GSM移动电话的射频指标

GSM移动电话的射频指标
GSM移动电话的射频指标

GSM移动电话的射频指标

[摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。

1 射频(RF)指标的定义和要求

1.1 接收灵敏度(Rx sensitivity)

(1)定义

接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。

残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。

(2)技术要求

●对于GSM900MHz频段

接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09一-l07dBm,则接收灵敏度为优;若RF输入电平为-l07一-l05dBm,则接收灵敏度为良好;若RF输入电平为-105一-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。

●对于DCSl800MHz频段

接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为一l08一-105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03一-100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。

1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS

(1)定义

测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。

发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。

频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回归线最远的值。相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。

(2)技术要求

●对于GSM900MHz频段

①频率误差Fe

若Fe<40Hz,则频率误差为优;

若40Hz≤Fe6≤60Hz,则频率误差为良好;

若60Hz≤Fe≤90Hz,则频率误差为一般;

若Fe>90Hz,则频率误差为不合格。

②相位误差峰值Pepeak

若Pepeak<7deg,则相位误差峰值为优;

若7deg≤Pepeak≤l0deg,则相位误差峰值为良好;

若10deg≤Pepeak≤20deg则相位误差峰值为一般;

若Pepesk>20deg,则这项指标为不合格。

②相位误差有效值PeRMS

若PeRMs<2.5deg,则相位误差有效值为优;

若2.5deg≤PeRMS≤4deg,则相位误差有效值为良好;

若4deg≤PeRMS≤5deg,则相位误差有效值为一般;

若PeRMS>5deg,则这项指标为不合格。

●对于DCS1800MHz频段

①频率误差Fe

若Fe<80Hz,则频率误差为优;

若80Hz≤Fe≤100Hz,则频率误差为良好;

若100HZ≤Fe≤180Hz,则频率误差为一般:

若F e>l 80H z,则这项指标为不合格。

②相位误差峰值Pepeak

同GSM900MHz的指标。

②相位误差有效值PeRMS

同GSM900MHz的指标。

1.3 射频输出功率Po

(1)定义

鉴于移动通信组网时的远近效应(远近效应,就是指当基站同时接收两个距离不同的移动台发来的信号时,由于两个移动台功率相同,则距离基站近的移动台将对另一移动台信号产生严重的干扰。),在与基站通信过程中必须对移动台的发射功率进行控制(动态调整),以便能保证移动台与基站之间一定的通信质量而又不至于对其它移动台产生明显的干扰。同样,也可以对基站的发射功率进行射频功率控制。

测试移动台的射频输出功率在功率控制的每一级电平上是否满足ETSI规定的功率要求。

(2)技术要求

●对于GSM900Mz频段

每一功率控制电平对应的标称功率和允许的误差如表l(对于class IV移动台)。

●对于DCSl800MHz频段

每一功率控制电平对应的标称功率和允许的误差如表2(对于class I移动台)。

1.4调制频谱和开关频谱

(1)定义

由于GSM调制信号的突发特性,因此输出射频频谱应考虑由于调制和射频功率电平切换而引起的对相邻信道干扰。在时间上,连续调制频谱和功率切换频谱不时发生,因而输出射频频谱可分为连续调制频谱和切态频谱来分别地加以规定和测量。

连续调制频谱是测量由GSM调制处理而产生的在其标称载频的同频偏处(主要是在相邻

频道)的射频功率。

开关频谱即切换瞬态频谱,是测量由于调制突发的上下降沿而产生的在其标称载频的不同频偏处(主要是在相邻频道)的射频功率。

(2)技术要求

●对于GSM900MHz频段

①调制频谱(MOD pectsrum)

测试指标要求:调制频谱的每一条谱线均应在ETSI规定的Time-Plate的下方(具体的技术要求可参见ETSIll.10中的规定);

测试条件:功率电平设置(33dB m):

测试时,可选择中间信道进行测试。

在衡量调制频谱时,可使用谱线的指标余量(margin)。指标余量即最接近Time-Plate的一条谱线与Time-Pkate之间的距离。指标余量越大,则调制频谱越好,即对邻道的干扰越小。

对指标余量可作如下分析:

若margin>l0dBm,则调制频谱为优;

若0<margin<l0dBm,则调制频谱为较好;

若margin=0或谱线高度超出Time-Plate,则调制频谱为不合格。

②开关频谱(switch spectum)

测试指标要求:调制频谱的每一条谱线均应在ETSI规定的Time-Plate的下方;

测试条件:功率电平设备在5(33dBm);

测试时,可选择低、中、高三个信道进行测试如CH1、CH62、CHl24)。

对指标余量可作如下分析:

若margin>10dBm,则开关频谱为优;

若0<margin<l0dBm,则开关频谱为较好;

若margin=0或谱线高度超出Time-Plate,则开关频谱指标为不合格。

●对于DCSl800MHz频段

①调制频谱(MOD spectrum)

