织布厂空调除尘AESA油水温控系统

织布厂空调除尘AESA油水温控系统
织布厂空调除尘AESA油水温控系统

织布厂空调除尘AESA油水温控系统

1.织布车间现状及原因分析

目前在国内很多织布厂夏天温度高,湿度高,布机发热量大,人员在车间的舒适度很低,因为害怕部件损耗大,效率太低等问题,布机速度不敢提升。

造成这些问题的源头来自织布机电动机,及整个传动系统的发热,这些传动系统需要使用润滑油,润滑油在传动部件上吸收大量的热,使其温度升高。高温的油同时也降低润滑效果,机器部件损耗升高,润滑油的使用寿命减少,若能承受高温可能需要更贵的油,因此造成成本上升;高温的油使整台布机尤其是传动部分高温,经纱在很接近布机传动部件上相对湿度剧降,经纱的失水率升高,强度降低,从而导致布机效率下降,车速无法提高;同时高温油让整个机架温度升高;它的热经过辐射及对流传给纬纱,传给人员及周围的空气,从而造成布机的纬纱断头率升高,人员舒适度下降,同时也给空调系统增加负荷。

以我司其中一布机车间为例,该车间总面积3280平方米,净高4米,现有154台喷气织机,车间计算冷负荷为1050kw,原空调设计了一套空调室。原设计就存在温度高,能耗大,温湿度调节困难等问题。

2. 原空调设计方式及其特点

2.1空调方式

与目前大多数布机车间的设计方式一样,采用上送下回的气流组织形式,同时采用大小环境的送风方式,空调室具体配置如下:

1). 三套内吸式转鼓处理车间地回风;

2). 四台轴流回风风机;

3). 两套喷淋室对新回风进行降温加湿的处理;

4). 四台轴流送风风机,大小环境各两台;

5). 两台溴化锂制冷机。

2.2空调设计优缺点

优点:空调室换气次数大,车间洁净度较高。

换气次数=430,000/3280/4=32.8 次,布机车间设计标准为:20-30次。

缺点:为满足车间巨大的冷负荷要求(1050kw),只能加大送风量,喷淋室的喷水量,造成空调室运行成本高。

3. 改造方案

通过上面的分析我们知道车间巨大的冷负荷主要来自布机的主电机及传动系统,而传动系统大部分的发热都被传动系统中所用的润滑油吸收,最后由润滑油散发到整个车间,于是我们设想能否直接把润滑油中的热量直接带到室外的大气中呢?从而降低空调室送风量和喷水量,减少制冷量的供应,最终降低空调室运行成本。

3.1 AESA油水温控系统的技术原理及应用

如何解决织布车间机器发热量大的现状?正确控制油温是最有效且最简单的方法;正确控制油温就是通过水把油的热直接带到室外的大气中去,而不是通过车间的空气来传递这些热源。举个例子,在相同的温差下,每公斤水温度升高1度,可以带走4.2KJ的热。而每公斤空气温度升高1度仅带走约1KJ的热量。1KG 的水只有1L体积,而1KG的空气约有1000L体积,大于水约1000倍。水的热容量远大于空气的热容量,所以用水把热带出车间远比空气容易的多。从而可以降低空调室送风量,喷淋水量以及冷冻水的供应量。

整个油水温控系统包括蒸发式降温水塔,循环水泵,热交换器,及管道系统。首先我们要做的是把油和水经过热交换器进行热交换,热交换器一边走水,另一边走油,油的热量通过热交器传给水,然后通过水输送到室外去。带热的水达到室外后要让其降温,最好的方式是用蒸发式热交换进行(即蒸发式降温水塔),让一部分的水蒸发,从而吸收大量的热,让水降温再回到车间去。

3.2 AESA油水温控系统的影响及效果举例

在夏季(6月至9月)对其154台布机的油水温控系统进行测试,在154台布机中,随即抽10台测得热交换器进水平均值30.9度,出水平均值33.6度,流量平均值6.5L/min,当时布机平均转速883转,油温33度,布机效率93%,通过计算每台机器直接散发到室外的热 6.5/60*(33.6-30.9)*4.2=1.23千瓦,154台布机总共约189.4千瓦,而当时油水温控系统能耗为12.3千瓦。

按当时的空调系统的能效比COP为3.9计算,如果要将189.4KW的热带到室外,系统消耗的电力为:189.4KW/3.9=48.6KW。

而AESA油水温控只需要12.3KW就能完成任务,所以空调系统直接节约电量为:48.6-12.3=36.3KW,

而在6月至9月的四个月中,安装油水温控系统之前,需要开两套溴化锂制冷机,四个月的蒸汽消耗总量为5682吨;安装油水温控系统后,同样对这四个月进行统计,2009年的蒸汽消耗量为3111吨,而2010年为2794吨,此时只需要开一台制冷机就能满足车间温湿度要求。

