RACE-OC Project Rotation and variability in the open cluster NGC2099 (M37)

RACE-OC Project Rotation and variability in the open cluster NGC2099 (M37)
RACE-OC Project Rotation and variability in the open cluster NGC2099 (M37)

a r X i v :0803.1134v 1 [a s t r o -p h ] 7 M a r 2008

Astronomy &Astrophysics manuscript no.astro-ph c

ESO 2008March 7,2008

RACE-OC Project:

Rotation and variability in the open cluster NGC 2099(M37)?

S.Messina 1,E.Distefano 1,Padmakar Parihar 2,Y.B.Kang 3,4,5,S.-L.Kim 4,S.-C.Rey 3,and C.-U.Lee 4

1

INAF-Catania Astrophysical Observatory,via S.So?a 78,I-95123Catania,Italy e-mail:sergio.messina@oact.inaf.it;elisa.distefano@oact.inaf.it

2Indian Institute of Astrophysics,Block II,Koramangala,Bangalore India,560034e-mail:psp@iiap.res.in

3Department of Astronomy and Space Science,Chungnam National University,Daejeon,Korea 4Korea Astronomy and Space Science Institute,Daejeon,Korea

5

Department of Physics and Astronomy,Johns Hopkins University,Baltimore,MD 21218,USA

ABSTRACT

Context.Rotation and solar-type magnetic activity are closely related to each other in main-sequence stars of G or later spectral types.Presence and level of magnetic activity depend on star’s rotation and rotation itself is strongly in?uenced by strength and topology of the magnetic ?elds.Open clusters represent especially useful targets to investigate the connection between rotation and activity.

Aims.The open cluster NGC 2099has been studied as a part of the RACE-OC project,which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters of di?erent ages.

Methods.Time series CCD photometric observations of this cluster were collected during January 2004and the presence of periodicities in the ?ux variation related to the stellar rotation are determined by Fourier analysis.The relations between activity manifestations,such as the light curve amplitude,and global stellar parameters are investigated.Results.We have discovered 135periodic variables,122of which are candidate cluster members.Determination of rotation periods of G-and K-type stars has allowed us to better explore evolution of angular momentum at an age of about 500Myr.In our analysis we have also identi?ed 3new detached eclipsing binary candidates among cluster members.

Conclusions.A comparison with the older Hyades cluster (~625Myr)shows that the newly determined distribution of rotation periods is consistent with the scenario of rotational braking of main-sequence spotted stars as they age.However,a comparison with the younger M34cluster (~200Myr)shows that the G8-K5members of these clusters have the same rotation period distribution,that is G8-K5members in NGC 2099seem to have experienced no signi?cant braking in the age range from ~200to ~500Myr.Finally,NGC 2099members have a level of photospheric magnetic activity,as measured by light curve amplitude,smaller than in younger stars of same mass and rotation,suggesting that the activity level also depends on some other age-dependent parameters.

Key words.Stars:activity -Stars:binaries:eclipsing -Stars:late-type -Stars:rotation -Stars:starspots -Stars:open clusters and associations:individual:NGC 2099

1.Introduction

The RACE-OC project,which stands for R otation and AC tivity E volution in O pen C lusters,is a long-term project aimed at studying the evolution of the rotational properties and the magnetic activity of late-type members of stellar open clusters (Messina 2007a).Stellar open clus-ters represent privileged astrophysical targets since they provide complete and homogeneous stellar samples to ex-plore a variety of relevant problems of astrophysical impact.The homogeneity of the stellar sample arises from the fact that all cluster members were formed in similar environ-mental conditions,characterized by same age as well as initial chemical composition,and are subjected to same in-terstellar reddening.Such complete stellar samples allow us

2S.Messina et al.:Rotation and variability in NGC2099 few examples of the mentioned discrepancy with respect to

predictions of evolutionary models.

It is believed that strong magnetic?elds play a funda-

mental role in altering the rotational properties of late-type

stars.They are responsible for angular momentum loss or

its internal redistribution,and represent a powerful tool to probe the stellar internal structure.For example,magnetic ?elds are believed to play a key role in the distribution of the mass moment of inertia by coupling the radiative core with the external convection zone(e.g.Barnes2003).The study of angular momentum evolution is very important to better understand the magnetic activity phenomena which manifest themselves in late-type stars and directly depend on stellar rotation.Photospheric cool spots and bright facu-lae,chromospheric plages and X-ray emission all arise from the action of an hydromagnetic dynamo whose e?ciency is related to the star’s rotation rate(e.g.Messina et al.2001; 2003).

Thus,the study of evolution of angular momentum and magnetic activity o?ers a complementary approach to un-derstand the mechanisms by which rotation and magnetic ?elds in?uence each other and,eventually,to better under-stand the nature of late-type stars.

To date,notwithstanding a number of valuable projects, such as MONITOR(Hodgkin et al.2006),EXPLORE/OC (von Braun et al.2005),and the RCT monitoring project (Guinan et al.2003),which are rapidly increasing our knowledge on the rotational properties of late-type mem-bers of open clusters,the number of studied open clusters as well as the number of variables in each cluster have not been large enough to fully constrain the various models pro-posed to describe the mechanisms which drive the angular momentum evolution.Speci?cally,the sequence of ages at which the angular momentum evolution has been studied still has signi?cant gaps and the sample of cluster members for a number of clusters is not as complete as needed.

The major science drivers of the RACE-OC project are to explore rotational properties of late-type stars in se-lected open clusters and associated stellar activity.So far, there have not been many studies exploring the age de-pendences of various manifestations of stellar activity such as spot temperature,total spot area,the spatial distribu-tion of starspots on stellar surfaces,starspot activity cycles,?ip-?op phenomena and surface di?erential rotation(SDR). Therefore,in comparison to similar ongoing projects,we focused our attention on the time evolution of stellar mag-netic activity.

Keeping these objectives in mind,we have selected open clusters with an age in the range from1to500Myr (Messina2007a)for which no rotation and activity investi-gations have been so far carried out.Furthermore,top pri-ority is given to the open clusters which?ll the gaps in the empirical description of the age-activity-rotation relation-ship.We have also included in our sample clusters which have been already extensively studied,such as the Pleiades and the Orion Nebula clusters(Padmakar Parihar et al. 2008).The motivation behind this is to further enrich the sample of periodic variables and to explore the long-term magnetic activity,e.g.to search for activity cycles and SDR, by making repeated observations of same clusters over sev-eral years.

Our sample also includes open clusters which were pre-viously monitored with di?erent scienti?c motivations,but the re-analysis of archived time series data can provide

very Fig.1Observed V-band CCD?eld(22.2×22.2arcmin2) of the open cluster NGC2099.Small circles identify the cluster candidate members newly discovered to be periodic variables.

valuable results on late-type stars.This is the case of the ~500-Myr intermediate-age open cluster NGC2099(M37), which is the?rst cluster of the RACE-OC project for which we present our results.Although it was previously studied to search for early-type pulsating variables(Kang et al. 2007),the collected observations allowed us to carry out a valuable and accurate study of rotation and magnetic activ-ity.To date,there is no available data on rotation periods of clusters between the age range from200to600Myr and, hence,the study of NGC2099with an age of~500Myr is one attempt to?ll the gap of ages while modelling the angular momentum evolution(Barnes2003;2007).

NGC2099(M37)is a~500Myr intermediate-age open cluster at distance of nearly1400parsec.The cluster,con-taining thousands of members within core radius of4-6arc-minutes,is found to be very suitable for any monitoring pro-gram,using intermediate aperture telescope with moderate FoV.The cluster is very close to galactic plane(l~3o)and hence subjected to substantial reddening E(B?V)~0.2-0.3 mag.In the recent past,NGC2099has been extensively studied by several researchers to obtain global parameters and to characterized its members(Mermilliod et al.1996; Nilakshi&Sagar2002;Hartman et al.2007a and refer-ences therein).With di?erent motivations,NGC2099was also chosen for photometric monitoring by three di?erent groups to search for new variables.The?rst two variabil-ity surveys carried out by Kiss et al.(2001)and Kang et al.(2007)could identify only24new variables.Whereas, the much deeper and very rigorous MMT transit survey,in

S.Messina et al.:Rotation and variability in NGC20993 which several hundreds of variables are identi?ed,has been

carried out very recently by Hartman et al.(2007b).We started our project on this cluster earlier than the MMT survey and before the Hartman et al.(2007b)detailed work was communicated.Our work on NGC2099can be consid-ered valuable due to the following reasons,at least:

1.Stars brighter than14.5mag in r band(~15mag in

V band),that is F-and earlier-type stars,are saturated in MMT survey and hence our bright NGC2099F-type variables are the?rst to be discovered and they help to make the sample of variable stars more complete for any future study.