功率电平设置为0(30dBm) 。

指标要求同GSM900MHz。

1.5 杂散辐射

(1)定义

杂散辐射是指用标推测试信号调制时在除载频和由于正常调制和切换瞬态引起的边带以及邻道以外离散频率上的辐射(即远端辐射)。

杂散辐射按其来源的不同可分为传导型和辐射型两种。传导型杂散辐射是指天线连接器处或进入电源引线(仅指基站)引起的任何杂散辐射;辐射型杂散辐射是指由于机箱(或机柜)以及设备的结构而引起的任何杂散辐射。

这里只介绍Tx发射时传导型杂散的测量。

(2) 技术要求

测试条件:分辨带宽RB=l0KHz或分辨带宽RB=3MHz

视频带宽VB=l0KHz 视频带宽VB23MHz

(频谱仪带宽设置与有用信号和杂散信号的相对位置有关。)

功率电平设置为对应频段的最大功率等级指标要求:

①对于在发射状态的移动台,传导型杂散辐射在段频9KHz-1GHz内的杂散辐射功率电平应小于250nw(即-36dBm);在1GHz一1275GHz频段内的传导型杂散辐射功率电平应小于

1uw(即号-30dBm)。

②对于空闲状态的移动台来说,9kHz-1GHz频段内的传导型杂散功率电平应小于

2nW(-57dBm);

1GHz-12.75GHz频段内的传导型杂散功率电平应小于20nW(即-47dBm)。

③对于所有条件下的移动台,在M S接收频段GSM935MHz一960MHz/DCSl805一1880MHz内的杂散功率电平应不超过:

-25PW(即-76dBm)对于l类功率等级移动台

-45PW(即-84dMm)对于2、3、3、5类功率等级移动台

1.6 天线

这里介绍一种移动台天线性能的比较测试方法,可称为远场测试(>lOλ)。其原理是将多种被测移动台天线辐射功率与一个标淮移动台进行比较,来测量不同机型天线的远场辐射性能。由于这只是一种相对的测量方法,所以不能提供绝对的天线性能参数值。具体的测试方法见第2 部分。

2 射频(RF)指标测试

2.1 测试仪器及设备

RF指标测试一般所使用的仪器设备有:系统模拟器SS(或综测仪)、频谱仪FSA、移动台MS、RF信号发生器、陷波器、射频功率衰减器、模拟电池、测试SIM卡及与移动台相匹配的测试电缆等。

2.2 测试方法和框图

(1)接收灵敏度(Rx sensitivity) 基本RF指标测量。

a).将移动台和系统模拟器按图l连接起来;

b).按要求在相应的信道上建立一个呼叫;

c).设置功率控制电台为最大功率5(33dBm);

d).将RF输入电平从-102dBm调节到-ll0 dBm(GSM900MHz),观察残余误比特率(RBER),确定实际接收灵敏度性能;(对于DCSl800MHz,范围为-l08一l00dBm;

e).分别在低、中、高多个信道上进行上述测试。

输出功率Po、频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS、调制频谱、开关频谱等指标的测量设备和连接与接收灵敏度的测量基本相同,不再赘述。

(2)杂散辐射

a). 将移动台、系统模拟器及频谱仪按图2连接;

b). 信道60一65之间的一个频道上建立一个呼叫;

c).设置功率控制电平为最大功率等级;

d).设置频谱仪的RBW和VBW;

e).在l00KHz-1GHz、1-12.75GHz的频率范围内观察杂散辐射指标。

若移动台本身具有手动测试模式命令,则不需要系统模拟器,可直接进入测试模式进行发射,测试杂散辐射。移动台与频谱仪按图3连接。

2.3 天线远场测试

a).用两个测试天线分别连接综测仪和频谱仪;

b).将它们放置在相应的位置,使两个天线保持足够的距离,并保证在整个测试过程中三者

之间的相对:位置和方向保持不变;

c).在低、中、高三个信道上建立呼叫;

d).在频谱仪上读取接收到的辐射功率电平值;

e).在不改变位置的情况下,用其它类型的移动台和标准移动台进行测试;

f).比较接到的辐射功率,可以确定不同机型天线辐射出去的功率大小和天线辐射效率。

3 射频(RF)指标改进、提高的办法

在通信产品的开发工程中,测量是一种基本的、必要的手段,但不是最后的目的。在开发过程中更重要的是通过对测量得到的数据进行分析、运用理论和经验,找到解决问题和提高技术指标的办法。下面我们把在GSM手机研究开发中采用的分析方法和经验与同行作一交流。

3.1 如何提高接收机的灵敏度指标

若通过测量发现灵敏度不高,则问题主要出现在接收机的高频或中频部分,其次是模拟I/Q解调部分。可先通过测量模拟I/Q输出端的电平和信噪比来判断问题是出现在哪一部分。