综上所述,织布厂采用油水温控系统的节能效果非常显著,具体表现在:1.大大降低系统能耗:

1). 空调系统直接节电:48.6-12.3=36.3kw;

2). 制冷系统蒸汽消耗量约为原来的一半;

3). 制冷机由之前的开两台变成现在开一台,节省制冷系统能耗为109kw

由此可得系统共节省能耗为:36.3+109 =145.3 KW

按0.6元每度的电费计算全年共可节省电费:

145.3 x 24 x 365 = 1272828 ≈127 万元

2.对布机机台的影响:

织布机机台机架温度下降,辐射热及对流热都降低,解决了织布机局部区域温度高的问题,同时机器部件损耗率大大降低,采用油水温控系统前,100%的布机轴承都进行过更换,而采用该系统至今,还没有一台布机更换过轴承。3.对油的影响:

润滑油的性能提高,润滑油的寿命提高。

4.对经纱的影响

经纱失水率下降,强度提高,断头率下降,产品质量得到更好的保障。5.对车间舒适度的影响:

织布机马达的散热量减小,使得空调系统的负荷降低,送风量减少,降低空调和制冷系统能耗,同时车间温度更加均匀平稳,从而也提高工作人员的舒适度。

因此,AESA油水温控系统能大大改善织布车间的现状,提高布机速度,增加人员的舒适度,减少甚至停用制冷系统,减少地球温室效应的产生,是现代新型的纺织空调节能减排最有效的手段之一。

纺织厂空气调节答案

第一章 空气环境与人体健康和工艺生产的关系 一 问答题 1 答:扇扇子使身体旁边的空气流动速度加快,对流放热系数大,散发的热量就越多,使人的实感温度就越低。所以,夏天扇扇子会感到凉快。 2 答:在空气环境中影响人体散热的因素主要有温度、湿度和风速。温度高,人体散发的热量小于体内产生的热量,人就会感觉到热;湿度低,空气干燥,汗水容易蒸发,人的实感温度就低;风速大,对流放热系数大,散发热量多。 在纺织厂车间内危害人体健康的物质主要是粉尘。粉尘沾有大量细菌,易沾污皮肤而引起皮肤发炎。大量粉尘进入呼吸气管后,会刺激上呼吸道黏膜,引起鼻炎、咽喉炎;吸入肺部易引起尘肺症等疾病。 为了保证人们有足够的氧气量,“工业企业采暖通风和空气调节设计规范”规定:系统 的新风量应不小于总风量的10%;保证各房间每人每小时有不小于30m 3的新风量。人们长期 停留地点二氧化碳的最大允许浓度为1L/m 3,短期停留地点二氧化碳的最大允许浓度为 1L/m 3。 3 答:夏季细纱车间要求温度为30~32℃,相对湿度为55~60%;织造车间要求温度为32℃以下,相对湿度为68~80%,两车间相比较,细纱车间要求的温度比较高,但是相对温度比较低,即细纱车间相对干燥些。在夏季时,空气越干燥,则汗水越容易蒸发,实感温度就越低。所以,工人在细纱车间感觉较凉爽和舒适。 4 答:纺织厂络筒、穿筘、整理车间夏季的相对湿度高于冬季的相对湿度。 5 答:化纤或混纺品种与纯棉品种对温湿度要求是不同的。化纤或混纺品种中的合成纤维具有高电阻、吸湿性差的特点,易起静电,故抗静电剂在吸湿时随水份吸附在纤维表面,所以对车间温湿度的变化很敏感,即清棉车间的相对湿度要大,以后各道纺纱过程均以放湿为宜。至于织造车间主要应视浆料性质而定。 例如涤纶纺纱时,在夏季车间温度宜较棉纺织为低,在冬季车间温度与棉纺厂相类似。至于相对湿度,在纺部清棉车间相对湿度宜大,因涤纶清洁、除杂问题很少,而涤纶纤维极易产生静电,故应以减少静电为主。湿度大,有利于减少静电,纤维柔软,成卷情况良好,以后各道工序宜在逐步放湿状态下进行,工作才比较好做。 第二章 湿空气与水蒸气 一 填空题 9、水蒸气 粉尘2水蒸气数量 湿度3大 大4空气中存在的水蒸气分压力 同温度饱和状态下水蒸气分压力5热湿比线6显热 潜热7大 小8 0% 100% 9增加 减小 表面式蒸汽(或热水)加热器、电加热器 减小 增加 表面式冷却器 不变 直接喷雾10混合 加热 冷却 绝热加湿11值大小相等 方向相反12未饱和水状态区 湿蒸汽状态区 过热蒸汽状态区13未饱和水 饱和水 湿饱和蒸汽 干饱和蒸汽 过热蒸汽 二 名词解释 1、绝对湿度γq :1m 3湿空气中含有水蒸气的质量(以克计)称为绝对湿度。也就是湿空气中单位容积水蒸气的质量克数,可用下式表示:1000?=q q q V m γ 相对湿度Φ:空气的绝对湿度γq 和同温度饱和状态下的绝对湿度γq ,b 之比称为相对湿度,常用百分数表示:%100,?= b q q γγ?,也可理解为现在空气中存在的水蒸气分压力与同温度饱和状态下水蒸气分压力之比,即%100,?=b q q P P ? 2、含湿度d :内含1kg 干空气的湿空气中所含有水蒸气的质量(以克计),称为湿空气的

