压为负时,D3截止,D4导通,使BG3?BG5截止,BG4?BG6导通,电流由电瓶正极→B2的L2→BG6→电瓶负极?BG5?BG6交替导通?截止,经变压器B2合成正负对称的正弦波,并由L3升压送至逆变输出插座CZ1?CZ2,供用电器使用,同时LED1(红色)亮,指示逆变状态? 当开关打向“充电”位置时,市电经变压器B2降压?D5?D6全波整流?R11限流后对电瓶充电,同时LED2(绿色)亮,指示充电状态? 元件选择和制作 本电路中元器件均为易购的常用元器件,按图中所示数值选用即可?B1用收音机输出变压器,应选用铁心大,线径粗的那一类,把原来接喇叭的这一组线圈接在L2位置,BG3?BG4分别用两只9013和9012并联组成,如图2和图3所示?BG5? BG6均由四只3DD15并联组成,如图4所示?BG5? BG6的散热器面积不应小于600cm2,B2逆变变压器可选用成品?整机用印刷线路板可自行设计制作?电瓶选用容量大于150Ah的电瓶? 本逆变器的调试只需调W,使逆变电压频率为50Hz即可?

最常见的车载逆变器电路原理图

最常见的车载逆变器电路原理图见图1。车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz 工频交流电的转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携式电器使

用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA 的驱动能力。 TL494芯片的内部电路 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。 IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。 IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷

逆变器电路图及原理讲解

逆变器电路图及原理讲解 逆变器是一种把直流电能(电池、蓄电瓶)转变成交流电(一般为220伏50HZ正弦波或方波)的装置。我们常见的应急电源,一般是把直流电瓶逆变成220V交流的。简单来讲,逆变器就是一种将直流电转化为交流电的装置。 不管是在偏远家村,或是野外需要或是停电应急,逆变器都是一个非常不错的选择。比较常见的是机房会用到的UPS电源,在突然停电时,UPS可将蓄电池里的直流电逆变为交流供计算机使用,从而防止因突然断电而导致的数据丢失问题。 本文将介绍两种比较简单的逆变器电路图。并附以简单的逆变器电路图说明,有兴趣的朋友可以研究下,自已动手做一个逆变器也确实是一件非常有成就感的事。以一就是一张较常见的逆变器电路图。 以上是一款较为容易制作的逆变器电路图,可以将12V直流电源电压逆变为220V市电电压,电路由BG2和BG3组成的多谐振荡器推动,再通过BG1和BG4驱动,来控制BG6和BG7工作。其中振荡电路由BG5与DW组的稳压电源供电,这样可以使输出频率比较稳定。在制作时,变压器可选有常用双12V输出的市电变压器。可根据需要,选择适当的12V蓄电池容量。 以下是一款高效率的正弦波逆变器电器图,该电路用12V电池供电。先用一片倍压模块倍压为运放供电。可选取ICL7660或MAX1044。运放1产生50Hz正弦波作为基准信号。运放2作为反相器。运放3和运放4作为迟滞比较器。其实运放3和开关管1构成的是比例开关电源。运放4和开关管2也同样。它的开关频率不稳定。在运放1输出信号为正相时,运

放3和开关管工作。这时运放2输出的是负相。这时运放4的正输入端的电位(恒为0)总比负输入端的电位高,所以运放4输出恒为1,开关管关闭。在运放1输出为负相时,则相反。这就实现了两开关管交替工作。 当基准信号比检测信号,也即是运放3或4的负输入端的信号比正输入端的信号高一微小值时,比较器输出0,开关管开,随之检测信号迅速提高,当检测信号比基准信号高一微小值时,比较器输出1,开关管关。这里要注意的是,在电路翻转时比较器有个正反馈过程,这是迟滞比较器的特点。比如说在基准信号比检测信号低的前提下,随着它们的差值不断地靠近,在它们相等的瞬间,基准信号马上比检测信号高出一定值。这个“一定值”影响开关频率。它越大频率越低。这里选它为0.1~0.2V。 C3,C4的作用是为了让频率较高的开关续流电流通过,而对频率较低的50Hz信号产生较大的阻抗。C5由公式:50=算出。L一般为70H,制作时最好测一下。这样C为0.15μ左右。R4与R3的比值要严格等于0.5,大了波形失真明显,小了不能起振,但是宁可大一些,不可小。开关管的最大电流为:I==25A。 现有的逆变器,有方波输出和正弦波输出两种。方波输出的逆变器效率高,对于采用正弦波电源设计的电器来说,除少数电器不适用外大多数电器都可适用,正弦波输出的逆变器就没有这方面的缺点,却存在效率低的缺点,如何选择这就需要根据自己的需求了