灵敏度抢标主要与接收机的中频放大器特别是RF前端的LNT和第一混频器有关。在许多情况下,影响和制约灵敏度的因素不在于增益而在于噪声系数。对于GSM移动电话前端LNT 的要求是:噪声系数小于2dB、增益约15dB/GSM900或13dB/DCSl800,第一混频器的增益约10dB。键控AGC的可控制范围约20dB。该项指标的改进方法如下:

(1)选择高增益、低噪声的RF前端电路或ASIC。

(2)注意从前端到模拟I/Q输出端的净增益是否足够。

一般GSM移动电话I/Q单端输出的信号强度为500mVpp,根据EYSI标准的技术要求净增益应大于90dB。

(3)充分注意到RF和IF SAw滤波器的选择和输入输出匹配电路的设计。第一射频SAW滤波器应主要考虑具有低的插损:第二射频SAW滤波器主要考虑具有高的选择性;IF SAW滤波器要选低插损、选择性好的器件。

(4)BaLum也是一个很重要的高频器件,应通过测量看其是否满足电路设计的要求。

(5)RF Tx/RX开关IC和RF测试插座也必须通过指标测试,达到设计要求。

(6)EMC设计方面是否存在问题?应增强接地、屏蔽和滤波的措施。

(7)工艺方面的考虑:应注意PDB layout设计,特别是前端电路的布局设计和特征阻抗匹配设计;应注意到由于SMT工艺参数选择不合适会造成RF部分特别是SAW滤波器虚焊。

3.2频率误差指标的改进方法

(1)可通过测量判断l3MHz TCX0是否达到设计要求,若不满足要求则更换或重选配套的生产厂家。

(2)AFC控制软件和控制环路滤波电路的设计是否存在问题

(3)TCXO的供电回路设计是否有问题

3.3 相位误差指标的改进方法

(1)根据θ=ωt,我们知道:相位误差与时间误差和频率误差都有关系,因此,频率合成器的相位噪声和锁定时间会对该项指标造成影响。若频率合成器的锁定时间缩短会导致相应噪声加大,从而引起相位误差加大,这一点在GPRS的应用中需引起足够的重视。

(2)其他的改进办法请见参考资料[3]。

3.4 发射功率指标的改进办法

(1)检查PA的激励功率是否足够?若有问题,可加大激励功率;

(2)再次检查PA的输入和输出匹配电路设计是否正确;

(3)关键器件PA的技术参数是否满足要求;

(4)检查和测试RF开关、定向耦合器、天线端的RF测试接插件、PA供电电路是否正常;

(5)检查TX-VCO输出的电平是否足够;

(6)APC控制IC、APC控制软件中的table参数和算法是否有问题.

3.5 小型螺旋天线(stubby antinna)的改进方法

天线是移动电话的终极元件当然非常重要。有时会出现这种情况:当采用电缆测试时,整机的RF指标很好,但在做场检测时它的表现不好,可能出现的问题之一在于天线。

(1)正确设计天线与整机电路之间的LPF匹配电路型式和参数,并用网络分析仪和标准测试天线进行测试评估。天线的设计应与整机电路设计、结构设计、EMC设计一体化考虑。

(2)在满足结构强度的前提条件下,优先选择电导率较高的材料作为天线的内导体。内装天线笔者建议国内设计厂家不宜采用,因为设计、制造和测量都比较困难而且技术指标不高。

(3)天线内的填充材料介质和外部的封装塑料应损耗较小的材料。

(4)在其他情况相同的条件下,采用较粗和较长的天线有利于改善天线增益指标。(当然还要考虑到它对外观ID方面的影响)。

3.6 电源功耗指标的改进方法

该项指标与移动电话的通话时间和待机时间密切相关,它是广大用户最为关心的技术指标之一。

(1)选择低功耗的ASIC解决方案(在DCI.8V下能工作,能进入RTC下的深睡眠状态)。

(2)选择高效软件。

(3)择高效率的PA(PAE>50%)、高效率高增益的天线。

(4)精心设计PA的匹配电路和天线的匹配电路。

(5)选择高效率的受话器和振铃器。

(6)选择高效率的电源管理模块。

(7)合理地设计LED的布局、数量、和照明时间,照明时间选择l0秒左右即可。

通过大量的实际测量我们发现:不同型号的GSM移动电话在通话状态下的工作电流相差不

大(约2lomA/at level5 GSM);但在待机状态下的直流平均电流相差很大(可采用示波器和在整机回路中串入一个低阻值的高精度电阻来测量波形,然后通过计算占空比得到平均功耗)因此待机时间指标相差很远。在这一方面,目前表现最好的产品是菲利蒲生产的PH-989(约2.8mA)。3.7 发射机杂散指标的改进

移动电话的发射杂散指标在国家无线电管理委员会的型号核准测试中,是一项非常重要的、同时也是一项比较难通过的技术指标,所以应引起设计工程师足够的重视。改进的办法如下:

(1)改善调制频谱的质量;

(2)改善开关频谱的质量;