家用空调温度控制器的控制程序设计

《微机原理及接口技术》 课程设计说明书 课题:家用空调温度控制器的控制程序设计专业: 班级: 姓名: 学号: 指导老师:王亚林 2015年1月8 日

目录 第1章、设计任务与目标................................................................................ 错误!未定义书签。 设计课题:................................................................................................ 错误!未定义书签。 设计目的:................................................................................................ 错误!未定义书签。 设计任务:................................................................................................ 错误!未定义书签。 基本设计要求:............................................................................................................. 错误!未定义书签。 第2章、总体设计规划与方案论证 (6) 设计环节及进程安排 (6) 方案论证 (5) 第3章、总体软件设计说明及总流程图 (10) 总体软件设计说明 (10) 总流程图 (11) 第4章、系统资源分配说明 (13) 系统资源分配 (13) 系统内部单元分配表 (13) 硬件资源分配 (15) 数据定义说明 (16) 部分数据定义说明 (16) 第5章、局部程序设计说明 (17) 总初始化以及自检 主流程 按键音模块 (17) .2 单按键消抖模块 (17) PB按键功能模块 (18) 基本界面拆字模块 (19) 4*4矩阵键盘模块 (19) 模式显示模块 (20) 显示更新模块 (21) 室内温度AD转换模块 (21) 4*4矩阵键盘扫描子程序 (21) 整点报时模块 (23) 空调进程判断及显示模块 (23) 三分钟压缩机保护模块 (23) 风向摆动模块 (24) 驱动控制模块 (24) 定时开关机模块 (25) 第6章、系统功能与用户操作使用说明 (26)

空调控制系统

1总体方案设计 随着人们生活水平的提高,人们对空调的舒适性和空气品质的要求越来越高,分体式空调已不能满足人们的要求,户式中央空调得到了迅猛的发展。就室内居住环境而言,恒温环境并非是卫生和舒适的。因为除了温度外,还有湿度、空气流速、空气洁净度等诸多因素影响到舒适的程度。而传统的中央空调靠设置机械温控开关来实现房间的恒温控制。这种控制方法,一方面操作不方便;另一方面温度波动范围大,不但影响人的舒适感,而且会造成一定的能量损耗。采用单片机温度控制系统控制的户式中央空调系统,可以根据室内的环境因素,调节风机的转速,为人们创造一个舒适的室内环境,同时又节省电。 随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么单片机技术的出现则是给现代工业控制测控领域带来了一次新的革命。目前,单片机在工业控制系统诸多领域得到了极为广泛的应用。特别是其中的C51系列的单片机[3]的出现,具有更好的稳定性,更快和更准确的运算精度,推动了工业生产,影响着人们的工作和学习。而本次设计就是要通过以C51系列单片机为控制核心,实现空调机温度控制系统的设计。 1.1方案一 选用AT89C51单片机为中央处理器,通过温度传感器DS18B20对空气进行温度采集,将采集到的温度信号传输给单片机,由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温系统对空气进行处理,从而模拟实现空调温度控制单元的工作情况。在整个设计中,涉及到温度检测电路、驱动控制电路、显示电路、键盘电路以及电源的设计等电路。其中单片机的控制程序是起到各个电路之间的相互协调,控制各个电路正常工作的至关重要的作用。其方框图如下: 图1-1 方案一设计图框 该图控制简单,思路清晰,各单元模块的相互衔接较简单,同时成本低廉,用的各种器件都是常用器件,更具有使用性。 1.2方案二

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

空调温度自动控制器最终版

空调温度控制器 课程设计报告

目录 引言 (1) 第一章设计目的 (1) 第二章设计任务与要求 (2) 第三章方案设计与论证 (2) 1 方案一 (2) 2 方案二 (2) 3 方案比较 (3) 4 方案详细介绍 (3) 第四章电路工作原理及说明 (4) 1 温度信号采集模块工作原理 (4) 2温度信号处理与控制模块工作原理 (4) 1 LM324运算放大器功能介绍 (4) 2 LM324功能测试及信号处理 (5) 4 CD4011 芯片功能介绍 (7) 3 电机控制模块工作原理 (8) 第五章电路性能指标的测试 (9) 1 温度信号采集模块性能测试 (9) 2 双限比较器输出信号性能测试 (9) 第六章结论与体会 (10) 结论 (10) 体会 (11) 展望 (11) 第八章参考文献 (12) 附录Ⅰ元器件清单 (12) 附录Ⅱ整体电路原理图 (1)