2.Observing epochs are di?erent(2004for present study

and2006for MMT survey)and hence the common vari-ables of both surveys can be utilized to explore varia-tions in light curves,related to magnetic activity.

3.The prime motivation of present study is not just to

identify the new variables in the cluster,but to use them to investigate evolution of angular momentum and stel-lar activity vs.age.

In Sect.2we give information on observations,achieved photometric accuracy and selection criteria for member-ship.The search for periodic variables is presented in Sect.3 and results are given in Sect.4.Discussion and conclusions are given in Sect.5and6.

2.Observations and data analysis

The present study is based on observations taken in January2004with the1.0m telescope at the Mt.Lemmon Optical Astronomy Observatory(LOAO)in Arizona (USA),which feeds a2K×2K CCD camera.The observed FoV is about22.2×22.2arcmin2at the f/7.5Cassegrain focus.A sequence of581images were collected in the V-band?lter with an exposure time of600s over a total time interval of about30days.A detailed description of observa-tions and data reduction was already given in the paper by Kang et al.(2007)to which we refer the reader.An

example image of the observed NGC2099?eld is plotted in Fig.1, where the over-plotted small circles identify the candidate cluster members discovered by us to be periodic variables.

The HR diagram of all the stars detected in600-s ex-posures of the NGC2099?eld is displayed as dots in Fig.2. In the HR diagram the newly discovered periodic variable stars are marked by small red bullets.Bullets with an over-plotted diamond are non-cluster member periodic variables, according to the selection criterion of membership outlined below.The large green bullets show the detached eclips-ing binaries newly discovered in our analysis.The solid line is the cluster isochrone.For the present analysis we adopted the following cluster parameters from Hartman et al.(2007a),age=485±28Myr,E(B?V)=0.227mag, [M/H]=0.045and distance modulus(m?M)=11.572 mag.The proximity of any star in the HR diagram with respect to the cluster isochrone has been adopted as crite-rion to select cluster members(see e.g.Irwin2006,2007). Any star with given intrinsic(B?V)o color and magni-tude di?erence?V smaller than±1.4mag with respect to the isochronal magnitude was selected as candidate cluster member.This magnitude di?erence is large enough to in-clude the sequence of binary stars,if any,and to properly take into account the error on de-reddened(B?V)o color.Fig.2HR diagram of the stars(dots)detected in the?eld of NGC2099.Periodic variables are plotted with red small bullets.A diamond is over-plotted to periodic non-cluster https://www.360docs.net/doc/064247505.html,rge green bullets represent newly discovered candidate detached eclipsing binaries.The solid line repre-sents the isochrone corresponding to an age of t=485±28 Myr,E(B?V)=0.227mag and[M/H]=0.045(Hartman et al.2007a).

Fig.3Standard deviationσof the light curves of the stars detected in the?eld of NGC2099vs.average magnitude. The solid line represents a composite?t to the lower en-velope of theσdistribution and gives the best achieved photometric accuracy.Small blue bullets represent the pe-riodic variable candidate cluster members.

Such a membership selection,based on photometry alone, cannot prevent from a certain level of contamination by non-cluster?eld stars.Hartman et al.(2007a)report such contamination to be on average about39%.However,as shown in Fig.1,the periodic variables we discovered are all in the innermost NGC2099?eld region,where the popu-lation of cluster members is usually relatively higher and, hence,the percentage contamination is expected to be sig-ni?cantly smaller than on average.

The600-s long exposures of the NGC2099?eld have al-lowed us to achieve a photometric accuracyσin the V band as good as0.003mag in the13

4S.Messina et al.:Rotation and variability in NGC2099

and better than0.01mag for all stars brighter than V?17.5 mag.In Fig.3we plot the standard deviation of the light curves of all stars detected in the13

To construct the relation between observational accu-racy and magnitude,following the procedure given e.g.by Roze&Hintz(2007),the lower envelop of Fig.3was?tted by a piecewise continuous function of the form:

=0.1495×e?0.26V13

=9.2×10?9e?0.80V V>17

Out of a total of2250stars detected in the13

3.Search for periodicities

One of the primary goals of the present study is to search for periodicities in the time series photometric magnitudes of all the members of NGC2099open cluster.We have lim-ited our investigation to stars in the13

Two di?erent periodogram approaches,the Scargle-Press and the CLEAN periodograms,have been used to search for signi?cant periodicities.In the following sub-sections we will brie?y describe the techniques and the cri-teria used to classify variable stars as periodic.3.1.Scargle-Press periodogram

The Scargle technique has been developed in order to search for signi?cant periodicities in unevenly sampled data (Scargle1982;Horne&Baliunas1986).The algorithm cal-culates the normalised power P N(ω)for a given interval of angular frequenciesω=2πν.The highest peak in the cal-culated periodogram power spectrum reveals the presence and the frequency of a periodicity in the analysed time se-ries data.In order to determine the signi?cance level of the periodic signal,the height of the corresponding power peak is compared with the false alarm probability(FAP).

The FAP is the probability that a peak of given height is due to simply statistical variations,i.e.white noise.This method assumes that each magnitude measurement is in-dependent from the other.However,this is not strictly true for our data time series(see,e.g.Herbst&Wittenmyer 1996;Stassun et al.1999)consisting of numerous data con-secutively collected within the same night and with a time sampling much shorter than both the periodic or the ir-regular intrinsic variability timescales we are looking for (P d=0.1-20).In order to overcome this problem,we decided to determine the FAP di?erently than proposed by Scargle (1982)and Horne&Baliunas(1986),which is only based on the number of independent frequencies,but following the approach described by Herbst et al.(2002)based on Monte Carlo simulations.

Speci?cally,we selected a total of2250stars whose mag-nitude is in the13

The FAP related to a given power P N is set to be the fraction of randomized light curves which have the highest power peak exceeding P N,which is the probability that a peak of this height is due simply statistical variations,i.e. white noise.We?nd that the power corresponding to a FAP <0.01is P N>31.64.However,we note that such a power threshold is period dependent and,in our speci?c case,is set by those peaks appearing in the0.4-0.5and0.9-1.2 day ranges,which are about90%of total detections from simulations.Therefore,P N=31.64more exactly gives the 99%level of con?dence of a period detected in these men-tioned time ranges.A straightforwardly application of this power level largely underestimates the con?dence level of any other period detected outside these ranges with the risk to classify real detections as they were spurious.Therefore, after removing all peaks falling in these mentioned ranges, we recomputed the distribution of power peaks vs.period. The results,which are plotted in the right panels of Fig.4, show that a99%con?dence level is reached for power lev-els P N>14.60.In the following analysis these two di?er-ent thresholds will be applied to the corresponding period ranges to select the?nal sample of periodic variables.

S.Messina et al.:Rotation and variability in NGC2099

5

Fig.4Left panels:results of periodogram analysis on”randomized”light curves.Right panels:the same as in left panel but with exclusion of power peaks in the0.4-0.5and0.9-12day ranges.

3.2.CLEAN periodogram

The Scargle periodogram technique makes no attempt to

account for the observational window function W(ν),i.e.

some of the peaks in the Scargle periodogram are result of

the data sampling.This e?ect is called aliasing and even

the highest peak could be an artifact.The CLEAN peri-

odogram technique by Roberts et al.(1987)tries to over-

come this shortcoming of the Scargle periodogram.For a

detailed description we refer the reader to Roberts et al.

(1987)or Bailer-Jones&Mundt(2001).

4.Results

For all the candidate cluster member stars which turned

out from our analysis to be periodic variable we list the

target ID,RA and DEC coordinates(J2000.0),extinction-

corrected V magnitude V o and color(B?V)o in the on-line

Table1.The results of our Fourier analysis are given in the

on-line Table2,where we list the star’s ID,the period de-

tected by Scargle(P Scargle)and by CLEAN(P CLEAN)algo-

rithms,the normalized peak power(P N),the adopted rota-

tion period(P),i.e.the one among P Scargle and P CLEAN giv-

ing the less scattered phased light curve,and its uncertainty

as computed following Horne&Baliunas(1986),the aver-

age V magnitude(),the light curve standard deviation

(σTOT),the achieved photometric accuracy(σ),the light

curve amplitude(?V).The amplitude of the light curve

was computed by making the di?erence between the me-

dian values computed by considering the upper and lower

15%of magnitudes of the light curve(see,e.g.Herbst et al.

2002).That allows us to prevent from overestimating the

amplitude due to possible outliers.We also list the total

number of observations,a note about either the member-

ship or its ID for already known variables.