逆变器电路图及原理简介

逆变器电路图及原理简介 索瑞德逆变器工程师行业技术知识解析:逆变器是一种把直流电能(电池、蓄电池)转变成交流电(一般为220伏50HZ正弦波或方波)的装置。我们常见的应急电源,一般都是把直流电瓶逆变成220V交流的。简单来讲,逆变器就是一种将直流电转化为交流电的装置。 不管是在偏远山村,或是野外需要或是停电应急,逆变器都是一个非常不错的选择。比较常见的是机房会用到的UPS电源,在突然停电时,UPS可将蓄电池里德直流电逆变成交流供计算机使用,从而防止因突然断电而导致的数据丢失问题。能够不间断地提供电源,具有一定的安全可靠性、稳定性。逆变器还可以与发电机配套使用,能有效地节约燃料、减少噪音,在风能、太阳能领域,逆变器更是必不可少。小型逆变器还可利用汽车、轮船、便携供电设备在野外提供交流电源。本文将介绍两种比较简单的逆变器电路图。 家用逆变电源电路图 这种设计,材料易取,输出功率150W,本电路设计频率为300HZ左右,目的是缩小逆变变压器的体积、重量、输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。这款逆变器较为容易制作,可以将12V直流电源电压逆变为220V市电电压,电路由BG2 和BG3组成的多谐振荡器推动,再通过BG1和BG2驱动,来控制BG6和BG7工作。其中振荡电路由BG5与DW组的稳压电源

供电,这样可以使输出频率比较稳定。在制作时,变压器可选有常用双12V输出的市电变压器。可根据需要,选择适当的12V蓄电池容量。 高效率的正弦波逆变器电器图 该电路用12V电池供电。先用一片倍压模块倍压为运放供电。可选取ICL7660或MAX1044。运放1产生50Hz正弦波作为基准信号。运放2 作为反相器。运放3和运放4作为迟滞比较器。其实运放3和开关管1构成的是比例开关电源。运放4和开关管2也同样。它的开关频率不稳定。在运放1输出信号为正相时,运放3和开关管工作。这时运放2输出的是负相。这时运放4的正输入端的电位(恒为0)总比负输入端的电位高,所以运放4输出恒为1,开关管关闭。在运放1输出为负相时,则相反。这就实现了两开关管交替工作。 当基准信号比检测信号,也即是运放3或4的负输入端的信号比正输入端的信号高一微小值时,比较器输出0,开关管开,随之检测信号迅速提高,当检测信号比基准信号高一微小值时,比较器输出1,开关管关。这里要注意的是,在电路翻转时比较器有个正反馈过程,这是迟滞比较器的特点。比如说在基准信号比检测信号低的前提下,随着它们的差值不断地靠近,在它们相等的瞬间,基准信号马上比检测信号高出一定值。这个“一定值”影响开关频率。它越大频率越低。这里选它为0.1~0.2V。

简单逆变器的电路图

简单逆变器的电路图 下图是一个简单逆变器的电路图.其特点是共集电极电路,可将三极管的集电极直接安装在机壳上,便于散热.不易损坏三极管.,我的简单逆变器用了十多年了,没出现过一次烧管的事.现给大家介绍一下制作方法. 变压器的制作:可根据自己的需要选用一个机床用的控制变压器.我用的是100W的控制变压器.将变压器铁芯拆开,再将次级线圈拆下来.并记录下每伏圈数.然后重新绕次级线圈.用1.35mm的漆包线,先绕一个22V的线圈,在中间抽头,这就是主线圈.再用0.47的漆包线线绕两个4V的线圈为反馈线圈,线圈的层间用较厚的牛皮纸绝缘.线圈绕好后插上铁芯.将两个4V次级分别和主线圈连在一起,注意头尾的别接反了.可通电测电压.如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的. 可换一下接头.这样变压器就做好了. 电阻的选择.两个与4V线圈串联的电阻可用电阻丝制作.可根据输出功率大小选择电阻的大小,一般的几个欧姆.输出功率大时,电阻越小,偏流电阻用1W的300欧姆的电阻.不接这个电阻也能工作.但由 于管子的参数不一致有时不起振,最好接一个. 三极管的选择:每边用三只3DD15并联.共用六只管子.电路连接好后检查无错误,就可以通电调整了. 接上蓄电池,找一个100W的白炽灯做负载.打开开关,灯泡应该能正常发光.如果不能正常发光,可减小基极的电阻.直到能正常发光为止.再接上彩电看能否正常启动.不能正常启动也是减小基极的电阻. 调整完毕后就可以正常使用了. 我的逆变器和充电器做在了一个机壳内,输出并联在了家里的交流电源上.并安装上了继电器,停电时可自动切换为逆变器供电,并切断外电路,来电时自动接上交流电切断逆变器供电并转入充电状态.如果没有停电来电状态指示灯的话,停电来电时无感觉.