引言 十九世纪末、二十世纪初,电子技术开始逐渐发展起来,并成为一项新兴技术。它在二十世纪发展最为迅速,应用最为广泛,并且成为了近代科学技术发展的一个重要标志。第一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。 随着科学技术的迅猛发展,电子控制电路在日常生活中有了更为广泛的应用,各种报警专用集成电路、语音/音效集成电路、传感器的不断推出,一些新颖实用的报警器、警示器电路已广泛应用于家庭生活、工农业生产、交通、机动车、通信和防盗、防灾等领域。 目前空调机已经广泛地应用于生产、生活中。而此类家电越来越趋于轻巧型。微型单片机系统以其体积小、性能价格比高,指令丰富、提供多种外围接口部件、控制灵活等优点,广泛应用于各种家电产品和工业控制系统中,在温度控制领域的应用也十分广泛。 随着能源的日趋减少,大气污染愈加严重,节能已是一个不容忽视的问题。众所周知,空调正朝着节能、舒适、静噪于一体的方向发展。鉴于这些方面的综合考虑,设计一种可以实现温度自动控的空调机,将会在节能方面有有新的突破,也必将会取代传统的靠人工实现的温度控制的空调机。通过巧妙的设计和安装可实现美观典雅和舒适卫生的和谐统一,是国际和国内的发展潮流。可以预料,下个世纪的节能空调将会以更快的步伐向前发展。其应用的范围将极为广阔,极大地方便了人们的工作和生活。可以说节能空调将是未来一种新的发展趋势。 电子控制设备中的电路都是由基本功能电路构成的。该课题涉及到模拟电子线路、Multisim软件仿真,数字电子应用等。方案实行中应用电阻分压、运算放大器、三极管控制开关以及继电器电路等。该课题目的是要设计空调温度控制电路,能够控制负温度系数的热敏电阻所在环境内的温度,当空调运行时和空调停止工作时分别由LED1和LED2指示。所设计的电路结构简单、成本低、易于操作、使用寿命较长;采用LED作指示灯,并且控制空调在设定的温度范围之外工作,LED指示灯具有结构简单、寿命长、耗电省、美观鲜艳、易于识别等特点。 第一章设计目的 1 了解并掌握运算放大器的工作原理和使用方法及其注意事项 2 学会查阅元器件资料,辨别元器件,检查并测试元器件 3学会绘制电路图并组装电路,调试电路. 4 熟练掌握各种基本仪器的使用 5 学会并熟练掌握电路仿真软件的使用(Multisim等)

空调温度控制系统

关于空调温度控制系统的研讨 摘要本文介绍了空调机温度控制系统。本温度控制系统采用的是AT80C51单片机采集数据,处理数据来实现对温度的控制。主要过程如下:利用温度传感器收集的信号,将电信号通过A/D转换器转换成数字信号,传送给单片机进行数据处理,并向压缩机输出控制信号,来决定空调是出于制冷或是制热功能。当安装有LED实时显示被控制温度及设定温度,使系统应用更加地方便,也更加的直观。 关键字 AT80C51单片机 A/D转换器温度传感器 随着人们生活水平的日益提高,空调已成为现代家庭不可或缺的家用电器设备,人们也对空调的舒适性和空气品质的要求提出了更高的要求。现代的只能空调,不仅利用了数字电路技术与模拟电路技术,而且采用了单片机技术,实现了软硬件的结合,既完善了空调的功能,又简化了空调的控制与操作;不仅满足了不同用户对环境温度的不同要求,而且能全智能调节室内的温度。为此,文中以单片机AT80C51为核心,利用LM35温度传感器、ADC0804转换器和数码管等,对温度控制系统进行了设计。 一、总体设计方案 空调温度控制系统,只要完成对温度的采集、显示以及设定等工作,从而实现对空调控制。传统的情况时采用滑动电阻器电阻充当测温器件的方案,虽然其中段测量线性度好,精度较高,但是测量电路的设计难度高,且测量电路系统庞大,难于调试,而且成本相对较高。鉴于上述原因,我们采用了ADC0804将输入的模拟信号充当测温器件。外部温度信号经ADC0804将输入的模拟信号转换成8位的数字信号,通过并口传送到单片机(AT80C51)。单片机系统将接收的数字信号译码处理,通过数码管将温度显示出来,同时单片机系统还将完成按键温度设定、一段温度内空调没法使用等程序的处理,将处理温度信号与设定温度值比较形成可控制空调制冷、制热、停止工作三种工作状态,从而实现空调的智能化。原理图如下图所示: 图 1 系统原理图 二、硬件电路设计 该空调温度控制系统的硬件电路,只要由单片机AT80C51最小系统、8段译码管、数码管、按键电路、驱动电路、A/D转换电路、温度采样电路等组成。图2为该实验的系统框图,我们下面主要就几个模块进行扼要介绍。 图2 系统框图 2.1 温度的采集——温度传感器 通过查找资料我们发现,温度传感器并不是什么复杂和神秘的电子器件,在对精度要求不高的一般应用中,可以使用一个型号为LM35【1】的温度传感器,它的外观与一般的三极管没有什么区别,温度传感器LM35只有3个管脚:+Vs、Vout、GND。其中,+Vs接+4V~+20V 的电源,为器件工作供电,GND接地。当加上工作电压后,LM35的外壳就开始感应温度,并在Vout管脚输出电压。Vout的输出与温度具有线性关系。 当温度为0时,Vout=0V,如果温度上升,则每上升1°C,Vout的输出增加10mV。如果温度为25°C时,Vout=25*10=250mV。这样,使用一个简单的温度传感器LM35就可以把温度转换成电压信号,这个电压信号直观地反映环境的温度。 2.2 模拟/数字转换器ADC0804

