ansys断裂力学技巧

ansys断裂力学技巧
ansys断裂力学技巧

Ansys断裂力学

裂纹和瑕疵在很多结构和零部件中会出现,有时会导致严重的后果。断裂力学就是研究裂纹扩散问题的学科。

12.1 断裂力学的理解

断裂力学就是解决结构在外载荷作用下,裂纹和瑕疵如何扩散的问题。它包含裂纹扩散相应的解析预报和实验结果验证。解析预报是通过断裂参数的计算得出的,如裂纹区域的应力强度因子,它可以用来评估裂纹的生长率。最具典型的是,裂纹的长度随着一些循环载荷的每一次作用而增长,如飞机上机舱的增压-减压。另外,环境的情况,如温度或光线的照射等,都会影响某些材料的断裂性能。

在研究中,断裂问题需重点研究的典型参数如下:

●应力强度因子(K I, K II和K III),是断裂的三个基本形式。

●J-积分,是一种不受线路影响的线积分,用来测量裂纹端点的奇异应力和应变。

●能量释放率(G),它代表裂纹开始和终止处的能量的大小。

12.2 求解断裂力学问题

求解断裂力学问题包括执行线弹性或弹塑性静态分析,以及使用专用的后处理命令或宏来计算需要的断裂参数。此处分成两个部分来介绍:

●裂纹区域的建模

●计算断裂参数

12.2.1裂纹区域的建模

断裂模型中最重要的部分就是裂纹边界的部分。在ansys中,在二维模型和三位模型中,分别将裂纹的边界看成是裂纹端点和裂纹前端。如图12.1所示。

r是距离裂纹端点的长度。裂

裂纹面应该是重合

纹端点处的应力和应变是奇异的,

的,裂纹端点(或裂纹前端)附近的单元应该是二次的,即角点之间有中间节点。这种单元被称为奇异单元。

12.2.1.1 二维断裂模型

二维断裂模型的推荐单元类型是PLANE2,6节点的三角实体单元。裂纹端点附近的单元的第一行是奇异的,如图12.2(a)所示。前处理模块PREP7的命令(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create)可以定义某关键点附近的单元划分的大小,在断裂模型中特别有用。它在指定关键点附近可以自动生成奇异单元。此命令的其他域可以控制单元第一行的半径,在圆周方向的单元的数量等。图12.3为命令KSCON 生成的断裂模型。

二维模型建模的其他注意事项如下:

●如果可以的话利用对称性。在很多情况下,只需要通过对称或反对称边界条件建

立裂纹区域的一半模型,如图12.4所示。

●为了获得合理的结果,裂纹端点附近的单元的第一行半径大约为a/8,或更小,其

中a为裂纹的长度。在圆周方向上,推荐每隔30o或40o划分一个单元。

●裂纹端点单元不能扭曲,而且形状是等腰三角形。

12.2.1.2. 三维断裂模型

三维模型的推荐单元类型为SOLID95,20节点的砖块单元。如图12.2(b)所示,裂纹前端附近的第一行单元是奇异单元。注意此单元为楔形单元,面KLPO压缩成线KO。

生成三维模型所要考虑的东西远远多于二维单元。命令KSCON不可用,而且需要确保裂纹前端沿着单元的KO边界。

三维模型的其他建模注意事项如下:

●推荐单元的大小与二维模型相同。另外,在所有的方向上,外形的纵横比不能超

过4:1.

●对于裂纹的曲线前端,沿着裂纹前端的单元大小取决于局部曲率的大小。粗略来

说,沿着圆形的裂纹前端,每隔15o到30o至少要有一个单元。

●所有单元的边必须是直的,包括曲线前端上的边。

12.2.2极端断裂参数

完成静态分析后,可以使用通用后处理器POST1来计算断裂参数。如前所述,需关注的典型参数是应力强度因子,J-积分和能量释放率。

12.2.2.1应力强度因子

后处理命令KCALC (Main Menu> General Postproc> Nodal Calcs> Stress Int Factr)计算中间模态应力强度因子K I, K II和K III。这个命令只能用于裂纹区域附近的均匀的各项同性材料的线弹性问题。合理利用命令KCALC,需要遵循以下步骤:

1.定义一个局部裂纹端点或裂纹前端坐标系,X轴平行于裂纹面(在三维模型中垂直

于裂纹前端),Y向垂直于裂纹曲面,如下图所示。注意,当使用命令KCALC时,

坐标系必须是激活的模型坐标系(使用命令CSYS操作)和结果坐标系(使用命

令RSYS操作)。

Command(s): LOCAL (or CLOCAL, CS,CSKP, etc.)