(3)power Ramp曲线的斜率不能太陡,以免引起带外频谱、杂散变大;

(4)Tx-VCO的带外频谱指标,特别是要注意二次和三次谐波的抑制指标是否满足整机的设计要求;

(5)PA的带外抑制指标(主要是二次谐波)是否满足设计要求;

(6)PA输入特别是PA输出端的BPF或LPF的指标是否满足设计要求;

(7) 发信机整体的EMC设计方案是否合理。

(完整版)射频指标测试介绍

目录 1GSM部分 (1) 1.1常用频段介绍 (1) 1.2 发射(transmitter )指标 (2) 1.2.1发射功率 (2) 122 发射频谱(Output RF spectrum) (4) 1.2.2.1调制频谱 (4) 1.2.2.2开关频谱 (5) 1.2.3 杂散(spurious emission) (5) 1.2.4 频率误差(Frequency Error) (6) 1.2.5 相位误差( Phase Error) (6) 1.2.6功率时间模板(PVT) 7 1.2 接收(receiver) 指标 (8) 1.2.1接收误码率(BER (8) 2 WCDMA (9) 2.1常用频段介绍 (9) 2.2 发射(Transmitter )指标 (9) 2.3 接收(receiver) 指标 (15) 3 CDMA2000 (15) 3.1常用频段介绍 (15) 3.2 发射(transmitter )指标 (16) 3.3 接收(receiver) 指标 (19) 4 TD-SCDMA 部分 (20) 4.1常用频段介绍 (20) 4.2 发射(transmitter )指标 (20) 4.3 接收指标( Receiver) (26) 1GS M部分 1.1常用频段介绍

1.2 发射(transmitter)指标 1.2.1发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送 到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功 率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果 发射功率在相应的级别超出指标的要求,则会造成邻道干扰。 测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。 GSM频段分为124个信道,功率级别为5----33dBm,即卩LEVEL5--LEVEL19共15 个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0---LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站 近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手 机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的 功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS1 800 Power con trol Nomi nal Output Toleranee (dB) for con diti ons

射频参数解析

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 射频参数 1.回波损耗 又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。 不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。 回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。 回波损耗= -10 lg [(反射功率)/(入射功率)] 2.反射系数 反射波和入射波电压之比 回波损耗= 20|lg(反射系数Γ)| 3.驻波比 全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。 驻波比会随着频率而改变 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。 其它各点的振幅值则介于波腹与波谷之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果SWR 的值等于

1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。 如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温 驻波比反射率: 1.00.00% 1.10.23% 1.20.83% 1.3 1.70% 1.5 4.00% 1.7 6.72% 1.88.16% 2.011.11% 2.518.37% 3.025.00% 4.036.00% 5.044.44% 7.056.25% 1066.94% 1576.56% 2081.86% 4.天线增益 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。 增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。 表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同条件下,增益越高,电波传播的距离越远

射频测量指标参数

射频指标 1)频率误差 定义 :发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q 信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的 :通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定 度。频 率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳 定。只有信号 频率稳定,手机才能与基站保持同步。若频率稳定达不到要求 (±0.1ppm),手机将出现信 号弱甚至无信号的故障,若基准频率调节范围不 够,还会出现在某一地方可以通话但在另一 地方不能正常通话的故障。 条件参数 : GSM 频段选 1、62、124 三个信道,功率级别选 最大LEVEL5 ;DCS 频段选 512、698、885 三个信道,功率级别选最 大LEVEL0 进行测试。 GSM 频段的频率误差范围为+90HZ —— -90HZ ,频率误差小 于40HZ 时为最好,大于40HZ 小于 60HZ 时为良好,大于60HZ 小于 90HZ 时为一般,大 于90HZ 时为不合格; DCS 频段的频率误差范围为 +180HZ —— -180HZ ,频率误差小于 80HZ 时为最好,大于 80HZ 小于 100HZ 时为良好,大 于100HZ 小于 180HZ 时为一般,大于180HZ 时为不合格。 2)相位误差 定义 :发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位 轨迹可 根据一个已知的伪随机比特流通过0.3 GMSK 脉冲成形滤波器得到。相位轨迹可看作与载 波 相位相比较的相位变化曲线。连续的1 将引起连续的 90 度相位的递减,而连续的0 将引起连续的 90 度相位的递 增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有 点 相位误差的恶略程度,是一个整体性的衡量。 测试目的 :通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出 调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I 、Q 数位类比转 换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法 :在业务信道( TCH )激活 PHASE ERROR 即可观测到相位误差值。测试时通过 综合测试仪 MU200 产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕 捉 手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据

探讨射频电缆的各种指标和性能

探讨射频电缆的各种指标和性能 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择最佳的射频电缆组件是十分有益的。射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成的,其射频泄露非常小(<-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的磨具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种"测试级"的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆要比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 特性阻抗 射频同轴电缆由导体,介质,外导体和护套组成。 "特性阻抗"是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸

_MTK校准配置文件参数详细说明

4.1 INI 文件的介绍: 4.1.1[射频功能组的复位] 下面是setup INI文件中定义的项目。 GSM900 Sig = 1 GSM1800 Sig = 1 GSM1900 Sig = 1 GSM900 NSig = 1 GSM1800 NSig = 1 GSM1900 NSig = 1 通常设置为1,指在对CMU200设置之前对设备进行复位,为0时不复位。 4.1.2 系统设置: setup INI文件中定义的项目: External Reference Clock = 0 默认值为0,指使用CMU200输出的参考时钟,为1时使用外部参考时钟。 CMU Base GPIB Address = 20 CMU的GPIB地址的设置,要与软件对应。 Instrument = "CMU200" 使用的设备为CMU200 Power Supply Address = GPIB0::5::INSTR 电源地址的设置 使用Kei230x时,应为Power Supply Address = 5 CMU RF Port = 2 CMU200使用的射频端口设置 Test Mode = 0 设为0指需要手动对设备进行初始化,1指在综测时软件将自动对设备进行初始化,2指在校准时软件将自动对设备进行初始化,3指在校准和综测联合测试时软件将自动对设备进行初始化 FDM database file = "c:\\Program Files\\MTK_atedemo\\report\\BPLGUInfoCustom" Database文件的存放路径,必须与手机软件对应 Calibration file = "c:\\Program Files\\MTK_atedemo\\MTKCAL_6205B.INI" 校准初始默认值设置文件的路径 Config file = "c:\\Program Files\\MTK_atedemo\\meta_6205B.CFG" 关于校准的设置,如校准的信道,限制的最大、最小值 Report file path = "c:\\Program Files\\MTK_atedemo\\report_6218B" 测试报告的存储路径 Database file = "c:\\Program Files\\MTK_atedemo\\Report_Statistics\\6218B_statistics.xls" 测试结果文件的存放路径 IMSI = "001010123456789" SIM卡中的IMSI号的设置 POWER ON AFTER CHANGE = 1 联合测试时,如果设备改变不同状态时较慢,则设置为1 Stability Count = 1 循环测试的次数设置 Fixture COM port = 1 串口地址设置 System Cable Loss Calibration = 0 校准系统的线损选择 4.1.3呼叫建立设置 Setup Network = 1 建立呼叫时的网络设置,1指GSM频段,2指DCS频段,3指PCS频段 GSM Call Setup Channel = 1 建立呼叫的信道号设置

手机校准的详细分析-1

1.手机校准测试的项目内容有哪些? 手机校准主要是针对RF参数的校准,比如AFC、AGC、APC,另外,还有电池ADC 的校准、温度校准,要看不同平台的要求,校准的项目也不同,但是大体相同。 AFC校准是为了保证手机的时钟频率能正确的与网络同步。 AGC校准手机从天线端接收到的信号强度大约在–110dBm至–10dBm之间(这可能会稍微超出GSM05.05定义的范围),但BBC(BaseBand Converter)输入信号的可接受动态范围没有这么大,AGC校准是为了保证输入到手机BBC的信号强度在BBC的可操作范围内。 APC校准影响功率的一般有两个参数,一个是Power Ramp(时间包络) 它表现了一个时隙的打开和关闭是否合理,另一个是PA Offset。前者会对输出频谱和TimeMask(时隙)产生影响,因此,在研发阶段就要调好Power Ramp; 而后者,在Power Ramp固定的情况下,直接影响输出功率的大小。APC校准就是调整PA Offset,保证手机的发射功率在各频段,各功率等级都能满足GSM05.05规范。 ADC的校准在我们的Windows Mobile设备上,锂离子电池的电量都是以“电量计”的形式显示的。从电量计中,我们可以准确的读出设备中的电池还有多少剩余电量,精确到以1%为单位。Windows Mobile设备长久以来一直以这种方式显示电池的电量信息。 很多人可能都遇到过在设备出现低电量报警之后软启动,电量计又显示还剩20-30%电量的问题,或者是系统提示已经充满电,但是电池电量计只显示到90%,而不是100%。这时,我们就需要动手对电池的电量进行重新校准了。也就是电池电量的显示与实际不符合。 2.校准的原理\算法是怎样的? 校准的简单原理就是:由于器件不一致、温度变化、器件老化等因素的影响,即使是基于同样的平台同样的设计,也会表现出不同的电性能。为了消除这种影响,每个手机在出厂之前都要对这些参数进行测量计算得到一些参数误差数据,并把这些误差数据存储到一定的存储介质(一般为EEPROM)里,在手机正常使用过程中,CPU会读取这些数据并利用一定的算法对需要补偿的参数进行补偿。在生产测试过程中,对需要补偿校正的数据测量计算并存入EEPROM里的过程,称之为校准。 3.选择哪些信道\功率级校准? 校准的算法:每个平台都不一样,各有各的算法,但是大体的方法都是和仪器进行交互,利用仪器测量的一些数值调整DAC或ADC的参数,把这些参数存成表存储到EEPROM里。具体到某个指标的算法,要根据平台提供上的建议,另外,编程序的时候还有些技巧和算法使得程序高效快速。 4.除这些RF部分之外还有哪些关于电性能方面的校准测试? 至于APC或AGC测试那些信道和功率等级。通常情况下不需要每个等级和信道都校准,那样太慢了,因为无论APC还是AGC,他们和功率的关系是基本线性的,或分段线性的,是可以预测的,一般会选择几个功率等级点,然后进行内插。当然,也不会每个信道都校准,一般校准中间信道的APC或AGC,然后只对最大功率进行信道间补偿,非中间信道的其他功率等级可以按照中间信道的线性关系进行预测。