In Fig.5we display a selection of the most common re-

sults obtained with our period search analysis.In the panels

from left to right we plot the data time series(V-band data

vs.MJD).Di?erent colors are used to distinguish three dif-

ferent datasets collected at di?erent time intervals of the

observing run.This helps to disentangle the scatter in the

data arising from three di?erent sets of observing runs.In

fact,we noticed that a number of stars undergo changes

in the light curve shape and amplitude on a time scale

shorter than the whole time interval of observations(about

30days).In the second panel from left we plot the light

curve phased with the period reported in the label along

with its uncertainty.We also report the data accuracy(σ)

and the light curve amplitude(?V).In the third panel we

plot the Scargle periodogram where the horizontal solid line

represents the power level corresponding to the99%con-

?dence level.We note that in the0.4-0.5and0.9-1.2day

range such level is to a much higher power(P N=31.64).The

dashed vertical line indicates the selected periodicity.The

right-most panel displays the power spectrum from CLEAN

analysis.

We have cases,such as for star02318,in which only

one period has a con?dence level larger than99%,which

is independently con?rmed by the CLEAN analysis.There

are cases,such as for star02667,where two periods are

detected.However,the shorter one is disregarded since it

does not reach the power level of P N=31.64which we set

for the0.9-1.2day range.There are other cases,such as for

star03040,where two periods are detected with con?dence

level larger than99%.However,only one is con?rmed by

the CLEAN analysis.Finally,there are cases,such as for

star06040,where the period is detected in the0.9-1.2day

6S.Messina et al.:Rotation and variability in NGC

2099

Fig.5Example of di?erent results obtained with our period search analysis.Panels show(from left to right)the data time series with color showing di?erent time intervals;the phased light curve with labelled the rotation period,its uncertainty, the data accuracy and light curve amplitude.Star02318:only one period is detected with con?dence level larger than 99%and,independently con?rmed by CLEAN analysis.Star02667:two periods are detected;however,the shorter one is disregarded since it does not reach the power level of P N=31.64set for the0.9-1.2day range.Star03040:two periods are detected with con?dence level larger than99%,however only the highest is con?rmed by the CLEAN analysis.Star 06040:only the period detected is in the0.9-1.2day range and has a power level larger that the one set for this period range.

range and has a power level larger that the one set for this period range.For10stars two di?erent periodicities of com-parable power were detected by both Scargle and CLEAN periodograms.In these cases we considered to be more reli-able the period with higher power and which produces the less scattered phased light curve and marked the second period to be an alias.In most case the second periodicity represents a beat period(B)which is related to the rotation period(P)by the following relation:

1

P

±1

It can be identi?ed to be an alias of the rotation period, since it produces a larger scatter in the phased light curve. We could detect periodicities with high con?dence level (>99%)in a total of135stars.

We found135periodic variables,16of which were pre-viously discovered by Kiss et al.(2001)and Kang et al.

S.Messina et al.:Rotation and variability in NGC20997 (2007).The total number of periodic cluster members newly

discovered by us is106,which is the?nal sample analysed in the following sections.

In the on-line Figs.11-13we plot magnitudes time series, phased light curves and power spectra of the known variable V3-V7discovered by Kiss et al.(2001)and KV3-KV17dis-covered by Kang et al.(2007).We detected no evidence of eclipses for the variables V1and V2,con?rming the results of Kang et al.(2007),whereas the variables KV1and KV2 got saturated in the long-exposures analysed by us.For14 out of20remaining known periodic variables our present analysis could con?rm the previously determined periods. For6out of8δScuti stars we could detect the primary fre-quency.Six of of20known variable stars did not pass our period detection criteria,i.e.periodicity was detected with low con?dence level.For all the known contact eclipsing bi-naries our analysis detected the highest peak with greater than99%con?dence level at exactly half the orbital pe-riod.In fact the Fourier analysis done by us is better suited for single-peaked light variations which are?tted by a sin-gle sinusoid function.In the present case,since the known contact eclipsing binaries have two minima of comparable depth,they have been all?tted by a single peaked variation of half orbital period.The very good agreement between the periods detected by us and the previously known periods for the common periodic variables makes us con?dent on the reliability of the periodicity measured for all the stars in our sample.

5.Discussion

5.1.F-type stars

As mentioned in Sect.1,a search for variability among F-type stars in the NGC2099cluster was the prime moti-vation of the previous analysis carried out by Kang et al. (2007).That analysis allowed to discover a total of24pe-riodic variable stars including the seven variables already identi?ed by Kiss et al.(2001).Out of17newly discov-ered variables by Kang et al.(2007),9variables are iden-ti?ed asδScuti-type pulsating stars,7are found to be contact eclipsing binaries,and one is a peculiar variable star.Although the present paper is focused on G-and K-type variable stars,we nonetheless applied our Fourier analysis techniques brie?y described in Sect.3also to the sub-sample of F-type candidate cluster members.Our new analysis has allowed us to discover26new periodic variables among candidate cluster members.Their light curves along with their Scargle and CLEAN periodograms,are shown in the on-line Fig.14-16.The list of periodic F-type stars is given in Table2with indication of the variable stars already discovered in previous studies(Kiss et al.2001;Kang et al. 2007).

The periodic variation of star light in F-type stars most likely arises from pulsations.About70%of F-type variables have been found with periods too

long(P d>2)to be likely attributed to pulsational modes(Fig.6).One possibility is that these long-period F-type variables may not be cluster members,but they are foreground?eld stars.Early G-type ?eld stars may have been designated as cluster F-type vari-ables due to reddening over-correction.Consistently with this hypothesis,the B?V color of these stars is indeed at the boundary between inactive late F-type and active early-Fig.6Distributions of periods of the NGC2099candidate cluster members.

G stars.It is possible that further investigation of these stars may reveal them to be active G-type?eld stars.

5.2.G-and K-type main-sequence stars

The primary goal of the present study is to investigate the rotational and magnetic activity properties of late-type (G-K)members of NGC2099.The Fourier analysis has al-lowed us to newly discover the periodicity in52G-and 28K-type stars,whose masses cover approximately the 0.7<~M/M⊙<~1.1range.The lower percentage of periodic K stars has to be mostly ascribed to the lower photomet-ric accuracy achieved for K stars with respect to G stars. The results of our Fourier analysis are summarized in the on-line Table2,whereas the light curves,along with their Scargle and CLEAN periodograms,are plotted in the on-line Figs.17-26.

For these late-type stars the detected periodicity most likely represents the stellar rotation period.It is believed that in late-type stars the observed variability arises from non-uniformly distributed cool spotted regions on the stel-lar photosphere,which are carried in and out of view by the star’s rotation.In Fig.6we plot the distribution of rotation periods for G-and K-type candidate cluster members.We note that our sample og52G stars does not incluse the10 W UMa-type eclipsing binaries,whose rotation period is altered by tidal synchronization,and subjected to a di?er-ent magnetic braking than in single stars.A Kolmogorov-Smirnov test reveals that G and K stars have di?erent dis-tributions,having K-type stars on average longer rotation periods than G-type stars.The distribution of G stars is peaked at a median period of P=5.9days,whereas the dis-tribution of K stars at a median period of P=7.1days.

In Fig6we see that a secondary peak exists of fast ro-tating stars(P d<3),consisting of about20%of G stars. Such fast rotators are usually found in young open clus-ters but not expected in a cluster with an age of about 500Myr or older,which is the case of NGC2099(Barnes 2003;2007).There are several possibilities for the pres-ence of these fast rotators.Since the cluster is relatively far away(1.4kpc)and its galactic latitude is just3degrees,it

8S.Messina et al.:Rotation and variability in NGC

2099

Fig.7Top panel:Rotation period vs.B?V color for NGC2099(?lled blue bullets),Hyades(open triangles),and M34 members(open green bullets)with overplotted the family of age-parameterized curves from gyrochronology corresponding to ages of600,500and200Myr(from top to bottom,respectively).Fast rotators with P d<4among NGC2099and M34 members are plotted with smaller symbols.Bottom panel:light curve amplitude(?V)vs.rotation period for NGC2099 G-type(blue bullets)and K-type(red asterisks)members,G-type and K-type Hyades members(open blue and red triangles,respectively),and M34members(green open bullets).The upper limits of the?V-P relation for dwarf G(solid line)and K stars(dotted line)from Messina et al.(2003)are over-plotted.

may be contaminated by very young WTTS,which are usu-ally fast rotators.Alternatively,some of these fast rotators may be cluster members but belonging to close binaries of BY Dra,RS CVn,W UMa or FK Com types,which are rapidly rotating due to tidal interaction and synchroniza-tion.Third possibility may be the false detections of the periods.For example,the presence of two activity centers in the stellar photosphere at the epochs of observations, about180?away in longitude from each other,can produce a light modulation with half of the true rotation period.In these cases,consecutive observation seasons are needed to detect the true rotation period(Padmakar Parihar et al. 2008).Identi?cation of single fast rotating cluster members at an age of about500Myr would be indeed very interest-ing and challenging to models of evolution of stellar angular momentum.