逆变器电路图

元件BOM表: P1 = 250K R1 = 4.7K R2 = 4.7K R3 = 0.1R-5W R4 = 0.1R-5W R5 = 0.1R-5W R6 = 0.1R-5W C1 = 0.022uF C2 = 220uF-25V D1 = BY127 D2 = 9.1V Zener Q1 = TIP122 Q2 = TIP122 Q3 = 2N3055 Q4 = 2N3055 Q5 = 2N3055 Q6 = 2N3055 F1 = 10A Fuse IC1 = CD4047 T1 = 12-0-12V Transformr Connected in Reverse

元件BOM表: P1-P2 = 47K R1-R2 = 1K R3-R4 = 270R R5-R6 = 100R/1W R7-R8 = 22R/5W C1-C2 = 0.47uF Q1-Q2 = BC547 Q3-Q4 = BC558 Q5-Q6 = BD140 Q7-Q8 = 2N3055 SW1 = On-Off Switch T1 = 230V AC Primary 12-0-12V 4.5A Secondary Transformer B1 = 12V 7Ah

材料BOM表: R1 = 18k? R2 = 3k3 R3 = 1k R4,R5 = 1k?5 R6 = VDR S10K250 (or S07K250) P1 = 100 k potentiometer C1 = 330nF C2 = 1000 μF 25V T1,T2 = MJ3001 IC1 = 555 IC2 = 4013 LA1 = neon light 230 V F1 = fuse, 5A TR1 = mains transformer, 2x9V 40VA (see text) 4 solder pins

正弦波逆变器原理图

正弦波逆变器原理图,有方波输出和正弦波输出的。方波输出的逆变器效率高,但对于都是为正弦波电源设计的电器来说,使用总是不放心,虽然可以适用于许多电器,但部分电器就不适用,或用起来电器的指标会变化。正弦波输出的逆变器就没有这方面的缺点,却存在效率低的缺点。为此笔者设计了一款高效率正弦波逆变器,其电路如图1。 该电路用12V电池供电。先用一片倍压模块倍压为运放供电。可选取ICL7660或 MAX1044。运放1产生50Hz正弦波作为基准信号。运放2作为反相器。运放3和运放4作为迟滞 比较器。其实运放3和开关管1构成的是比例开关电源。运放4和开关管2也同样。它的开关频 率不稳定。在运放1输出信号为正相时,运放3和开关管工作。这时运放2输出的是负相。这时 运放4的正输入端的电位(恒为0)总比负输入端的电位高,所以运放4输出恒为1,开关管关 闭。在运放1输出为负相时,则相反。这就实现了两开关管交替工作。 下面论述一下开关管是怎么工作的。当基准信号比检测信号,也即是运放3或4的负 输入端的信号比正输入端的信号高一微小值时,比较器输出0,开关管开,随之检测信号迅速提 高,当检测信号比基准信号高一微小值时,比较器输出1,开关管关。这里要注意的是,在电路 翻转时比较器有个正反馈过程,这是迟滞比较器的特点。比如说在基准信号比检测信号低的前提 下,随着它们的差值不断地靠近,在它们相等的瞬间,基准信号马上比检测信号高出一定值。这 个“一定值”影响开关频率。它越大频率越低。这里选它为0.1~0.2V。 C3,C4的作用是为了让频率较高的开关续流电流通过,而对频率较低的50Hz信号产 生较大的阻抗。C5由公式:50= 算出。L一般为70H,制作时最好测一下。这样C为0.15μ