GUI: Utility Menu> WorkPlane> Local Coordinate Systems> Create Local CS> At Specified Loc

2.沿着断裂曲面定义一个路径。路径上的第一个节点是裂纹端点的节点。对于半个

的裂纹模型,需要2个额外的节点,也是沿着裂纹曲面。对于完整的裂纹模型,两个裂纹曲面都包含在内,需要4个额外的节点:两个沿着一个裂纹曲面,另外两个沿着另一个裂纹曲面,下图为二维模型的两个情况。

Command(s): PATH, PPATH

GUI: Main Menu> General Postproc> Path Operations> Define Path

3. 计算K I , K II 和K III 。命令KCALC 中的域KPLAN 定义了是平面应变还是平面应力。

除了薄板的分析,应力的渐进性或接近裂纹端点的特性通常看作是平面应变。域KCSYN 定义了模型是有对称边界条件的半个裂纹模型,有反对称边界条件的半个裂纹模型还是整个裂纹模型。 Command(s): KCALC GUI:

Main Menu> General Postproc> Nodal Calcs> Stress Int Factr

12.2.2.2. J-积分

在最简单的形式下,J-积分可以定义成不受路径影响的线积分,它来测量裂纹端点附近的奇异应力和应变的强度。下列方程为二维形式的表达式。它假设裂纹在全局笛卡尔坐标的X-Y 平面内,X 平行于裂纹(见图12.7)。

y x x y r r u u J Wdy t t ds x x ????=-+ ?????

?? (12-1) 其中:

γ 为裂纹端点处的任一路径

W 为应变能强度(也就是,单位体积的应变能) t x 为沿着X 轴的拉力矢量= x x xy y n n σσ+ t y 为沿着y 轴的拉力矢量=

y y xy x n n σσ+

σ为应力

n = 路径γ的单位外法向矢量 u 为位移矢量 S 沿着路径γ的距离

计算二维模型J的步骤如下:

1.读取需要的步的结果。

Command(s): SET

GUI: Main Menu> General Postproc> Read Results> First Set

2.存储每个单元的体积和应变能。

Command(s): ETABLE

GUI: Main Menu> General Postproc> Element Table> Define Table

3.计算每个单元应变能密度。

Command(s): SEXP

GUI: Main Menu> General Postproc> Element Table> Exponentiate

4.为积分定义一个路径

Command(s): PATH, PPATH

GUI: Main Menu> General Postproc> Path Operations> Define Path

5. 映射出路径上的应变能密度图,存储在步骤1中单元表格中。 Command(s): PDEF GUI:

Main Menu> General Postproc> Path Operations> Map Onto Path

6. 关于全局Y 积分 Command(s): PCALC GUI:

Main Menu> General Postproc> Path Operations> Integrate

7. 将积分的最终值赋给参数,这就是给出了方程12-1的第一项。 Command(s): *GET ,Name ,PATH,,LAST GUI:

Utility Menu> Parameters> Get Scalar Data

8. 映射出路径上的应力S X ,S Y ,S XY 。 Command(s): PDEF GUI:

Main Menu> General Postproc> Path Operations> Map Onto Path

9. 定义路径的单位法向矢量。 Command(s): PVECT GUI:

Main Menu> General Postproc> Path Operations> Unit Vector

10. 使用方程12-1计算TX 和TY . Command(s): PCALC GUI: Main Menu> General Postproc> Path Operations> operation

11. 在X 的正向和负向变换一个小的距离,来计算位移矢量(

x

x

u δδ和

y

y u δδ)的微

分。包含以下步骤(见图19.13断裂的三个基本模态):

● 计算要转换的路径的距离,如DX 。基本的准则是使用路径总长度的1%。可

以使用命令*GET,Name ,PA TH,,LAST,S 来获取路径的总长度。

● 在X 轴负向变换路径DX/2的距离(PCALC,ADD,XG ,XG ,,,,-DX/2),把UX 和

UY 映射到路径上(PDEF ),并命名为UX1和UY1。

● 在X 轴正向变换路径DX 的距离(也就是,从处理位置算起+DX/2),把UX

和UY 映射到路径上,并命名为UX2和UY2。 ● 转换到路径的初始位置(-DX/2的距离),并使用命令PCALC 计算

(UX2-UX1)/DX 和(UY2-UY1)/DX 的大小,分别表示

x

x

u δδ和

y

y u δδ。

12. 使用步骤10和11中计算的数量,计算J 的第二项积分值(PCALC ),并关于路径距离S 进行积分。这就给出了方程12-1的第二项。

13. 使用步骤5-7和步骤12计算的数,根据方程12-1计算J 。 在进行以上操作以前,可以通过写宏来简化J 积分。 12.2.2.3.能量释放率

能量释放率是用来定义伴随裂纹开始和终止的功(能量的变化)的大小的名词。计算能量释放率的一个方法是虚裂纹扩展法。

在虚裂纹扩展法中,进行两个分析,一个是裂纹的长度a ,另一个是裂纹的长度a +Δa 。如果两种工况的势能U (应变能)存储了,则能量释放率可以按照下列公式进行计算。

a a

U a U G B a

+?-=-

? (12-2)