Our study of NGC2099is aimed at?lling the gap in the description of the angular momentum and magnetic activ-ity evolution in the age range from about200to600Myr. In the top panel of Fig.7we plot the rotation periods of the NGC2099G and K stars against their reddening corrected B?V color.We also include similar data of the slightly older(~625Myr;Perryman et al.1998)Hyades open clus-ter from Radick et al.(1995)and of the younger(~200 Myr;Irwin et al.2006)M34cluster for a comparison.Such a comparison is restricted to the0.7<~M/M⊙<~1.1mass range,which roughly corresponds to the0.52<(B?V)< 1.0color range within which most of the NGC2099candi-date members fall.The(V?I)colors of M34members were converted into B?V colors by interpolating between colors of dwarf standard stars as tabulated in Cox(2000).Among the NGC2099and M34members,we can identify a longer-

S.Messina et al.:Rotation and variability in NGC 20999

period branch (P d >4),which is

represented by ?lled and open bullets in the top panel of Fig 7,which is also present among Hyades stars (open triangles),and a short-period branch (P d <4)which has no counterpart among Hyades stars.

Within the longer-period branch,we have computed the median period of G stars (0.52

Our measurements of rotation periods are very impor-tant since there is no determined period distribution at the age of about 500Myr.In the most recent work on this subject (Irwin et al.2007)the distribution of rotation pe-riods in the 200-600Myr range was just interpolated.Now,we have added an additional point to better constraining evolution models.On the other hand our ?nding raises the question why magnetic braking,at least in G8-K5stars,has been ine?ective in the age range from about 200to 500Myr.Presently,we are not in the position to give any reasonable explanation;however,once the rotation period distributions for the other target clusters of RACE-OC will be determined,we will be able to carry out a more accurate and robust comparison between observation and theory.In the bottom panel of Fig.7we plot the light curve amplitudes vs.rotation period for the NGC 2099,Hyades and M34clusters.As investigated by Messina et al.(2001,2003),the maximum amplitude of light curve monotoni-cally decreases with rotation period following power laws with di?erent exponent in di?erent mass ranges.Here,we

Fig.8Distributions of standard deviations of V-band light curves of periodic variables found in the open cluster NGC 2099.

over plot the ?ts from the cited works.We see that the amplitudes of periodic variables of NGC 2099and M34are always smaller than the maximum expected amplitude.One explanation of these low amplitudes is that it is very un-likely to ?nd a star at its maximum light curve ampli-tude from only one observing season.One needs 10-20light curves collected over years to obtain a maximum amplitude for spotted variables (see e.g.Messina et al.2003;Messina 2007b).But,at the same time,we argue that we have 31variables stars within,e.g.,the P=5-7days rotation interval and over this period range,on a statistical basis at least,few stars are expected to show their maximum light curve amplitude,which we never ?nd.Therefore,we suspect that there should be some other age-dependent quantity which controls the level of activity,other than rotation and mass,and makes older stars less active than younger.A similar suspect was already raised by Messina et al.(2001),who found evidence that,for a ?xed mass and rotation period,the level of starspot activity increases from the zero-age main sequence up to the Pleiades age (~130Myr)and then after it decreases with age.At an age of 200Myr,the am-plitude of K stars is signi?cantly decreased with respect to K-type Pleiades stars,as shown in the Fig.16of the paper by Irwin et al.(2006).Again,the younger G8-K5stars in M34show a median light curve amplitude,that is a level of photospheric magnetic activity,which is larger than the older NGC 2099stars,although the mass range as well as the rotation period distribution are the same.5.3.Non-periodic variables

By analyzing the sample of G and K periodic stars,we ?nd that the average ratio between the V-band light curve am-plitude and its standard deviation is 2.7±0.1,which must be considered to be valid for a type of variability arising from cool starspots.The expected maximum light curve amplitude of G and K stars is ?V ?0.15and ?V ?0.20mag,respectively (see Fig.7).Therefore,stars having an obser-vational accuracy better than σ?0.07mag (?0.20/2.7),which correspond to stars brighter than V ?20(Fig.3),can

北大青鸟:详细设计说明书

招聘网站设计项目详细设计 第一部分、引言 1.1编写目的 本说明在概要设计的基础上,对招聘网站设计项目的各模块、页面、脚本分别进行了实现层面上的要求和说明。 软件开发小组的产品实现成员应该阅读和参考本说明进行代码的编写、测试。 1.2背景 说明: A、软件系统的名称:招聘网站设计项目 B、任务提出者:668Job在线科技发展有限公司 开发者:北大青鸟Aptech产品开发部 本项目将实现668Job的原型部分,并且在该原型的基础上进行功能的扩展和需求的界定,最终完成的版本将在https://www.360docs.net/doc/064247505.html,网站上使用。提供互联网上的求职、招聘登记和搜索服务。 C、本系统将存储用户信息,668Job将与其他的系统共享这些注册信息,共享的系统可能是 668Job电子邮件系统、668Job电子杂志分发系统。 这些系统之间不提供应用程序级别的接口,数据共享通过SQL Server数据库表的公共访问来实现。 本系统将使用SQL Server 2000作为数据库存储系统,SQL Server 2000企业版将由668Job自行购买。 1.3定义 IPO图——输入/处理/输出图,一般用来描述一个程序的功能和机制;

1.4参考资料 相关的文件包括: A、湖人诊所的内部文件《核准招聘网站设计项目》; B、《招聘网站设计项目需求说明》; C、《招聘网站设计项目项目开发计划》; D、《招聘网站设计项目概要设计》; 参考资料: A、北大青鸟Aptech ACCP3.0 Sem2《基于软件开发项目的毕业设计》; B、北大青鸟Aptech ACCP3.0 Sem2《ASP程序设计》; C、国家标准《详细设计说明书(GB8567——88)》; D、莱克公司的人力资源管理项目的详细设计说明; 合同: A、《招聘网站设计项目合同20031102 - 54》; (说明:不同的文档都有第一部分类似的引言部分,这样是为了文档能够在独立使用的时候,能够提供足够的背景信息。)

信用社(银行)报表管理系统操作手册

信用社(银行)报表管理系统操作手册 目录 系统概述 (2) 第一章系统登录 (2) 第二章系统界面计菜单简介 (2) 第三章导入模版 (3) 第四章报表录入 (3) 第五章数据审核 (7) 第六章数据汇总 (8) 第七章下下级数据汇总 (9) 第八章数据上报 (9) 第九章报表类型转换 (10) 第十章报表数据转换 (12) 第十一章基层社报表录入基本流程 (14) 第十二章辅助程序的使用 (15) 系统概述 农村信用社报表管理系统是一套运行在Windows操作系统之下,集报表录入,数据审核,数据分析为一体的管理信息系统。功能比较完善,数据传送方式多样。因为此系统内容很多,我们此次学习必须懂得的部分,因而讲课的内容也不是按照系统的菜单顺序进行。

在报送模式上我们采用多级汇总模式。基层社在上报分级上既是联社的下级,同时也是本社各网点(分社和储蓄柜)的汇总行。我们目前上交联社的决算报表全部是汇总报表,而且大部分决算报表都只需编制汇总表。系统的汇总表是自动生成的,不能录入,因此我们决定启用下下级模式。具体设置是对于每一个基层社来说只有本社一个地区,即联社的下级地区,此地区拥有多个下下级地区,即分社或储蓄柜。 第一章、系统登录 运行报表管理系统程序进入登录界面(图1) 在姓名列表框中选择要登录的姓名,输入口令,选定报表日期,点击进入系统。 第二章、系统界面及菜单简介 系统的基本界面从上至下依次为菜单,快捷按钮,数据区(图2)系统菜单分为6部分: 1、系统维护:主要功能是报表模版,打印模版的设置和修改,审核、取数公式的浏览和定义等; 2、报表处理:主要功能是报表录入、报表数据查询、报表类型转换、盈亏合并等; 3、报表分析:主要功能是进行数据分析; 4、辅助项目:主要功能是数据导入导出,数据转换等; 5、帮助。 6、退出