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

Verilog HDL 空调温度控制器设计

设计题目:家用空调温度控制器 一设计题目的要求: 家用空调温度控制器的功能为: 1、室内温度可由按键设置,温度的设置范围为20度至39度。 2、有加热和制冷两种工作模式。当空调工作在加热模式时,如果室温低于设定温度,空调加热,反之,不加热;当空调工作于制冷模式时,如果室温高于设定温度,空调制冷,反之空调不制冷。 3、对室内温度用两位数码管进行实时显示。 二设计方案及其工作原理: 总的设计框图如下: 本电路由控制核心cpu、按键、4位锁存器、数码管7位译码器电路组成。 cpu:负责数据接收;室温和设定温度的比较;工作模式选择;显示数据的输出;加热制冷信号的控制;报警信号的输出等。 按键:负责设定标准温度,设置温度的升高与降低。 锁存器:将cpu输出的显示信号锁存,防止干扰,将信号送给译码器。 译码器:将BCD码译成数码管显示用的高低电平。 工作原理 在reset信号作用下,设定温度寄存器赋初值,初值为26度,通过add (温度升)和down(温度减)来步进调整设定温度(步进为一)。按键(key)模块通过seta和setb输出端口将设定温度传给cpu。 cpu接收到设定温度后将其与由温度传感器传来的室温xy比较,将比较结果标志存在寄存器(flag)中。读取用户工作模式(mod=1时为加热,mod=0时为制冷)。在加热模式状态下,根据flag的值给出加热控制寄存器heat

赋值;在制冷模式状态下,根据flag的值给制冷状态寄存器cool赋值。 cpu还将设置温度与设置温度范围比较,将比较结果标志存在报警寄存器flag_high(超上界寄存器)和flag_low(超下界寄存器)。 cpu还将室温和设定温度分别存放在室温寄存器和设定温度寄存器中。 最后,cpu将寄存器的值通过各端口输出。 各锁存器将数据锁存后在时钟信号的作用下将锁存信号输出给译码器,译码器再把BCD码转换成数码管显示的高低电平,数码管显示出室温和设置温度。 Led灯接到有效信号后点亮,指示设定温度是否越界(led_settoohigh 表示设置温度过高;led_settoolow表示设置温度过低)。 三各单元电路设计: 1、cpu设计 cpu框图如下: disp_outx:室温十位输出显示 disp_outy:室温个位输出显示 disp_outa:设置十位输出显示 disp_outb:设置个位输出显示 cool:制冷输出信号 heat:加热输出信号 led_settoohigh:设定温度超越上限报警 led_settoolow:设定温度超越下限报警 x:室温十位输入 y:室温个位输入 a:设定温度十位输入 b:设定温度个位输入 mod:用户加热制冷模式选择 clk:时钟脉冲 flag:室温和设置温度比较标志位寄存器 flag_high:设置温度超越上界标志位寄存器 flag_low:设置温度超越下界标志位寄存器 2、按键(key)设计