其中B 是断裂模型的厚度。

对于第二次分析,在裂纹附近选择所有节点,以Δa 为增量增加裂纹的长度,并在X 方向以Δa 为因子进行缩放(NSCALE )(Main Menu> Preprocessor> Modeling> Operate> Scale)。

注意:如果使用了实体建模,在对节点进行缩放前,首先需要从有限元模型中分开实体模型(MODMSH,DETACH )(Main Menu> Preprocessor> Checking Ctrls )。“裂纹附近”通常看成是从裂纹端点算起的半径为a /2的范围内的所有节点。节点缩放因子Δa 通常是裂纹长度的0.5%~2%。

后处理模块

19.8 POST1-裂纹分析

对于线弹性断裂力学分析,裂纹处的应力强度因子可以计算(使用命令KCALC )。对于线弹性材料裂纹处及附近的实际位移为:

(

)()()3321cos cos 23sin sin 2222U O r θθθθκκ??

=

--+++????

(19-120)

(

)()()3321sin sin 23cos cos 2222V O r θθθθκκ??=

--+++????

(19-121)

()2

W O r θ

=

+ (19-122) 其中,u ,v ,w 分别是局部笛卡尔坐标系的位移,如图19.12所示。r ,θ分别是局部圆柱坐

标系的坐标,如图19.12。G 为剪切模量。K I , K II 和K III 为变形形状相关的应力强度因子。如图19.13所示。

3431νκν

ν

-??=??+?如果是平面应变或轴对称

如果是平面应力

ν为泊松比。

()O r 为r 阶或更高阶的项。

在θ=±180O

时,计算方程19-120到方程19-122,并舍弃高阶项方程变成:

)1κ+ (19-123)

)1κ+ (19-124)

W = (19-125)

对于关于裂纹面对称的模型,方程19-123到方程19-125变成:

K=(19-126)

I

K=(19-127)

II

K=(19-128)

III

对于无对称的完整模型,

K=(19-129)

I

K=(19-130)

II

K=(19-131)

III

其中,Δv,Δu,Δw为一个裂纹面对另一个裂纹面的运动。

由于上述两个方程相似,只进一步考虑第一个。

和位置来计算,如图19.14所示,三个点是可用的。V被标准化了,以至于在节点I处为零。A和B由此可以确定,

A Br

=+(19-132)

点J和K处,使r趋向于0:

lim

r A

=

(19-133)

因此,方程19-126变成:

K=(19-134)I

方程19-127到方程19-131也适用同样地方式。

ansys的断裂参数的计算

ANSYS的断裂参数的计算 1 引言 断裂事故在重型机械中是比较常见的。一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。因此,有必要对含裂纹构件的断裂参量进行评定,如应力强度因了和J积分。确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。对于工程上常见的受复杂载荷并包含不规则裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。 2 断裂参量数值模拟的理论基础 对于线弹性材料裂纹尖端的应力场和应变场可以表述为: (1) 其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。 图1 裂纹尖端的极坐标系

(2) 应力强度因子和能量释放率的关系: G=K/E" (3) 其中:G为能量释放率。 平面应变:E"=E/(1-v2) 平面应力:E=E" 3 求解断裂力学问题 断裂分析包括应力分析和计算断裂力学的参数。应力分析是标准的ANSYS线弹性或非线性弹性问题分析。因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。如图2所示,图中给出了二维和三维裂纹的术语和表示方法。 图2 二维和三维裂纹的结构示意图 3.1 裂纹尖端区域的建模 裂纹尖端的应力和变形场通常具有很高的梯度值。场值得精确度取决于材料,几何和其他因素。为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。在裂纹尖端应力和应变是奇异的,并且随1/变化而变化。为了产生裂纹尖端应力和应变的奇异性,裂纹尖端的划分网格应该具有以下特征: ·裂纹面一定要是一致的。

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。b5E2RGbCAP 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力及断裂强度极限b,,说明K1与K1C的区别与联系?p1EanqFDPw 7、在什么条件下应力强度因子K的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。