软件工程项目管理计划书 完整版

储蓄业务项目管理计划书 1.简介 项目概述 本项目要开发一个银行系统,系统一共分为储蓄业务、贷款业务、外汇交易、网上银行、信用卡业务和系统管理六个子系统。本团队负责其中的有关储蓄业务 的子系统。通过团队合作开发整个子系统,使团队成员获得软件工程开发的实际训练。本系统采用目前主流的B/S开发架构,将与整个银行系统一起发布。不单独发布。交付的产品包括可执行的文件、源代码、技术文档与用户使用手册等。本系统的开发过程中的主要工作是子系统需求分析、系统总体设计、子系统源代码开发、子系统测试、交付团长进行最后的集成、整个系统的测试。关键里程碑是制定项目管理计划书、制定需求设计规格说明书初稿、制定系统设计报告的初稿、进行子系统运行情况的检查与测试、进行系统集成后的运行情况的检查与测试。项目所需工具是个人电脑和开发工具。进度为11周,工程量为3人/天。 项目范围说明 (1)提交文档:项目管理计划、需求规格说明,设计报告、测试报告、用户使用手册和项目个人总结。其中项目总结为每人一份,每个小组所有成员的总结装订在一起;其余文档每组提交一份。每个团队可将各小组的文档综合到一起,各小组也可自行分开提交,具体方式由团队内部协商确定。所有文档需要提交电子版和打印稿。 (2)源程序检查:一共两次。第一次检查每个小组的子系统运行情况。第二次检查每个团队内六个小组集成后完整的银行系统运行情况,检查完成后需要提交程序源文件和可执行的系统。程序检查安排在上机时间进行。 软件项目计划书的演化 软件项目计划书在第三周周末前经由小组讨论、共同撰写、汇总整合三步骤形成初稿,第四周以后根据项目的进展可以对其进行修改,需要有组员提出修改意,在全体会上讨论通过,并由组长整理修改意见并作出相应的修改。其余组员同步获得更新稿。 2.项目组织管理 过程模型 表1.过程模型表 团队的分工与合作

北大青鸟软件开发课程

学软件开发,找软件工程师培训学校,北京哪家较好?学软件开发已经受到了广大初高中毕业生的青睐,作为北京地区的学生,选择在哪个学校学习软件开发已经成为广大考生迷惑的问题。而众所周知的北大青鸟软件开发课程是最好的,自然学软件开发去北京北大青鸟佳音校区! 20世纪90年代以来,全球软件行业作为新兴产业,每年以平均13%的发展速度增长,中国处于价值链低端,产业态需要,国际软件行业的发展,迫使中国软件产品发展迫在眉睫。我国软件产品的整体技术含量和价值含量都比较低,需要培养高素质软件开发人员。国际化产业的需求,国家人才的缺乏导致软件开发成为近年来年较热门的IT专业。 那么我们为什么要选择北京北大青鸟佳音校区软件开发专业呢?其优势如下: 第一、课程系统,全面 北京北大青鸟佳音校区提供的不是单科的培训,而是系统的,全面的软件开发技术的培训,所有课程结构循序渐进。 第二、课程轻重分明 本课程重点是培养Java高级工程师和.net高级工程师,北京北大青鸟佳音校区的宗旨是“让学精一门语言,然后培养学生融会贯通的思想,学活其他语言”,因为软件的发展日新月异,学生只有学

活了程序设计语言,毕业后才能适应软件开发工作,才能在这领域里有所突破。 第三、采用“产学元方式教学” 北京北大青鸟佳音校区在平常的教学过程中,尽可能的将教学内容和企业发展相结合,学生时常可以去企业实践、用课本上的知识来为企业服务,用企业的先进技术带动学校的发展。真正做到学有所长、学有所用。 第四、培养扎实的理论基础 北京北大青鸟佳音校区不仅提供专业编程知识,同时,为了锻炼学生逻辑思维,还设置其他相应课程,比如:高数等,为了让学生全面掌握计算机软件,我们还开设了数据结构、操作系统等课程,为学生的进一步的学习。 第五、实践性强,针对性强 北京北大青鸟佳音校区的课程是与企业完全同步的,每个实践例子都是经过行业专家长期研讨开发出来的,因此在内容组织上,授课方式上都有成熟而先进的经验,确保学员“能够学会”,“学会了能够就业”。 第六、我们重视理论+实践,也注重职业素养的培养。 北京北大青鸟佳音校区的课程关注企业所注重的职业素养的培训,在班级管理,就业训练上都有专门的人员进行负责,保证项目经

NC系统报表操作手册

NC 系统报表操作手册 一:报表分类的创建与维护 首次使用报表或者增加不同报表分类时必须先创建报表分类,才能建立新的报表,如果增加同类报表时不需要再创建报表分类。 【功能位置:企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织】 报表分类增加方法:进入【企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织界面】 如果没有创建过报表分类的话,系统将没有任何报表分类名称显示,然后点击按钮,按屏幕提示输入分类名称,其中上级分类为空,最后点击【确定】,完成报表分类的创建。 报表分类的修改 、删除方法:对于已存在的报表分类进行修改或删除时,首先选中要操作的报表分类,然后使用 工具可以实现。 备注:每个报表表样必须属于某个报表分类,初始使用报表时必须先增加报表分类。如果没有报表分类或者没有选择任何报表分类的情况下 报表新增功能为灰色不可用状态。 1.选择报表 2.点击增加 3.如果分类名

二:报表格式的创建与维护 报表名称的创建 【功能 位置:企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织】 新建报表名称的方法:在该界面输入报表主组织,选择报表分类,然后点击【新增】按钮,在界面引导中输入报表表样编号、报表名称,其中报表分类自动显示,公式单元编辑默认选择不控制,最后点击保存即可完成报表名称的创建。 在以上界面保存后即可显示如图示样 2.选择报表分 3. 点击 4.输入报表编号、报表名称 最后点击 1.选择报表 2.选择报表 4.输入报表编号、报 表名称和报表表样分

点击该界面的返回即可呈现报表的列表浏览状态 左边显示报表分类,右边显示该 备注:所有单位私有报表编号方式为本单位编号+三位流水号 如果要对新建立的报表进行修改或删除时可以选中该报表然后使用下图列示的【修改】和【删除】等按钮进行操作。 报表关键字、格式设计及公式定义 实现报表关键字、报表项目和报表公式的创建 【功能位置:企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织】 进入该界面后首先左边窗口选择报表所属的分类,在右边窗口可以看见该分类下的所有报表,然后选择要编辑的报表点击上边工具栏中的【格式设计】按钮,即可进行报表关键字设置、报表项目设置、单元格属性设置和公式设置。

NC系统报表操作手册

NC系统报表操作手册 一:报表分类的创建与维护 首次使用报表或者增加不同报表分类时必须先创建报表分类,才能建立新的报 表,如果增加同类报表时不需要再创建报表分类。 【功能位置:企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织】

1.1报表分类增加方法:进入【企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织界面】 如果没有创建过报表分类的话,系统将没有任何报表分类名称显示,然后点击 按钮,按屏幕提示输入分类名称,其中上级分类为空,最后点击【确定】,完成报表分类的创建。 1.选择报表主组织 2.点击增加报表分类 3.如果分类名称并确定

1.2 报表分类的修改、删除方法:对于已存在的报表分类进行修改或删除时,首 先选中要操作的报表分类,然后使用工具可以实现。 备注:每个报表表样必须属于某个报表分类,初始使用报表时必须先增加报表分类。 如果没有报表分类或者没有选择任何报表分类的情况下报表新增功能为灰色不可用状态。 二:报表格式的创建与维护 2.1 报表名称的创建 【功能位置:企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织】 2.1.1 新建报表名称的方法:在该界面输入报表主组织,选择报表分类 ,然后点击【新增】按钮,在界面引导中输入报表表样编号、报表 名称,其中报表分类自动显示,公式单元编辑默认选择不控制,最后点击保存即可完 成报表名称的创建。 3. 点击新增 1.选择报表主组织 2.选择报表分类

在以上界面保存后即可显示如图示样 点击该界面的返回即可呈现报表的列表浏览状态 备注:所有单位私有报表编号方式为 本单位编号+三位流水号 2.1.2报表名称修改与删除2.选择报表 分类 4.输入报表编号、报表名称 最后 点击保存按钮即可。左边显示报表分类,右边显示该分类下的报表列表 4.输入报表编号、报表名称和报表 表样分类,最后点击保存按钮。