射频各项测试指标.

双频段GSM/DCS移动电话射频指标分析 2003-7-14 [摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。 1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为 -105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小频移键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。

推荐-WCDMA射频测试经验总结 精品

WCDMA主要射频指标测试经验总结 本文档列写了在使用Agilent 8960进行WCDMA射频各项测试的简要测试方法及步骤,注意事项和相关归纳总结,敬请参考。 一、测试前的设置 1.选择前面板上的“CALL SETUP” 2.按下F1键,把Operating Mode选择成“Cell Off” NOTE: 若不在CELL OFF状态下,有些参数无法设置

3.按More键,把页面切换到第二页,共四页。“2 of 4”4.按下F2,设置Cell Parameter --- 设置“BCCH Update Page” 到“Auto”状态 --- 设置“ATT Flag State” 到“set”状态 --- 按下F6,关闭当前窗口

5、按下F4设置“Uplink Parameters” --- 设置“Maximum Uplink Transmit Power Level”到24dBm --- 按下F6,关闭当前窗口 6、按下前面板左边的“More”切换页面到第一页,“1 of 4” 7、按下F1,设置“Operating Mode”到“Active Cell” 8、按下F7,设置“Cell Power”到-93dBm/3.84MHz 9、手机开机,等待手机registration 注:1、“security settings” 要依据UE的要求,通常情况应设置为“Auth.&Int”

NOTE: 使用小白卡,在8960关闭鉴全的情况下,依然可以注册,并且模块本身也应使用QPST关闭鉴全,若默认已关闭无需操作。 2、假如UE用的是Qualm chipset,就必须把“RLC Reestablish”设置成“Off”

射频参数解析

射频参数 1.回波损耗 又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。 不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。 回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。 回波损耗= -10 lg [(反射功率)/(入射功率)] 2.反射系数 反射波和入射波电压之比 回波损耗= 20|lg(反射系数Γ)| 3.驻波比 全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。 驻波比会随着频率而改变 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。 其它各点的振幅值则介于波腹与波谷之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果SWR 的值等于

1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。 如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温驻波比反射率: 1.00.00% 1.10.23% 1.20.83% 1.3 1.70% 1.5 4.00% 1.7 6.72% 1.88.16% 2.011.11% 2.518.37% 3.025.00% 4.036.00% 5.044.44% 7.056.25% 1066.94% 1576.56% 2081.86% 4.天线增益 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。 增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。 表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同条件下,增益越高,

射频测试规范

1、目的 规范WCDMA射频测试标准,使工程师在作业时有所遵循,特制订本规范。 2、适用范围 本规范适用于公司研发的WCDMA产品项目。 3、参考文件 《3rdGenerationPartnershipProject;TechnicalSpecificationGroupRadioAccessNetworkUserEquipment (UE)radiotransmissionandreception(FDD)(Release9)》 《3rdGenerationPartnershipProject;TechnicalSpecificationGroupRadioAccessNetwork;Requirementsfo rsupportofradioresourcemanagement(FDD)(Release9)》 4、缩略语和术语 ACLRAdjacentChannelLeakagepowerRatio邻道泄漏抑制比 ACSAdjacentChannelSelectivity邻道选择性 AWGNAdditiveWhiteGaussionNoise加性高斯白噪声 BERBitErrorRatio误比特率 BLERBlockErrorRatio误块率 CPICHCommonPilotChannel公共导频信道 CQIChannelQualityIndicator信道质量指示 CWContinuousWave(un-modulatedsignal)连续波(未调制信号) DCHDedicatedChannel专用信道(映射到专用物理信道)DPCCHDedicatedPhysicalControlChannel专用物理控制信道DPCHDedicatedPhysicalChannel专用物理信道 DPDCHDedicatedPhysicalDataChannel专用物理数据信道 DTXDiscontinuousTransmission非连续发射 EcAverageenergyperPNchip每个伪随机码的平均能量 EVMErrorVectorMagnitude误差矢量幅度 FDDFrequencyDivisionDuplex频分复用 FuwFrequencyofunwantedsignal非有用信号频率 HARQHybridAutomaticRepeatRequest自动混合重传请求 HS-DPCCHHighSpeedDedicatedPhysicalControlChannel高速专用物理控制信道 HS-PDSCHHighSpeedPhysicalDownlinkSharedChannel高速物理下行共享信道 HS-SCCHHighSpeedSharedControlChannel高速共享控制信道IblockingBlockingsignalpowerlevel阻塞信号功率电平IoThetotalreceivedpowerspectraldensity总接收功率频谱密度IoacThepowerspectraldensityoftheadjacentfrequencychannel邻信道功率谱密度IocThepowerspectraldensityofabandlimitedwhitenoisesource带限白噪声功率谱密度IorThetotaltransmitpowerspectraldensityofthedownlinksignalattheNodeBantennaconnector基站发送的总功率谱密度orThereceivedpowerspectraldensityofthedownlinksignalasmeasuredattheUEantennaconnector下行链路所接收的功率谱密度 IouwUnwanted signalpowerlevel非有用信号功率电平 OCNSOrthogonalChannelNoiseSimulator正交信道噪声模拟器PCCPCHPrimaryCommonControlPhysicalChannel主公共控制物理信道PICHPagingIndicatorChannel寻呼指示信道 PRACHPhysicalRandomAccessChannel物理随机接入信道QqualminMinimumRequiredQualityLevel小区质量最小需求