空调温度控制系统设计-精品

题目:空调温度控制系统设计

空调温度控制系统设计 摘要 空调温度控制过去一直依赖温控电动阀,电动阀可与温控器配套使用,实现对供暖通风和空调系统中冷热水的开关控制。由于我国工业水质很多是含Ca2+、Mg2+、Coo2-等离子浓度很高的硬水,在温度变化的空调管道中极易结垢,造成电动阀早期即失效损坏。另外,人们还常采用三速风机盘管代替温控电动阀进行调温,它是通过手动开关调整风机的风速来实现调温,不能自动控温,这就不可避免的发生低负荷时出现温度超调而造成能源的浪费。 本次设计的空调温度控制系统中,首先通过温度传感器DS18B20对空气进行温度采集,将采集到的温度信号传输给单片机AT89C51,由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温程序对空气进行处理,从而模拟实现空调温度控制单元的工作情况。 关键词:空调温度控制系统;温控电动阀;单片机

Air-conditioning Temperature Control System Design Abstract Air-conditioning temperature control has been depended on electric valve, electric valve can be used with matching Thermostat realize heating ventilation and air conditioning systems in hot and cold water control switch. Because many of China's industrial water containing Ca2 +, Mg2 +, Coo2-such as the hard water ions in high concentrations in the temperature of the air-conditioning pipes vulnerable to scaling, resulting in the early stage of electrical failure damaged valve. In addition, it is also often used in place of three-speed fan coil thermostat temperature control for electric valve, which is adjusted by manually switch the fan speed to achieve the thermostat can not be automatic temperature control, which inevitably occurs when low-load temperature overshoot caused by the waste of energy. The design of air-conditioning temperature control system, first of all through the temperature sensor DS18B20 collection of air temperature, the temperature will be collected to the single-chip signal transmission AT89C51, controlled by the single-chip display, and compare the collected temperature and set temperature is line, and then drive the heating or air conditioning to cool the air to deal with procedures, which simulate the temperature control unit for air conditioning work. Key words:Air-conditioning temperature control system; Temperature-controlled electric valve; Single-chip

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

纺织厂空调设计_毕业设计

西安工程大学本科毕业设计(论文) 前言 在纺织工业生产过程中,空气调节起着重大作用,它提供了工艺需要的温湿度、清洁度和气流速度等条件,保证生产的正常进行的同时提高了产品的质量,也提高了生产效率。随着纺织新技术的快速发展,新工艺新设备对纺织空调工程提出了新的要求,当前世界面临的主要环境问题,如能源短缺、淡水减少、气候变暖、臭氧层破坏、沙尘暴等,都给纺织空调提出了新的问题。面对水资源匮乏,我们采用新的喷淋方法,提高热湿交换效率或采用空调用水的一水多用及废水回用以节省喷淋用水量;面对能源短缺我们采用变风量调节技术和变频变流等设备,以提高风机和水泵的生产效率;常常采用新的环保制冷剂代替氯氟烃以保护日益稀薄的臭氧层;使用吸收式制冷机和热泵;深井冬灌夏用,夏灌冬用;采用冰蓄冷技术、间接蒸发冷却技术和天然冷源等,以节约用水和保护环境,使传统的纺织空调技术,发展成为绿色空调、节能空调和智能空调。本次设计通过对细纱车间的负荷计算、系统选型、水力计算及经济技术分析,最终确定合理的空气调节方案。

第1章设计资料和参数选取 1.1设计原始资料 1.设计地区:南昌 2.建筑及工艺资料:该棉纺厂细纱车间为锯齿形厂房结构,工艺区面积约5700平方米;细纱机126台,共约有5.4万纱锭。其中513型细纱机75台,502型细纱机24台,1506型细纱机27台; 运转每班90人,常日班80人;照明总功率86.4kw 。提供的图纸:细纱车间工艺平面布置图一张。 3.气象资料:查《采暖通风与空气调节设计规范》GB50019-2003。 维护结构资料:参数《高层建筑空调计》中表2-4、2-5及《民用建筑节能设计标准陕西省实施细则》选择墙体及其传热系数,同时参考《纺织厂空气调节》。 4.动力资料: (1)电源:220/380伏交流电。 (2)热源:本工程设有集中锅炉房,供给0.6Mpa的蒸气。 (3)冷源:自行设计冷源系统,水源为城市自来水。

中央空调温控器操作说明

现在很多小伙伴家里在装修的时候,都安装了中央空调,随之配套的还有中央空调的温控器,很多小伙伴还不知道温控器怎么操作,下面就一起来看看温控器的操作说明吧。 中央空调温控器分爲电子式和机器式两种,按显示不同分爲液晶显示和调理式。中央空调温控器是经过顺序编辑,用顺序来控制并向执行器收回各种信号,从而到达控制空调风机盘管以及电动二通阀的目的。 机器式 机器盘管温控器使用于商业、工业及民用修建物。可对采暖、冷气的中央空调末端风机盘管、水阀停止控制。使所控场所环境温度恒定爲设定温度范围内。温度设定拔盘指针应设定爲所需恒定温度地位。拔动开关功用辨别爲:电源开关(开ON—关OFF);运转形式开关(暖气HEAT—冷气COOL),FAN风速开关(低速L—中速M—高速H)。可控制设备:三档风机盘管风速,三线电动阀,二线电动阀,也可接电磁阀、开关型风阀或三线型风阀。外型尺寸。