简单实用的三极管逆变器电路设计

简单实用的三极管逆变器电路设计 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。 本电路设计频率为300Hz 左右,目的是缩小逆变变压器的体积、重量。输出波 形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关 电源的家用电器等其他方面。 电容器C1、C2 用涤纶电容,三极管BG1-BG5 可以用9013:40V 0.1A 0.5W;BG6-BG7 可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。先不接功率管,测A 点、B 点对地的电压,调整R1 或R2 使A、B 两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。安装时要注意下列事项: BG6、BG7 的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要 用直径2.5MM 以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量 12AH 以上。功率管要加适当的散热片,例如用100*100*3MM 铝板散热。如 果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。 逆变器的设计计算方法 晶体管的选择:考虑到安全因素,要具有一定的安全系素。经验资料如下: 直流电源电压:晶体管集射极耐压BVCEO 6~8V ≥20~30V 12~14V ≥60~80V 24~28V ≥80~100V 计算晶体管集电极电流:ICM(A)=输出功率P(W)÷ 输入电压V(V)乘 以效率。式中输入电压即电源电压。效率与选择的电路有关,一般在百分之60~80 之间。铁芯截面积:S(平方厘米)=k 乘以变压器额定功率的平方根,

几款简单逆变器电路

6V逆变为220V逆变电源电路图 一、原理介绍: V,变压器T的N1、N2绕组和C构成变压器耦合LC振荡电路。电位器RP和电阻R为振荡管提供偏置电流。 二、元器件选择V选用3DD59A,R用1/4W的普通电阻,C选用0.22μF/50V,变压器需自制,N1、N2绕组用?0.9mm的漆包线,N3 绕组用?0.67mm的漆包线,绕组框架1mm厚的硬纸板制作,磁芯最好用铁氧体U型或环型,如没有,就用普通E型或F型硅钢 片代替,直流电流G用6V蓄电池。 三、安装要求只要元器件,安装无误,调试,通电后调节RP可以控制电路的输出功率。若电路不起振,是反馈绕组极性问题,用极性判别法进行判别或将绕组N1或N2反接后再试,图中有“·”标志的为同名端。当电网停电时,本电路输出频率为50Hz, 电压为220V±5%的交流电,对用电设备保证临时供电。 24V转600V逆变器电路图 本逆变器电源体积小,输出功率大,有300W左右的输出功率,本文由https://www.360docs.net/doc/053185253.html,整理提供,部分内容来源于网络,如有侵犯到 你的权利请与我们联系更正。 本文由https://www.360docs.net/doc/053185253.html,整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。

你的权利请与我们联系更正。》 在偏远家村,会经常有停电现象,有些大学到时候也会关灯,不过这没关第有了它,你就可以。<<版权声明:本文由 容源电子网(www_dziuu_com)整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 这是一款非常制作的逆变器,可以将12V电源电压变为220V市电,电路由BG2和BG3组成的多谐振荡器推动,再通过BG1和BG2驱动,来控制BG6和BG7工作。<<版权声明:本文由容源电子网(www_dziuu_com)整理提供,部分内容来源于 网络,如有侵犯到你的权利请与我们联系更正。》 其中振荡电路由BG5与DW组的稳压电源供电,这样可以使输出频率比较稳定。<<版权声明:本文由容源电子网(www_dziuu_com) 整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 在制作时,变压器可选有常用双12V输出的市电变压器。可根据,选择12V蓄电池的容量。<<版权声明:本文由容源电子网 (www_dziuu_com)整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》

400W大功率稳压逆变器电路图_原理图

400W大功率稳压逆变器电路图,原理图 利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。TL 494在该逆变器中的应用方法如下: 第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R 2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PW M电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为1 00Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。

第13、14、15脚其中14脚输出5V基准电压,使13脚有5 V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。在它激逆变器中输出超压的可能性几乎没有,故该电路中第16脚未用,由电阻R8接地。 该逆变器采用容量为400VA的工频变压器,铁芯采用45×60mm2的硅钢片。初级绕组采用直径1.2mm的漆包线,两根并绕2×20匝。次级取样绕组采用0.41mm漆包线绕36匝,中心抽头。次级绕组按230V计算,采用0.8mm漆包线绕40 0匝。开关管VT4~VT6可用60V/30A任何型号的N沟道M OS FET管代替。VD7可用1N400X系列普通二极管。该电路几乎不经调试即可正常工作。当C9正极端电压为12V时,R1可在3.6~4.7kΩ之间选择,或用10kΩ电位器调整,使输出电压为额定值。如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用24V,开关管可选用VDS为100V的大电流MOS FET管。需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。建议选用100V/32 A的2SK564,或选用三只2SK906并联应用。同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数

正弦波逆变器电路图及制作过程

1000W正弦波逆变器制作过程详解作者:老寿 电路图献上!!

这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图 也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。

: 因为电流较大,所以用了三对6平方的软线直接焊在功率板上

如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感 上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K 的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。

上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。

上图是DC-DC升压电路的驱动板,用的是KA3525。这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。 H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。

相关文档
最新文档