常用射频指标测试大纲

常用射频指标 测试大纲 通信对抗 2015/10/30 Ver. 1.0

目录 目录1 1.1dB压缩点(P1dB) (1) 1.1基本概念 (1) 1.2测量方法 (1) 2.三阶交调(IP3) (2) 2.1基本概念 (2) 2.2测量方法 (3) 3.三阶互调(IM3) (4) 3.1基本概念 (4) 3.2测量方法 (5) 3.2.1直接测量 (5) 3.2.2间接法 (5) 4.噪声系数(NF) (5) 4.1基本概念 (5) 4.2测量方法 (6) 4.2.1使用噪声系数测试仪 (6) 4.2.2增益法 (6) 4.2.3Y因数法 (8) 4.2.4测量方法小结 (10) 5.灵敏度 (10) 5.1基本概念 (10) 5.2测量方法 (11) 5.2.1间接法-噪声系数法测量 (11) 5.2.2直接法-临界灵敏度测量 (11) 6.镜频抑制 (11) 6.1基本概念 (11) 6.2测量方法 (12) 7.相位噪声 (13) 7.1基本概念 (13) 7.2测量方法 (13)

7.2.1基于频谱仪的相位噪声测试方法 (13)

1.1dB压缩点(P1dB) 1.1基本概念 射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加,即输出功率P out– P in = G,输出信号的功率步进等于输入信号的功率步进ΔP out = ΔP in,这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。 随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。当输出功率满足P out– P in = G – 1时,对应的P out即为输出1dB压缩点,对应的P in即为输入1dB压缩点。 通常把增益下降到比线性增益低1dB 时的输出功率值定义为输出功率的1dB 压缩点,用P1dB表示(图1)。典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。 1dB压缩点愈大,说明射频电路(系统)线性动态范围愈大。 图 1 输出功率随输入功率的变化曲线 1.2测量方法 频谱仪直接测量。 1,DUT的输入端连接信号源,输出端连接频谱仪; 2,将输入信号的功率由小至大缓慢增加,并记录输入功率、输出功率极其

GSM射频指标详解

1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主 要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏 度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的 测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接 收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合 格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测 试结果来看:当RBER=2%时,若RF输入电平为一l08一-105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm, 则接收灵敏度为良好;若RF输入电平为-l03一-100dBm,则接收灵敏度为一般;若RF 输入电平为>-l00 dB mm,则接收灵 敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小移频键控(GMSK),归一化带宽 为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己 知的伪随机比特流通过GMSK脉冲成形滤波器得到。 频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间 的差。它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回 归线最远的值。相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。 (2)技术要求 ●对于GSM900MHz频段 ①频率误差Fe 若Fe<40Hz,则频率误差为优;