操作办法 1、开关机:把拨动开关拨动到ON地位,温控器开机;把开关拨动到OFF 地位,温控器关机。 2、打工形式设定:把拨动开关拨动到COOL地位,温控器设定爲制冷形式;把拨动开关拨动到HEAF地位,温控器设定爲制热形式。 3、温度设定:机器式温控器,采用旋钮式设定温度,把红点对着面板标明的温度数据即可。 4、风速设定:把开关拨动到LOW地位;温控器设定爲高档风速;把开关拨动到WED地位,温控器设定爲中档风速;把开关拨动到High地位,温控器设定爲高档风速。 快益修以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

空调机温度控制器的设计原理

空调机温度控制器的设计原理 一、概述 随着经济的发展和人们生活水平的提高,空调机受到广泛应用。空调机的温度控制器是由温度传感器感受室内温度变化来控制压缩机的运行与停止。由于温度传感器直接输出的信号一般比较微弱,为了更好的测量与显示,需要用放大器进行处理,处理后的温度信号与设定的温度值通过比较器进行比较后,控制继电器的通断,使温度被控制在设定值左右,使空调器的工作状态随着人们要求和环境状态而自动变化,迅速准确的达到人们的要求,并使空调器的工作状态保持在最合理的状态下。 二、方案设计 设计了一个空调机温度控制器,控制器能够实时采集室内环境温度,当室内环境温度高于设定温度时,控制器启动空调压缩机制冷,并同时发出提示信号;当室内环境温度低于设定温度时,控制压缩机停止制冷 空调机温度控制器原理框图如图1所示。 放大与处理电路 单稳态电流

执行单元 提示灯 温度设置 工作原理:空调机温度控制器由热敏电阻采集环境温度变化,通过比较器与设定温度进行比较,当环境温度高于设定温度时,比较器输出低电平,继电器启动压缩机制冷,同时给555单稳态电路一个触发信号,单稳态电路输出高电平,指示灯亮,当温度低于设定温度时,比较器输出高电平,继电器控制压缩机停止制冷。 三、电路设计 1.直流稳压电源电路 直流稳压电源电路原理图如图2所示

工作原理:电源开关接通时,交流电压220V经过变压器进行变压,大致提供11V的电压,此电压经过整流桥电路进行整流后,在经过滤波电容滤除多余的杂波,此时电压信号较为清晰,但是仍然不稳定,电压信号再经过三端稳压器进行稳压,这时得到的电源电压为电路所需的稳定的9V。 2.温度采集及放大电路 温度采集及放大电路原理图如图3所示。

基于单片机的空调温度控制系统设计

基于单片机的空调温度控制系统 设计 作者姓名:杨耀武 专业名称:信息工程 指导教师:黄宇讲师

摘要 在自动控制领域中,温度检测与控制占有很重要地位。温度测控系统在工农业生产、科学研究和在人们的生活领域,也得到了广泛应用。因此,温度传感器的应用数量居各种传感器之首。目前,温度传感器正从模拟式向数字集成式方向飞速发展。 本论文概述了温控器的发展及基本原理,介绍了温度传感器的原理及特性。分析了DS18B20温度传感器的优劣。在此基础上描述了系统研制的理论基础,温度采集等部分的电路设计,并对测温系统的一些主要参数进行了讨论。同时在介绍温度控制系统功能的基础上,提出了系统的总体构成。针对测温系统温度采集、接收、处理、显示部分的总体设计方案进行了论证,进一步介绍了单片机在系统中的应用,分析了系统各部分的硬件及软件实现。利用Proteus7.6进行了可行性的仿真,利用单片机开发板验证在实际电路中能起到的效果。试验证明,这套温度控制器具有较强的可操作性,很好的可拓展性,控制简单方便。 课题初步计划是在普通环境下的测温,系统的设计及器件的选择也正是在这个基础上进行的。 关键词:DS18B20 单片机温度控制1602液晶显示