《软件项目管理计划书》最佳模板

软件项目管理计划书 项目名称: 时间:年月日

目录 1.简介 (3) 1.1.项目概述 (3) 1.2.项目主要功能及性能 (3) 1.3.项目交付产品 (3) 1.4.参考资料 (3) 2.项目组织 (3) 2.1.过程模型 (3) 2.2.团队的分工与合作 (4) 3.管理过程 (4) 3.1.管理目标及优先级 (4) 3.2.风险管理 (5) 3.3.监督及控制机制 (5) 3.4.人员计划 (5) 3.5.培训计划 (6) 3.6.风险管理计划 (6) 3.7.项目配置计划 (7) 3.8.计划更新策略 (7) 3.9.项目沟通计划 (8) 3.9.1.项目组会议 (8) 3.9.2.项目报告机制 (8) 3.10.项目的重用计划 (9) 3.11.质量保证活动 (9) 3.11.1.内部审核 (9) 3.11.2.阶段审核 (10) 4.技术过程 (10) 4.1.开发工具、方法和技术 (10) 4.2.软件需交付的文档 (10) 5.开发进度安排及预算 (11) 5.1.进度表格描述 (11) 5.2.开发过程中的资源需求 (11) 5.3.软件管理过程中预算及资源分配 (12) 5.4.项目进度及关键工期设置 (12)

1.简介 1.1.项目概述 1.2.项目主要功能及性能 1.3.项目交付产品 (1)提交文档:项目管理计划、需求规格说明,设计报告、测试报告、用户使用手册和项目个人总结。其中项目总结为每人一份,每个小组所有成员的总结装订在一起;其余文档每组提交一份。每个团队可将各小组的文档综合到一起,各小组也可自行分开提交,具体方式由团队内部协商确定。所有文档需要提交电子版和打印稿。 (2)源程序检查:一共 1.4.参考资料 2.项目组织 2.1.过程模型

FastReport--打印报表操作手册知识分享

安易信息系统 FastReport报表打印格式操作手册 目录 FastReport对象 (2) “Text”对象 (3) “Band”对象 (6) “Image”对象 (9) “SubReport”对象 (10) “Line”对象 (10) “CheckBox”对象 (10) “RichText”对象 (10) “OLE”对象 (11) “Chart”对象 (12) “Shape”对象 (14) “Barcode”对象 (14) “RichText 2.0”对象 (15) 设计器 (16) 使用控制键 (17) 使用鼠标 (17) 报表选项 (17) 页面选项 (18) 设计器选项 (20) 对象观察器 (21) “插入数据字段”窗口 (22) 数据字典 (22) 表达式编辑器 (27) 工具栏 (29)

“标准”工具栏 (29) “格式”工具栏 (30) “边框”工具栏 (31) “对齐”工具栏 (32) 对象的属性和方法 (33) 解释器的使用 (38) 创建ANYIHIS的FastReport报表 (39) FastReport对象 图标名称描述 Text 提供里面包含多行文本的矩形框。文本允许包含变量。 Band 条状区域。定义区域包含的最终报表的位置。 Picture 显示BMP,ICO,WMF,EMF和JPG图像格式。来源可以是BLOB 字段。不连接到FR.inc就不能在FastReport中使用JPG格式。 SubReport 用于创建子报表。当你插入这个对象到一个报表时,你将看到在你的报表中增加一个新页面。 Line 在报表上画垂直或水平线条。 Shadowed text 提供包含在一个矩形边框中的多行文本,并可设置阴影和(或者)渐变色填充。用于打印标签。

项目管理计划书-经典模板

XX Project Plan XX工程计划 Prepared by 拟制Date 日期 yyyy-mm-dd Reviewed by 审核Date 日期 yyyy-mm-dd Approved by 批准Date 日期 yyyy-mm-dd

Revision record 修订记录 Distribution LIST 分发记录

Catalog目录 7 1 1 Introduction 简介 7 .1目的 7 .2范围 7 .3参考资料 7 22Resource Summary资源概述 8 33Project specific software Processes 工程特定的软件过程 8 4 4 Project Scope工程范围 8 5 5 Deliverables交付件 8 .4 Customer Deliverables给客户的交付件 8 .5 Internal Deliverables内部交付件 8 6 6 Organization and Responsibilities组织和职责 10 77 Estimated Size /Effort/schedule规模/工作量/进度的估计 10 .6 size估计的规模 10 .7 effort估计的工作量 11 .8 schedule估计的进度 11 88 Project resource required 工程所需资源 11 .9 Requirement 设备需求 11 .10 tools 软件工具 12 .11文档资料 12 .12 Supplied Products 需要客户提供的产品 12 .13人员需求 12 .14差旅

财务报表网上申报操作手册

财务报表网上申报系统操作手册 目录 一、财务报表网上申报2 1.进入“财务会计报表申报”页面2 2.下载财务报表电子表单3 3.填写并提交财务报表电子表单6 二、财务报表申报情况网上查询8 1.进入“申报区”8 2.选择查询条件8 3.查询结果9 4.查看申报数据9

一、财务报表网上申报 1.进入“财务会计报表申报”页面 (1)登录成功后即可进入XX省国家税务局首页,如下图所示。 (2)点击主菜单上的“申报区”从下拉菜单中选择“财务会计报表申报”即可以进入财务报表网上申报页面,如下图所示。

2.下载财务报表电子表单 (1)选择会计制度类型和报表所属期 进行企业所得税年度汇算清缴申报时,系统将自动在“应申报财务报表(年报)”栏目中生成应申报记录,纳税人无需手工选择所属期,可直接在“应申报财务报表(年报)”栏目中选择会计制度类型,然后点击“下载电子表单”,如下图所示。 进行企业所得税季度申报和其他税种申报时,纳税人既需要手工选择财务报表类型,也需要手工选择报表所属期。具体步骤如下: 首先进入“财务会计报表申报”区后在会计制度类型中选择所适用的会计制度,如下图所示。 然后点击“报表所属期起”右边的图标会弹出日期选择框,选择一个日期作为“报表所属期起”,如下图所示。

再点击“报表所属期止”右边的图标会弹出日期选择框,选择一个日期作为“报表所属期止”,如下图所示。 完成“会计制度类型”、“报表所属期起”和“报表所属期止”的填写后点击右边的“下载电子表单”按钮,如下图所示,即可进入下载页面。

(2)下载财务报表电子表单表单 进入下载页面后,输入验证码,点击“下载电子表单”即可下载对应的财务报表,如下图所示。有多个财务报表时,需分别点击“下载电子表单”分别下载。 点击“下载电子表单”,则会弹出财务报表下载提示框,点击“保存”,选择保存路径,将财务报表保存到本机,如下图所示。

项目管理年度计划模板(规范版)3篇

项目管理年度计划模板(规范版)3篇Annual project management plan template (normative version) 汇报人:JinTai College

项目管理年度计划模板(规范版)3篇 前言:工作计划是对一定时期的工作预先作出安排和打算时制定工作计划,有了工作计划,工作就有了明确的目标和具体的步骤,大家协调行动,使工作有条不紊地进行。工作计划对工作既有指导作用,又有推动作用,是提高工作效率的重要手段。本文档根据工作计划的书写内容要求,带有规划性、设想性、计划性、方案和安排的特点展开说明,具有实践指导意义。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:项目管理年度计划样本标准版 2、篇章2:项目管理年度计划例文(通用版) 3、篇章3:项目管理年度计划范文标准版 篇章1:项目管理年度计划样本标准版 一、工程项目管理部人员工作计划 1.制定工程部门制度及岗位责任制,明确各岗位职责。 2.参与施工图纸会审工作。 3.主持施工方案、总进度计划、质量控制计划的编制工作,以及工程项目划分、见证计划的审批工作。

对各项质量目标进行细化、量化分析,有针对性编制各 个工程项目的质量控制计划并监督实施。 4.工程项目管理部人员自身要认真学习GB/T 19001标准、公司质量管理手册内容及各相关施工质量规范,严格现场管理,对重要部位、关键技术、控制难度大、影响大、经验欠缺的施工内容及新材料、新工艺、新技术、新设备列为质量控制点,实行重点控制,发现偏差及时纠偏。 5.定期对项目部的质量、安全、进度等情况进行检查。 二、对项目部的检查工作计划 1、质量管理方面 (1)检查项目部质检员、实验员、资料员、测量员等技 术人员的持证上岗情况及对该岗位工作的熟悉情况,无证从事质量管理岗位的人员进行取证学习,尽量杜绝无证上岗;对于 持证人员进行在岗培训,不断更新知识以适应现在越来越的工程采用新工艺、新技术、新材料的技术要求。 (2)人员培训计划,为提高工程中质量管理水平,必须 使质量管理岗位人员具备相应的质量管理能力,首先要求无证从事质量管理岗位的人员进行取证学习,尽量杜绝无证上岗;