16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry应力函数?什么是韦斯特加德

ANSYS技巧4~24

利用ANSYS随机振动分析功能实现随机疲劳分析 ANSYS随机振动分析功能可以获得结构随机振动响应过程的各种统计参数(如:均值、均方根和平均频率等),根据各种随机疲劳寿命预测理论就可以成功地预测结构的随机疲劳寿命。本文介绍了ANSYS随机振动分析功能,以及利用该功能,按照Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法进行ANSYS随机疲劳计算的具体过程。 1.随机疲劳现象普遍存在 在工程应用中,汽车、飞行器、船舶以及其它各种机械或零部件,大多是在随机载荷作用下工作,当它们承受的应力水平较高,工作达到一定时间后,经常会突然发生随机疲劳破坏,往往造成灾难性的后果。因此,预测结构或零部件的随机疲劳寿命是非常有必要的。 2.ANSYS随机振动分析功能介绍 ANSYS随机振动分析功能十分强大,主要表现在以下方面: 1.具有位移、速度、加速度、力和压力等PSD类型; 2.能够考虑a阻尼、β阻尼、恒定阻尼比和频率相关阻尼比; 3.能够定义基础和节点PSD激励; 4.能够考虑多个PSD激励之间的相关程度:共谱值、二次谱值、空间关系和波传 播关系等; 5.能够得到位移、应力、应变和力的三种结果数据: 1σ位移解,1σ速度解和 1σ加速度解; 3.利用ANSYS随机振动分析功能进行疲劳分析的一般原理在工程界,疲劳计算广泛采用名义应力法,即以S-N曲线为依据进行寿命估算的方法,可以直接得到总寿命。下面围绕该方法举例说明ANSYS随机疲劳分析的一般原理。 当应力历程是随机过程时,疲劳计算相对比较复杂。但已经有许多种分析方法,这

里仅介绍一种比较简单的方法,即Steinberg 提出的基于高斯分布和Miner 线性累计 损伤定律的三区间法(应力区间如图1所示): 应力区间 发生的时间 -1σ ~+1σ 68.3%的时间 -2σ ~+2σ 27.1%的时间 -3σ ~+3σ 4.33%的时间 99.73% 大于3σ的应力仅仅发生在0.27%的时间内,假定其不造成任何损伤。在利用Miner 定律进行疲劳计算时,将应力处理成上述3个水平,总体损伤的计算公式就可以写成: 其中: :等于或低于1σ水平的实际循环数目(0.6831 ); :等于或低于2σ水平的实际循环数目(0.271 ); :等于或低于3σ水平的实际循环数目(0.0433 ); , , :根据疲劳曲线查得的1σ、2σ和3σ应力水平分别对应许可循环的次数。 综上所述,针对Steinberg 提出的基于高斯分布和Miner 线性累计损伤定律的三 区间法的ANSYS 随机疲劳分析的一般过程是: (1) 计算感兴趣的应力分量的统计平均频率(应力速度/应力); (2) 基于期望(工作)寿命和统计平均频率,计算1 ,2 和3 水平下的循环 次数 、 和 ; (3) 基于S-N 曲线查表得到 、 和 ; (4) 计算疲劳寿命使用系数。 显然,根据其他随机疲劳分析方法和ANSYS 随机振动分析结果,我们还可以进行 许多类似的疲劳分析计算。

断裂力学期末考试试题含答案

一、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分) 3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15) 4. 简述脆性断裂的K 准则及其含义?(15) 5. 请简述疲劳破坏过程的四个阶段?(10) 6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分) 7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分) 二、 推导题(10分) 请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式? 三、 证明题(10分) 定义J 积分如下, (/)J wdy T u xds Γ =-????,围绕裂纹尖端的回路Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。 四、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 答: 按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I 型)、滑开型(II 型)和撕开型(III 型),如图所示

ANSYS使用技巧

ANSYS 查询函数(Inquiry Function) 在ANSYS操作过程或条件语句中,常常需要知道有关模型的许多参数值,如选择集中的单元数、节点数,最大节点号等。此时,一般可通过*GET命令来获得这些参数。现在,对于此类问题,我们有了一个更为方便的选择,那就是查询函数— Inquiry Function。 Inquiry Function类似于ANSYS的 *GET 命令,它访问ANSYS数据库并返回要查询的数值,方便后续使用。ANSYS每执行一次查询函数,便查询一次数据库,并用查询值替代该查询函数。 假如你想获得当前所选择的单元数,并把它作为*DO循环的上界。传统的方法是使用*GET命令来获得所选择的单元数并把它赋给一个变量,则此变量可以作为*DO循环的上界来确定循环的次数 *get, ELMAX,elem,,count *do, I, 1, ELMAX … … *enddo 现在你可以使用查询函数来完成这件事,把查询函数直接放在*DO循环内,它就可以提供所选择的单元数*do, I, ELMIQR(0,13) … … *enddo 这里的ELMIQR并不是一个数组,而是一个查询函数,它返回的是现在所选择的单元数。括弧内的数是用来确定查询函数的返回值的。第一个数是用来标识你所想查询的特定实体(如单元、节点、线、面号等等),括弧内的第二个数是用来确定查询函数返回值的类型的(如选择状态、实体数量等)。 同本例一样,通常查询函数有两个变量,但也有一些查询函数只有一个变量,而有的却有三个变量。 查询函数的种类和数量很多,下面是一些常用、方便而快速快捷的查询函数 1 AREA—arinqr(areaid,key) areaid—查询的面,对于key=12,13,14可取为0; key—标识关于areaidr的返回信息 =1,选择状态 =12,定义的数目 =13,选择的数目 =14,定义的最大数 =-1,材料号 =-2,单元类型 =-3,实常数 =-4,节点数 =-6,单元数 … arinqr(areaid,key)的返回值 对于key=1 =0, areaid未定义 =-1,areaid未被选择 =1, areaid被选择 … 2 KEYPOINTS—kpinqr(kpid,key)