Abstract In the automatic control area,temperature monitoring and controling have a very important position. The temperature monitoring system has a wildly applying in industry, agriculture, science reasearching and daily life of people. Therefore, the number of applying of the temperature monitoring comes first of all kinds of sensor. At present, the temperature monitoring is transformed from analog type to digital integrated type with a very fast speed. This paper introduces the developing and fundamental of the temperature monitoring, including the character of this kind of sensor. It also analyses the advantage and disadvantage of the temperature monitoring which named DS18B20. On that basis, the paper also has a further analysis of the theoretical basis of the system developing and the circuit design of temperature monitoring. Besides, some discussions about the important parameters also took on desk. At the same time, the auther of this paper also puts forward the composition of totality about this system, which including the different function of the thermometer system. Then a detailed analysis which is about the applying of Microcontrollers and the applying of different parts made by different hardwares and softwares in the system. In order to check the maneuverability and the expansibility of the Microcontrollers system, the auther used Proteus 7.6 to do the testing and got a pretty good result. This system puts the temperature measured in normal situation as a confirm condition. All design and selection of component is also based on this suppose. keywords: DS18B20, Microcontrollers, Temeperature Controling, 1602 Liquid Crystal Display

基于单片机的温度控制系统设计报告

基于单片机的温度控制系统设计报告

智能仪器仪表综合实训 题目基于单片机的温度控制系统设计 学院 专业电子信息工程 班级 (仪器仪表) 学生姓名 学号 指导教师 完成时间:

目录 一、系统设计---------------------------------------------------------第 1 页 (一)系统总体设计方案----------------------------------------------第 1 页 (二)温度信号采集电路选择和数据处理--------------------------------第 3 页 (三)软件设计------------------------------------------------------第 3 页二、单元电路设计-----------------------------------------------------第 5 页 (一)温度信号采集电路----------------------------------------------第 5 页 (二)步进电机电路------------------------------------------------- 第 5 页(三)液晶显示模块---------------------------------------------------------- 第6 页 (四)晶振复位电路--------------------------------------------------第 7 页三、总结体会--------------------------------------------------------------------------------------第 7 页 四、参考文献-------------------------------------------第 8 页 附录:程序清单------------------------------------------第 8 页

纺织厂空调复习资料课后习题答案(精编)

纺织厂空气调节课后习题答案 第二章(P50)2 解:①空气加热前:P 1V 1=m 1RT 1 ; 空气加热后:P 2V 2=m 2RT 2 已知m 1=m 2,P 1=P 2,T 1=20+273.15=293.15K T 2=130+273.15=403.15K 由 3112221212475180015 .29315.403m V T T V T T V V =?=?=?= ②由附表1可知当t=20℃时,干空气的密度为1.205kg/m 3 , 又Pa P T P g g g 5.101216 00349.0=?=ρ,则P q =B-P g =101325-101216.5=108.5Pa P q V q =m q R q T q1?m q =1.44kg 同理可得m g =2165.5kg 3 解:已知t=24℃、φ=60%、B=101325Pa 由附表1可查出当t=24℃时,P q ,b =2977Pa ∴3,/04.1315 .273242977 6.01 7.217 .2m g T P b q q =+?? ==?γ kg kj d t d i kg g P B P d b q b q /63.52100016 .11250024)100016.1184.101.1(10002500)100084 .101.1(/16.112977 6.010******** 6.0622622 ,,=?+??+=++==?-?? =-=? 在i-d 图上可以得出露点温度t l =15.7℃ 4 解:已知:t 1=11℃、φ1=70%、G=10000kg/h 、t 2=20℃、B=101325Pa 在i-d 图上可得出状态1的点,即:i 1=25.5kj/kg 、d 1=5.6g/kg 、P q1=920Pa 在i-d 图上保证d 1=d 2=5.6g/kg 就可)找出状态2的点。由i-d 图可知i 2=35kj/kg 、P q2=920Pa 由焓的定义可知:加热量Q=G(i 2-i 1)=10000×(35-25.5)=9.5×104 kj 在附表1可查出当t 2=20℃时,P q ,b2=2331Pa %5.39%1002331 920 %1002 ,22 =?= ?= b q q P P ? i 3=1.01t 3+(2500+1.84t 3)d 3×10-3 =1.01×90+(2500+1.84×90)×5.6×10-3 =105.8kj/kg Δi=i 3-i 1 =105.8-25.5=80.3kj/kg kg i Q q 1.11833 .80105.94 =?=?= 5 解:已知t 1=29℃、φ1=60%、B=101325Pa 在i-d 图上可知d 1=15.2g/kg ,i 1=68kj/kg 即在状态1下,内含1kg 干空气的湿空气中含有15.2g 水蒸气,则内含 100kg 干空气的湿空气中含有1.52kg 水蒸气,加入1kg 水蒸气后,则状态2中有2.52kg 水蒸气, 由定义可知,d 2=25.2g/kg 。 由题意可知此处理过程为等温加湿过程,即温度不变,t 1=t 2=29℃ 在附表1可查出当t=29℃时,P q ,b =3995Pa ∵Pa P P B P d q q q 3945622 2=?-= %98%1002 ,22=?= b q q P P ?

相关文档
最新文档