软件项目管理项目计划书

湖南文理学院实验报告 时间:2013年12月3日 课程名称:软件项目管理 实验名称:xx学院毕业生就业信息管理系统项目计划书 班级:姓名:同组人: 指导教师评定:签名: 一、实验目的 掌握项目计划书的格式和写作要求,会结合具体项目写作项目计划书。 二、实验要求 1、结合模拟项目写出项目计划书。 2、提交项目计划书一份。 三、实验环境 1.硬件:计算机 2.操作系统:windows平台。 3.相关软件:Microsoft office软件。 四、实验内容 1 引言 1.1 编写目的 为了保证项目团队按时保质地完成项目目标,便于项目团队成员更好地了解项目情况,使项目工作开展的各个过程合理有序,因此以文件化的形式,把对于在项目生命周期内的工作任务范围、各项工作的任务分解、项目团队组织结构、各团队成员的工作责任、团队内外沟通协作方式、开发进度、经费预算、项目内外环境条件、风险对策等内容做出的安排以书面的方式,作为项目团队成员以及项目干系人之间的共识与约定,项目生命周期内的所有项目活动的行动基础,项目团队开展和检查项目工作的依据。 1.2 背景 项目的名称:xx学院毕业生就业信息管理系统。

项目的委托单位:xx学院计算机科学与技术学院软件开发部。 项目的用户(单位):xx学院各届毕业生。 项目的任务提出者:xx学院计算机科学与技术学院软件开发部。 项目的主要承担部门:xx学院计算机科学与技术学院软件开发部。 项目建设背景:通过本系统可以使xx学院毕业生就业信息管理工作更加合理化、科学化,提高工作的效率,从根本上改变就业管理工作的方式,通过Internet,各院系和学生利用网络的便利,可以直接查询和提交就业信息。在这种系统平台下,可以快速、有效、全面的反映最新的用人单位信息、毕业生基本信息和就业趋势,及时提供高校学生工作管理人员对历届用人单位需求信息的分析统计,及时有效地调查分析大学毕业生的择业趋势和引发的心理问题并进行及时有效的就业指导。可以做到信息的规范管理、科学统计和快速查询,从而减少管理方面的工作量。 1.3定义 Microsoft SQL Server2008:数据库开发环境 Visual Studio 2010:程序开发环境 1.4参考资料 [1]朱少民.软件过程管理.北京:清华大学出版社,2007 [2]朱少民.软件质量保证和管理.北京:清华大学出版社,2007 [3]韩万江,姜立新.软件开发项目管理.北京:机械工业出版社,2004 [4]Harold Kerzner,杨爱华,等.项目管理—计划、进度和控制的系统方法.第9版.北京: 电子工业出版社,2006. 1.5标准、条约和约定 《计算机科学与技术学院毕业生就业信息管理系统立项建议书》 《计算机科学与技术学院毕业生就业信息管理系统项目任务书》 《计算机科学与技术学院毕业生就业信息管理系统项目履行合同》 2、项目概述

北大青鸟网上商城项目开发计划

北大青鸟网上商城系统项目开发计划

J2EE第三小组 目录 1.引言 (2) 1.1编写目的 (2) 1.2项目背景 (3) 1.3定义 (3) 1.4参考资料 (3) 2.项目概述 (5) 2.1工作内容 (5) 2.2条件与限制 (5) 2.3产品 (5) 2.4运行环境 (5) 2.5服务 (6) 2.6验收标准 (6) 3.实施计划 (7) 3.1任务分解 (7) 3.2进度 (7) 3.3预算 ...................................................................................... 错误!未定义书签。 3.4关键问题 ............................................................................... 错误!未定义书签。4.人员组织及分工. (7) 5.交付期限 (8) 6.专题计划要点 (8) 1.引言 1.1编写目的 本计划提供一份合理的项目开发进程表,使所有的开发人员任务明确,步调一致,最终共同准时的完成项目.软件工程的目标是提高软件质量,本计划也是从软件的正确性,性能,易用性,灵活性,可重复性,可理解性等各个方面出发,以提高软件质量为最终目的而制定.读者为参与开发的所有相关人员.

1.2项目背景 说明: A、软件系统的名称:北大青鸟网上商城系统 B、任务提出者:北大青鸟J2EE九月班第三小组 C、开发者:北大青鸟J2EE九月班第三小组 实现完成的系统将作为北大青鸟珠在线销售系统使用,所应用的网络为Internet网络。 D、本系统将是独立的系统,所产生的输出独立。 本系统将使用Oracle9i作为数据库存储系统. 1.3定义 1.4参考资料 相关的文件包括: A、内部文件《北大青鸟网上商城电子商务系统案例研究项目》; B、北大青鸟网上商城电子商务系统案例研究项目分析会议备忘录; C、《北大青鸟网上商城电子商务系统案例研究项目可行性分析》; 参考资料: A、北大青鸟Aptech ACCP3.0 Y2《基于软件开发项目的毕业设计》; B、国家标准《软件需求说明书(GB856T——88)》; C、亚马逊网站的软件需求说明; 合同: A、《北大青鸟网上商城电子商务系统案例研究项目合同20040510 - 2》;

NC系统报表操作手册教程文件

N C系统报表操作手册

NC系统报表操作手册 一:报表分类的创建与维护 首次使用报表或者增加不同报表分类时必须先创建报表分类,才能建立新的报表,如果增加同类报表时不需要再创建报表分类。 【功能位置:企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织】 1.1报表分类增加方法:进入【企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织界面】

如果没有创建过报表分类的话,系统将没有任何报表分类名称显示,然后点击 按钮,按屏幕提示输入分类名称,其中上级分类为空,最后点击【确 定】,完成报表分类的创建。 1.2 报表分类的修改 、删除方法:对于已存在的报表分类进行修改或删除 时,首先选中要操作的报表分类,然后使用工具可以实现。 1.选择报表主组织 2.点击增加报表分类 3.如果分类名称并确定

备注:每个报表表样必须属于某个报表分类,初始使用报表时必须先增加报表分类。如果没有报表分类或者没有选择任何报表分类的情况下报表新增功能为灰色不可用状态。 二:报表格式的创建与维护 2.1 报表名称的创建 【功能位置:企业绩效管理-企业报表-报表表样-全局/报表表样-集团/报表表样-报表组织】 2.1.1 新建报表名称的方法:在该界面输入报表主组织,选择报表分类 ,然后点击【新增】按钮,在界面引导中输入报表表样编号、报表名称,其中报表分类自动显示,公式单元编辑默认选择不控制,最后点击保存即可完成报表名称的创建。 3. 点击新增 1.选择报表主组织 2.选择报表分类 4.输入报表编号、报表名称和报表 表样分类,最后点击保存按钮。

用友NC报表系统操作手册

说明:该题仅供NC项目关键用户培训练习使用,不作其它用途;进一步完善该套考试题, 一、网络报表 一、练习前准备:完成损益类结转科目设置和损益结转 1、完成损益类结转科目设置 操作:登陆本单位NC账套。 进入【客户化——基本档案——财务会计信息——会计科目】,对5101、5401、5402、5102、5501、5502、5503、5201、5203、5301、5601、5701科目,如果没有二级科目,增加两个二级科目:01同一级名称,99结转科目。如果二级科目中没有99结转科目,增加99结转科目。 2、完成损益结转 操作:如果已经定义自定义结转,通过自定义结转生成结转凭证; 如果没有定义自定义结转,也可通过填制凭证,通过99科目进行结转。 3、将所有凭证审核记账 操作:进入【财务会计——总账——凭证管理——审核】,对所有未审核凭证进行审核。 进入【财务会计——总账——凭证管理——记账】,对所有未记账凭证进行记账。 二、计算会计报表并上报 1、建立本单位用户,分配角色 操作:从主界面,进入【系统设置——用户管理】,选择本单位,建立新用户01,分配角色“培训组”。 2、选择任务 操作:在主界面顶端,选择【设置——当前任务】,设置“财务月报”作为当前任务。 3、完成资产负债表单元公式设置 操作:从主界面,进入【报表格式管理——报表】; 选择左侧的“会计报表”目录,勾选右侧列表中的资产负债表,单击顶端按钮【工具——格式设计】; 仿照其他项目期末数公式,完成“短期投资”、“应收股利”、“应收利息”的期末数公式设置; 其他单元公司保持不变,保存后退出。 4、计算会计报表 操作:从主界面,进入【数据采集——录入】; 关键字时间选择“2007-01-31”; 按利润表、利润分配表、资产负债表的顺序计算各张报表。 5、报表上报 操作:从主界面,进入【报送——上报确认】; 选择一张会计报表,单击顶端的“上报确认”按钮; 进入【数据采集——录入】,检查已经上报报表是否以无法修改。 6、请求取消上报 操作:从主界面,进入【报送——上报确认】; 选择一张已经上报的会计报表,单击顶端的“请求取消上报”按钮;

软件项目管理计划模板

. 软件项目管理计划 Version 1.2专业资料word . Revision 专业资料word . 录目 1. 简介1 项目概述1.1 1.2 项目交付产品1 SPMP 的演化1.3 1 参考资料1.4 1 1.5