ansys使用技巧(后处理)

2009-04-28 14:26 ANSYS中查看截面结果的方法 一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧。 下面对常用的查看截面结果的方法做一个介绍: 1. 通过工作平面切片查看截面云图工作平面实现。 这是比较常用的一种方法。 首先确保已经求解了问题,并得到了求解结果。 调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。调整时注意保证工作平面与需要观察的截面平行。 在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。也可以通过等效的/type以及/cplane命令设置。 在通用后处理器中显示云图,得到需要查看的云图。 更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了: /CPLANE,1 ! 指定截面为WP /TYPE,1,5 ! 结果显示方式选项 2. 通过定义截面查看截面云图 这种方法也需要用到工作平面与切片,步骤如下: 首先确保已经得到了求解结果。 调整工作平面到需要观察的截面。 在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。通过sucr命令定义截面,选择(cplane)。 通过sumap命令定义需要查看的物理量。 通过supl命令显示结果。 3. 通过定义路径查看云图与保存数据 首先确保已经得到了求解结果。 通过path与ppath命令定义截面路径。 通过pdef命令映射路径。 通过plpath、prpath与plpagm命令显示及输出结果。

ansys断裂力学技巧

Ansys断裂力学 裂纹和瑕疵在很多结构和零部件中会出现,有时会导致严重的后果。断裂力学就是研究裂纹扩散问题的学科。 12.1 断裂力学的理解 断裂力学就是解决结构在外载荷作用下,裂纹和瑕疵如何扩散的问题。它包含裂纹扩散相应的解析预报和实验结果验证。解析预报是通过断裂参数的计算得出的,如裂纹区域的应力强度因子,它可以用来评估裂纹的生长率。最具典型的是,裂纹的长度随着一些循环载荷的每一次作用而增长,如飞机上机舱的增压-减压。另外,环境的情况,如温度或光线的照射等,都会影响某些材料的断裂性能。 在研究中,断裂问题需重点研究的典型参数如下: ●应力强度因子(K I, K II和K III),是断裂的三个基本形式。 ●J-积分,是一种不受线路影响的线积分,用来测量裂纹端点的奇异应力和应变。 ●能量释放率(G),它代表裂纹开始和终止处的能量的大小。 12.2 求解断裂力学问题 求解断裂力学问题包括执行线弹性或弹塑性静态分析,以及使用专用的后处理命令或宏来计算需要的断裂参数。此处分成两个部分来介绍: ●裂纹区域的建模 ●计算断裂参数 12.2.1裂纹区域的建模 断裂模型中最重要的部分就是裂纹边界的部分。在ansys中,在二维模型和三位模型中,分别将裂纹的边界看成是裂纹端点和裂纹前端。如图12.1所示。 r是距离裂纹端点的长度。裂 裂纹面应该是重合 纹端点处的应力和应变是奇异的, 的,裂纹端点(或裂纹前端)附近的单元应该是二次的,即角点之间有中间节点。这种单元被称为奇异单元。

12.2.1.1 二维断裂模型 二维断裂模型的推荐单元类型是PLANE2,6节点的三角实体单元。裂纹端点附近的单元的第一行是奇异的,如图12.2(a)所示。前处理模块PREP7的命令(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create)可以定义某关键点附近的单元划分的大小,在断裂模型中特别有用。它在指定关键点附近可以自动生成奇异单元。此命令的其他域可以控制单元第一行的半径,在圆周方向的单元的数量等。图12.3为命令KSCON 生成的断裂模型。

ansys前后处理技巧

[转载]一些ansys 前后处理技巧 已有 2141 次阅读 2012-3-23 17:42 |系统分类:科研笔记[1]|关键词:计算菜单工作面技巧如何 1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试 2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on