手机射频校准错误代码表

手机射频校准错误代码表(适用于展讯,MTK) Lacation update Fail = 101;位置更新错误 MT Call Fail = 102;手机呼叫失败 Call Drop = 103;掉线 Average Burst Power Fail = 104;平均突发功率超出模板 Peak Burst Power Fail = 105;峰值突发功率超出模板 PVT Match Fail = 106; PVT超出模板 Timing Error Fail = 107;时序偏差超出模板 Phase Error Peak Fail = 108;峰值相位误差超出模板 Phase Error RMS Fail = 109;均值相位误差超出模板 Frequency Error Fail = 110;频率误差超出范围 Spectrum due to Modulation Fail = 111;调制频谱超出模板 Spectrum due to Switching Fail = 112;开关频谱超出模板 Rx Quality Fail = 113;接收灵敏度超出范围 Rx Level Fail = 114;接收电平超出范围 BER Fail = 115;误码率超出范围 BLER Fail = 116;误块率超出范围 METAAPP_GET_A V AILABLE_HANDLE_FAIL = 201;Meta可用到的操作失败 METAAPP_OPEN_UART_FAIL = 202;Meta打开Uart口失败 METAAPP_CLOSE_UART_FAIL = 203;Meta关闭Uart口失败 METAAPP_BOOT_FAIL = 204;Meta连通串口失败 METAAPP_BOOT_STOP_FAIL = 205;Meta终止连通串口失败 METAAPP_INIT_FAIL = 206;Meta初始化失败 METAAPP_W AIT_FOR_TARGET_READY_FAIL = 207;Meta等待被测件准备失败 METAAPP_COMM_SET_BAUD_RA TE_FAIL = 208;Meta命令设置波特率失败 METAAPP_COMM_START_FAIL = 209;Meta命令开始失败 METAAPP_COMM_STOP_FAIL = 210;Meta命令终止失败 METAAPP_CONNECT_WITH_TARGET_FAIL = 211;Meta连接被测件失败 METAAPP_DISCONNECT_WITH_TARGET_FAIL = 212;Meta断开被测件失败 METAAPP_RF_SELECT_BAND_FAIL = 213;Meta选择射频频段失败 METAAPP_RF_SELECT_BAND_CNF_FAIL = 214 METAAPP_RF_AFC_MEASURE_FAIL = 215;Meta测量AFC失败 METAAPP_RF_AFC_MEASURE_CNF_FAIL = 216;Meta测量AFC配置失败 METAAPP_RF_AFC_SET_DAC_V ALUE_FAIL = 217;Meta设置数模转换电压失败 METAAPP_RF_AFC_SET_DAC_V ALUE_CNF_FAIL = 218;Meta设置数模转换电压配置失败METAAPP_RF_CRYSTALAFC_SET_CAPID_FAIL = 219;Meta控制晶体设置CAPID失败METAAPP_RF_PM_FAIL = 220;Meta控制电源管理失败 METAAPP_RF_NB_TX_FAIL = 221;Meta控制邻道发射失败 METAAPP_RF_NB_TX_CNF_FAIL = 222;Meta控制邻道发射配置失败 METAAPP_RF_SET_APC_LEVEL_DAC_FAIL = 223;Meta设置APC等级数模转换控制失败METAAPP_RF_SET_APC_LEVEL_DAC_CNF_FAIL = 224;Meta设置APC等级数模转换配置失败METAAPP_RF_STOP_FAIL = 225;Meta终止失败 METAAPP_RF_STOP_CNF_FAIL = 226;Meta终止配置失败 METAAPP_RF_BBTXAUTOCAL_FAIL = 227;Meta控制基带发射自动校准失败 METAAPP_RF_GETBBTXCFG2_FAIL = 228 METAAPP_RF_SETBBTXCFG2_FAIL = 229

射频指标测试介绍

目录 1GSM部分 (1) 1、1常用频段介绍 ........................................................................................................................... 1 1。2发射(transmitter)指标?2 1、2、1发射功率?2 1。2、2发射频谱(OutputRFspectrum〈ORFS〉)?4 1。2.2.1调制频谱 ................................................................................................................ 4 1.2、2、2开关频谱 ........................................................................................................... 51。2.3杂散(spuriousemission) (5) 1.2。4频率误差(FrequencyError)?6 1.2。5相位误差(PhaseError)?6 1。2、6功率时间模板(PVT)?7 1。2接收(receiver)指标?8 1。2.1接收误码率(BER) (8) 2 WCDMA?9 2。1常用频段介绍?9 2.2发射(Transmitter)指标 (9) 2、3接收(receiver)指标 ................................................................................................ 153CDMA2000 . (15) 3。1常用频段介绍? 15 16 3、2发射(transmitter)指标? 3、3接收(receiver)指标? 19 20 4 TD-SCDMA部分? 4、1常用频段介绍 (20) 4。2发射(transmitter)指标.......................................................................................... 20

射频指标

姚方华李航广州南方高科有限公司 [摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。 1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为一l08一 -105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03一 -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。 频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回归线最远的值。相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。 (2)技术要求 ●对于GSM900MHz频段 ①频率误差Fe 若Fe<40Hz,则频率误差为优; 若40Hz≤Fe6≤60Hz,则频率误差为良好; 若60Hz≤Fe≤90Hz,则频率误差为一般; 若Fe>90Hz,则频率误差为不合格。 ②相位误差峰值Pepeak 若Pepeak<7de8,则相位误差峰值为优; 若7deg≤Pepeak≤l0deg,则相位误差峰值为良好; 若10deg≤Pepeak≤20deg则相位误差峰值为一般; 若Pepesk>20deg,则这项指标为不合格。 ②相位误差有效值PeRMS 若PeRMs<2.5deg,则相位误差有效值为优;

相关文档
最新文档