术语与缩写1 1 2. 项目组织 1 2.1 过程模型2. 2 组织结构1 2. 3 组织接口1 2.4 项目职责2 2 管理过程3. 3 3.1 管理目标和优先级3.2 假设、依赖关系和限制3 风险管理3.3 3 监督和控制机制3.4 3 3.5 人员计划3 3 4. 技术过程 4 方法、工具和技术4.1 软件文档4.2 4 用户文档4.3 4 4.4 项目支持功能4 4 工作包、进度表和预算5. 4 工作包5.1 依赖关系5.2 4 资源需求5.3 4 预算和资源分配5.4 4 5.5 进度表4 6. 其他索引 6.1 4 6.2 附录 4 专业资料word . 1. 简介 1.1 项目概述 说明:简要综述项目的目标、发布的产品、主要工作活动、主要工作制品、关键里程碑、所需资源、进[度和预算等。必要的情况下,还应描述该项目与其他项目的关系。] 1.2 项目交付产品

说明:列出主要的可交付产品、交付日期、交付地点和满足项目协议条款所需的质量。][的演化SPMP1.3 说明:描述如何以及由谁负责维护本文档,应指明更新内容的传播方式以及在变更控制下更新文档版本[ 的机制。] 1.4 参考资料 说明:提供项目计划中所引用的所有文档和其他信息资源的完整清单,包括标题、报告编号、日期、作[ 者以及发布机构。] 1.5 术语与缩写 说明:定义SPMP 所应用的全部术语和缩写词。][ 2. 项目组织 2.1 过程模型 说明:描述该项目所使用的软件过程模型,或者是所遵循的组织标准模型。过程模型需要指明[里程碑的时间、基线、评审、工作制品、项目交付产品、结束标志等。] 2.2 组织结构 说明:描述项目的内部组织结构,可以参考如下的层次结构图形式。][专业资料word .

北大青鸟.网络工程师.2.0 【试题】2.20

1、在Red Hat Enterprise Linux 4.0系统中,下列提高工作效率的功能中,()不是bash的功能。(选一项) A 命令行补齐 B 别名 C 使用鼠标复制和粘贴 D 命令历史 2、在Dreamweaver MX中,为了使站点内的页面风格统一,经常使用到模板,以下有关模板的说法正确的是()。(选一项) A 模板就是库项目 B 模板保存后不能进行修改 C 在模板中可以包含图像、表格等对象 D 模板修改后,必须手动更新应用该模板的网页 3、公司网络采用Windows server 2003单域模式进行管理,要实现域用户user 在域中任意一台计算机上登录时都显示同样的桌面环境,应在用户属性的()标签中设置。(选一项) A 常规 B 终端服务配置文件 C 环境 D 配置文件 4、在RHEL4系统中,要实现磁盘配额,必须在系统中安装quota软件包,要查询该软件包是否已在当前系统中安装,可以使用的命令是()。(选一项) A rpm -q quota B rpm -ivh quota C rpm -e quota D rpm -U quota 5、为了确保自身的安全,计算机病毒会采取一些手段来伪装自身,逃避防病毒系统的检查,这体现了病毒的()特点。(选一项) A 非授权执行性 B 传染性 C 隐蔽性 D 潜伏性 6、某公司网络采用Windows server 2003单域结构进行管理,文件资料分布在域中的多台服务器上,采用()技术可以使所有文件资料看似存储在一台服务器上。(选一项) A DFS B DNS C DHCP D VPN

7、你是一个Windows server 2003域的管理员,现在你需要创建一个通用安全组帐号,则必须要求域的模式为()。(选二项) A Windows 2000 混合模式 B Windows2000 纯模式 C Windows Server 2003 模式 D Windows 混杂模式 8、 IOS是Cisco网络设备上运行的操作系统,作为初学者,小王()可以显示当前模式下支持的所有命令。(选一项) A 使用“show history”命令 B 在提示符下直接输入? C 在提示符下直接按下Tab键 D 使用“help?”命令 9、对硬盘分区并完成格式化后,就可以开始安装软件了,正确的顺序是()。(选一项) A 先安装操作系统,再安装应用软件,最后安装驱动程序 B 先安装操作系统,再安装驱动程序,最后安装应用软件 C 先安装驱动程序,再安装操作系统,最后安装应用软件 D 只需要安装操作系统,不需要安装驱动程序 10、你是一个Windows server 2003网络的管理员,网络中有10个用户,部分用户需要能读取和修改NTFS分区上的文件和文件夹,而另外的用户不能对这些文件和文件夹有任何权限,你需要为这些用户设置访问授权,采取以下()措施能使管理负担最小。(选一项) A在NTFS分区上分别为这些用户帐号设置访问授权 B创建一个组帐号,将所有用户加入到组帐号中,在NTFS分区上为组帐号设置访问授权 C创建多个组帐号,将需要具备同样权限的用户加入到同一个组帐号中,在NTFS分区上为这些组帐号设置访问授权 11、在Dreamweaver MX制作的网页中,表单常用来收集用户的信息,如果希望用户能输入自己的信息,而不是在备选项中进行选择,可以使用()表单元素。(选一项) A 文本区域 B 列表 C 单选按钮 D 复选框 12、在综合布线系统的水平子系统中,从信息插座到配线架的线缆总长度不能超过()米。 (选一项) A 5 B 12

部门决算报表操作手册

2016年度部门决算报表操作手册 编制报表前需准备资料: 2015年度决算定稿数、2016年结转后资产负债表(不含收入支出数)、收入支出表、支出明细表、2016年预算批复数(年初)、2016年预算调整数、财政收入总会计对帐单(各单位可自行打出)、非税收入对账单(有非税收入的单位)、单位机构人员状况、单位主要固定资产状况(房屋、土地、车辆、大型设备等)、单位在建工程状况(基本建设资金平衡表)等。各单位在年度结转前应对年度账务仔细审核,查看账务系统的财政拨款数是否与对账单一致、各个经济科目核算的内容是否有误、本年度固定资产增加与“其他资本性支出”数据是否一致、需要录入双分录的是否遗漏等,为编制决算做好准备工作。 部门决算是指全面反映各部门(单位)年度预算执行情况的综合财务报告。 一、编报范围 (一)单位范围: 1.行政单位:全部收支列入部门预算。 2.事业单位包括:财政补助事业单位、经费自理事业单位及参照公务员法管理事业单位等。 (二)资金范围:本套决算编报内容包括预算单位的全部收支情况,编报口径与单位预算衔接一致。 二、填报口径 本套决算收支报表均不包括偿还性资金;资产负债报表包含偿还性资金。 三、报表组成

2016年度部门决算报表数量与上年相同。基础数据表共27张报表,其中:主表21张,附表6张。 四、报表录入顺序 1、报表封面 2、财决12表(资产负债表) 3、以下按03、05-1、05-2、04(由05表自动生成)、02(半自动生成表,收入根据03表生成,支出根据04表生成,结余需人工填写)、06-1、06-2、08-1、08-2、07(半自动生成表,支出根据08表生成、收入需人工填写,结余自动计算出)。有基金支出和财政专户支出的,接着做09、10、10-1、10-2、11表。最后做01、01-1表(决算数自动生成,预算数人工填写)。附表按顺序做,即F01、F02、F03、F0 4、F05表。此外还有8张填报说明附表,也按顺序填报。 一定从资产负债表开始填。 表填写以后,在做其他报表之前,首先点击左上角的“工具”—“科目运算”,该报表所有的科目会自动提取。很方便哟! 怎样找报表编号:02表、03表,用数字做编号的表头哪里找?左上角“选表”—“表页签显示内容”—在“3(报表标识和标题)”前面打勾即可。 五、填制报表(部门决算报表) 首先安装15年度定稿数。安装在15年度的决算系统里,点击“装入”,覆盖原有数据即可。 下载、安装16年部门决算系统。(每年的系统都是单独的,不要把16年

项目管理计划模板

项目管理计划模板

1目的 ......................................................................................................................................................... 2项目摘要 ................................................................................................................................................. 2.1项目目标和范围 ............................................................................................................................. 2.2主要干系人 ..................................................................................................................................... 2.3里程碑和可交付成果...................................................................................................................... 2.4约束 ................................................................................................................................................. 2.5假设 ................................................................................................................................................. 2.6项目组织结构 ................................................................................................................................. 3项目计划 ................................................................................................................................................. 3.1项目生命周期 ................................................................................................................................. 3.1.1生命周期确认............................................................ 3.1.2制定项目过程及产物裁剪.................................................. 3.2工作分解结构 .................................................................................................................................