5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则 SMX与SMN分别代表最大值等效应力和最小值等效应力 如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有 force convergenge valu 值和 criterion 值当前者小于后者时,就完成一次收敛 你自己可以查看 两条线的意思分别是: F L2:不平衡力的2范数 F CRIT:不平衡力的收敛容差, 如果前者大于后者说明没有收敛,要继续计算 当然如果你以弯矩M为收敛准则那么就对应 M L2 和 M CRIT 希望你现在能明白 8.两个单元建成公共节点,就成了刚性连接,不是接触问题了。做为接触问题,两个互相接触的单元的节点必须是不同的。

Ansys分析常用技巧

Ansys分析常用技巧 一、前处理 1. 实体显示*.sat、*.x_t等外部导入模型 /facet,fine /replot Gui: Utility Menu>PlotCtrls>Style>Solid Model Facets 2. 修改ansys背景用命令jpgprf,500,100,1 /replot将背景变为白色 3. 隐藏坐标系的显示 /triad,off /replot Gui: Utility Menu>PlotCtrls>Window Controls>Reset Window Options Utility Menu>PlotCtrls>Window Controls>Window Options 4. 设置参考温度 TREF, TREF Gui:Main Menu>Solution>Define Loads>Settings>Reference Temp 5. 显示单元实际形状 /eshape,1.0 Gui: Utility Menu>PlotCtrls>Style>Size and Shape 6. 透明显示单元、体、面 /TRLCY, Lab, TLEVEL, N1, N2, NINC Gui: Utility Menu>PlotCtrls>Style>Translucency 7. 显示编号 /PNUM, Label, KEY Gui: Utility Menu>PlotCtrls>Numbering 8. 导入hypermesh有限元模型 /input,filename,prp Gui: Utility Menu>File>Read Input from 9. 导入abaqus格式的有限元模型 /input,filename,inp Gui:Gui: Utility Menu>File>Read Input from 10. ansys作为fluent前处理输出 cdwrite,db,filename,cdb gui: Main Menu>Preprocessor>Archive Model>Write 11. 不显示单元轮廓线 /gline,1,-1 Gui: Utility Menu>PlotCtrls>Style>Edge Options 12. 显示施加到几何元素上的约束 dtran /replot Gui:Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Constraints 13. 显示施加到几何元素上的面载荷 sftran /replot Gui: Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Surface Loads 14. 显示载荷标记及数值 /pbc,f,,2 Gui: Utility Menu>PlotCtrls>Symbols

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

ANSYS命令流使用方法(中文)

ANSYS常用命令 Fini(退出四大模块,回到BEGIN层) /cle (清空存,开始新的计算) 1.定义参数、数组,并赋值. 2. /prep7(进入前处理) 定义几何图形:关键点、线、面、体 定义几个所关心的节点,以备后处理时调用节点号。 设材料线弹性、非线性特性 设置单元类型及相应KEYOPT 设置实常数 设置网格划分,划分网格 根据需要耦合某些节点自由度 定义单元表 3./solu 加边界条件 设置求解选项 定义载荷步 求解载荷步 4./post1(通用后处理) 5./post26 (时间历程后处理) 6.PLOTCONTROL菜单命令 7.参数化设计语言 8.理论手册 Fini(退出四大模块,回到BEGIN层) /cle (清空存,开始新的计算) 1定义参数、数组,并赋值. u dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组 par: 数组名 type: array 数组,如同fortran,下标最小号为1,可以多达三维(缺省) char 字符串组(每个元素最多8个字符) table imax,jmax, kmax 各维的最大下标号 var1,var2,var3 各维变量名,缺省为row,column,plane(当type为table时) 2 /prep7(进入前处理) 2.1 定义几何图形:关键点、线、面、体 u csys,kcn kcn , 0 迪卡尔zuobiaosi 1 柱坐标 2 球 4 工作平面 5 柱坐标系(以Y轴为轴心) n 已定义的局部坐标系 u numstr, label, value

ANSYS命令流使用技巧分享(收录汇总)

ANSYS命令流使用技巧分享(收录汇总) 谈到Ansys使用技巧,不得不说APDL二次开发,针对二次开发并结合本人多年使用经验,有以下几点经验与各位分享。技巧毕竟很多,也欢迎各位专家留言补充,我们也可以整理汇总以待分享。 技巧一:ansys apdl语言高亮编辑器 命令流在编写时时常会把命令记错,如果写错了未察觉到,在计算时就会非常麻烦,因此一个帮助修正错误命令的编辑器必不可少。这种工具很多,我一直用的是UE,成功掌握二次开发必不可少。 blob.png 技巧二:建模画网格按照Number来区分各部件. 在ansys可以通过建立component来区分每个部件,有利于查看和编辑。采用下面的命令在建立模型和划分网格时,所有编号都从设定的值开始。 vsel,none asel,none lsel,none ksel,none ! NSS= NSS=150001 !设定值 NUMSTR,KP,NSS,

NUMSTR,LINE,NSS, NUMSTR,AREA,NSS, NUMSTR,VOLU,NSS, 技巧三:巧用循环语句*do和*enddo 可以采用较少的命令选择或者建立类似的模型,具体格式如下: *do,i,1,6 cmsel,a,JIECHU_pinghengmx_xia_%i% *enddo 技巧四:在计算结果中,实体云图中切面显示结果 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 技巧五:某结点或单元的应力-应变关系曲线 由于手头没有相关的东西资料可以操作,待到有资料和时间的时候会补充上来图片。 1,定义变量: 拾取主菜单:Main Menu>Time Hist postproc>Define Variables>在随之弹出的对话框中点击Add键,定义第一个变量序号为2,选取第一个变量stress,确定与之对应的下一级选项(如Y-direction SY等);返回定义变量对话框,再点击add键,定义第二个变量序号为3,选取第二个变量strain-elastic及以及对赢得下一级选项(如Y-dir'n EPEL Y等,在应力-应变图中,其向量的取向应相同)。同理再定义变量4,选取变量strain-plastic及与之对应的下一级选项如Y-dir'n EPEL Y等),在应力-应变图中,应变是弹性应变和塑性应变累加的总应变。为使其实现相加,还需进行以下操作:拾取主菜单:Main Menu>Time Hist

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

ANSYS结构分析指南 断裂力学

ANSYS结构分析指南第四章断裂力学 4.1 断裂力学的定义 在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。 断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。 典型的断裂参数有: 与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1); J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度; 能量释放率(G),它反映裂纹张开或闭合时功的大小; 注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。 图4-1 裂缝的三种基本模型 4.2 断裂力学的求解 求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。本章我们集中讨论下列两个主要的处理过程。 裂纹区域的模拟; 计算断裂参数。 4.2.1 裂纹区域的模拟 在断裂模型中最重要的区域,是围绕裂纹边缘的部位。裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。如图4-2所示。 图4-2 裂纹尖端和裂纹前缘 在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。为选取应变奇异点,相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。图4-3表示2-D和3-D模型的奇异单元。

ANSYS小技巧

一、ANSYS 查询函数(Inquiry Function) 在ANSYS操作过程或条件语句中,常常需要知道有关模型的许多参数值,如选择集中的单元数、节点数,最大节点号等。此时,一般可通过*GET命令来获得这些参数。现在,对于此类问题,我们有了一个更为方便的选择,那就是查询函数— Inquiry Function。 Inquiry Function类似于ANSYS的 *GET 命令,它访问ANSYS数据库并返回要查询的数值,方便后续使用。ANSYS每执行一次查询函数,便查询一次数据库,并用查询值替代该查询函数。 假如你想获得当前所选择的单元数,并把它作为*DO循环的上界。传统的方法是使用*GET命令来获得所选择的单元数并把它赋给一个变量,则此变量可以作为*DO循环的上界来确定循环的次 数 *get, ELMAX,elem,,count *do, I, 1, ELMAX … … *enddo 现在你可以使用查询函数来完成这件事,把查询函数直接放在*DO循环内,它就可以提供所选择的 单元数 *do, I, ELMIQR(0,13) … … *enddo 这里的ELMIQR并不是一个数组,而是一个查询函数,它返回的是现在所选择的单元数。括弧内的数是用来确定查询函数的返回值的。第一个数是用来标识你所想查询的特定实体(如单元、节点、线、面号等等),括弧内的第二个数是用来确定查询函数返回值的类型的(如选择状态、实体数量等)。 同本例一样,通常查询函数有两个变量,但也有一些查询函数只有一个变量,而有的却有三个变量。 查询函数的种类和数量很多,下面是一些常用、方便而快速快捷的查询函数 1 AREA—arinqr(areaid,key) areaid—查询的面,对于key=12,13,14可取为0; key—标识关于areaidr的返回信息 =1,选择状态 =12,定义的数目 =13,选择的数目 =14,定义的最大数 =-1,材料号 =-2,单元类型 =-3,实常数 =-4,节点数 =-6,单元数 … arinqr(areaid,key)的返回值 对于key=1 =0, areaid未定义 =-1,areaid未被选择 =1, areaid被选择 …

断裂力学复习题(实际)解答(课件)

断裂力学复习题 1.裂纹按几何特征可分为三类,分别是(穿透裂 纹)、(表面裂纹)和(深埋裂纹)。按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。 2.应力强度因子是与(外载性质)、(裂纹)及 (裂纹弹性体几何形状)等因素有关的一个量。材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。 3.确定应力强度因子的方法有:(解析法),(数 值法),(实测法)。 4.受二向均匀拉应力作用的“无限大”平板, 具有长度为2a 的中心贯穿裂纹,求应力强度因子ⅠK 的表达式。 【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,σσσ==y x ; ② 在y = 0,a x <的裂纹自由面上, 0,0==xy y τσ;而在a x >时,随a x →,∞→y σ。

可以验证,完全满足该问题的全部边界条件的解 析函数为 22Ⅰ )(a z z z Z -=σ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: )2() ()(I a a Z ++=ζζζσζ 于是有: a a a a a K πσζζσπζζζσπζζζ=++?=++?= →→)2()(2lim )2() (2lim 00Ⅰ 5.对图示“无限大”平板Ⅱ型裂纹问题,求应 力强度因子ⅡK 的表达式。

【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,ττσσ===xy y x ,0; ② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→xy τ。 可以验证,完全满足该问题的全部边界条件的解 析函数为 2 2Ⅱ )(a z z z Z -=τ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: ) 2()()(Ⅱa a Z ++=ζζζτζ 于是有: a a a a a K πτζζτπζζζτπζζζ=++?=++?=→→) 2()(2lim )2()(2lim 00Ⅱ 6.对图示“无限大”平板Ⅲ型裂纹问题,求应 力强度因子ⅢK 的表达式。

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

ANSYS workbench 裂纹分析

基于ANSYS Workbench的表面裂纹计算 By Yan Fei 本教程使用ANSYS Workbench17.0 进行试件表面裂纹的分析,求应力强度因子。需要提前说明的是,本案例没有工程背景,仅为说明裂纹相的计算方法,因此参数取值比较随意,大量设置都采用了默认值。 1.背景知识 传统的强度设计思想把材料视为无缺陷的均匀连续体,而实际工程构件中存在多种缺陷,断裂力学是从20实际50年代末期发展起来的一门弥补了传统强度设计思想严重不足的新的学科,是专门研究含缺陷或裂纹的物体在外界条件作用下构件的强度、裂纹扩展趋势以及疲劳寿命的科学。断裂力学是从构件内部具有初始缺陷这一实际情况出发,研究在外部荷载下的裂纹扩展规律,从而提出带裂纹构件的安全设计准则。 a 张开型裂纹 b 滑开型裂纹 c 撕开型裂纹 图 1 裂纹的分类 使用弹性力学方法可以求得,在裂纹尖端处的应力的解析解为无穷大,此时应力值已经失去意义,一般采用应力强度因子作为判断结构是否安全的指标。目前的断裂力学研究主要集中在I型裂纹的开裂,数值计算工具也多集中在I型裂纹的计算上,因此以I型裂纹为例。

图2 裂纹尖端坐标系 含有裂纹的无限大平板的I 型裂纹尖端附近的应力为: )(23cos 2sin 223sin 2sin 12cos 223sin 2sin 12cos 20ⅠⅠⅠr O r K r K r K xy y x +???????????=??? ??+=??? ???=θθπτθθθπσθθθπσ 其中,K Ⅰ叫Ⅰ型裂纹的应力强度因子。 2. ANSYS Workbench 裂纹分析 2.1. 分析模型的建立 1 建立一个静力分析步,材料使用默认,需要说明的是,现有计算技术下,断裂力学计算一般都采用线弹性材料,考虑到断裂中塑性区一般都不大,线弹性的假设还是可以接受的。 图3 分析步设置 2 建立几何模型,本案例使用spaceclaim 建立几何模型。 图4 试件平面图

Ansys 断裂力学理论

第四章断裂力学 文献来源:https://www.360docs.net/doc/026126882.html,/document/200707/article796_2.htm 4.1 断裂力学的定义 在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。 断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。 典型的断裂参数有: 与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1); J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度; 能量释放率(G),它反映裂纹张开或闭合时功的大小; 注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。 图4-1 裂缝的三种基本模型 4.2 断裂力学的求解 求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。本章我们集中讨论下列两个主要的处理过程。 裂纹区域的模拟; 计算断裂参数。 4.2.1 裂纹区域的模拟 在断裂模型中最重要的区域,是围绕裂纹边缘的部位。裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。如图4-2所示。

图4-2 裂纹尖端和裂纹前缘 在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。为选取应变奇异点, 相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。图4-3表示2-D和3-D模型的奇异单元。 图4-3 2-D和3-D模型的奇异单元 4.2.1.1 2-D断裂模型 对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。围绕裂纹尖端的第一行单元,必须具有奇异性,如图4-3a所示。PREP7 中KSCON命令(Main Menu>Preprocessor>-Meshing-Shape & Size>-Concentrat KPs-Create)用于指定关键点周围的单元大小,它特别适用于断裂模型。本命令自动围绕指定的关键点产生奇异单元。命令的其他选项可以控制第一行单元的半径,以及控制周围的单元数目等,图4-4显示用KSCON命令产生的断裂模型。

相关文档
最新文档