向心加速度公式推导的几种方法

向心加速度公式推导的几种方法
向心加速度公式推导的几种方法

【字体:A 】

向心加速度公式推导

向心加速度是匀速圆周运动中的教学难点,这是由于学生因长期接受标量运算而产生的思维定势,认为匀速圆周运动中

物体运动速率不变,故其

因此我们在教学中必须强调两点,一的矢量性,速度的方向变化也表示速度有变化,故△v≠0,另一是速度变化的方向就是加速度的方向。因此在教学中必须说清楚△v的方向。教材中引进了速度三角形的方法,实际上已经考虑到了上述两点。关于向心加速度公式的推导方法甚多,下面提供几种有别于课本的推导方法,供大家参考。

1 矢量合成法

如图1所示,物体自半径为r的圆周a匀速率运动至b,所经时间为△t,若物体在a、b点的速率为v a=v b=v,则其速度的增量△v=v b-v a=v b+(-v a),由平行四边形法则作出其矢量图如图1。由余弦定理可得

可见当θ→0时,α=90°,即△v的方向和v b垂直,由于v b方向为圆周切线方向,故△v的方向指向圆心.因△v的方向即为加速度的方向,可见匀速圆周运动中加速度的方向指向圆心,

。. .

2 运动合成法

众所周知,物体作圆周运动的条件一是受到一个指向圆心的向心力的作用.另一是有一个初速度.可以设想,若没有初速度则物体将向着圆心方向作匀加速运动.若没有向心力,则物体将沿初速度方向作匀速运动.可见圆周运动应当是沿圆心方向的匀加速直线运动和沿初速度方向的匀速运动的合运动.如图2所示,物体自a至b的运动,可看成先由a以速度v匀速

运动至c,再由c以加速度α匀加速运动至b,由图可知

当△t→o时ac方向的运动可以忽略.故物体只有指向圆心方向的加速度α.

3 位移合成法

如图3所示,设物体自a点经△t沿圆周运动至b,其位移ab可看成是切向位移s1和法向位移s2的矢量和.由以上分析可

知,其法向运动为匀加速

由图知:△acb∽△adb,故有ac∶ab=ab∶ad,

4 类比法

设有一位置矢量r绕o点旋转,其矢端由a至b时发生的位移为△s(如图4).若所经时间为△t,则在此段时间内的平均

速率显然这个速率描述的是位置矢量矢端的运动速率,当△t趋近于零时,这个平均速率就表示位置矢量的矢端在某一时刻的即时速率,如果旋转是匀角速的,则其矢端的运动也是匀速率的,易知其速率

(1)式中t为旋转周期.再如图5是一物体由a至b过程中,每转过1/8圆周,速度变化的情况。现将其速度平移至图6中,容易看出图6和图5相类似,所不同的是图5表示的是位置矢量的旋转.,而图6则是速度矢量的旋转,显然加速度

是速度的变化率,即

由图6可知,这个速度变化率其实就是端的旋转速率,其旋转半径就是速率v的大小,故有

(完整版)样本量计算(DOC)

1.估计样本量的决定因素 1.1资料性质 计量资料如果设计均衡,误差控制得好,样本可以小于30例;计数资料即使误差控制严格,设计均衡,样本需要大一些,需要30-100例。 1.2研究事件的发生率 研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。 1.3 1.4 1.5 度为 1.6 1.7 1.8双侧检验与单侧检验 采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需 样本量就大;当研究结果仅高于或低于效应指标的界限有意义时,应该选择单侧检验,所需样本量 就小。当进行双侧检验或单侧检验时,其α或β的Ua?界值通过查标准正态分布的分位数表即可得到。

2.样本量的估算 由于对变量或资料采用的检验方法不同,具体设计方案的样本量计算方法各异,只有通过查阅资料,借鉴他人的经验或进行预实验确定估计样本量决定因素的参数,便可进行估算。 护理中的量性研究可以分为3种类型:①描述性研究:如横断面调查,目的是描述疾病的分布情况或现况调查;②分析性研究:其目的是分析比较发病的相关因素或影响因素;③实验性研究:即队列研究或干预实验。研究的类型不同,则样本量也有所不同。 2.1描述性研究 例. =0.1, 2.2 2.2.1探索有关变量的影响因素研究 有关变量影响因素研究的样本量大多是根据统计学变量分析的要求,样本数至少是变量数的5-10倍。例如,如果研究肺结核患者生存质量及影响因素,首先要考虑影响因素有几个,然后通过文献回顾,可知约有12个预测影响变量,如年龄、性别、婚姻、文化程度、家庭月收入、医疗付费方式、病程、排菌、喀血、结核中毒症状、心理健康、社会支持,那么研究的变量就可以在60-120例。这是一种较为简便的估算样本量的方法,在获得相关文献支持下,最好根据公式计算,计量

圆的面积公式03

《圆的面积》教学设计 正定回民小学吴彦霞 教材分析: 本课是学生学习了其它平面图形的面积后教学的,是小学平面几何的最后阶段,教材通过直观的组合图形面积的计算,让学生操作、观察、比较推导出圆的面积计算公式来解决生活中的实际问题。 学情分析: 学生已经掌握长方形、正方形、三角形、梯形的面积计算公式,并有了将一个图形转化成另一个面积相等的图形的转化思想,在此基础上将圆转化成长方形学生是乐于接受的。 教学目标: 知识与技能: 让学生经历操作、观察、讨论、归纳等数学活动的过程,探索并掌握圆的面积计算公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。 过程与方法: 让学生进一步体会“转化”的数学思想方法,感情极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思维。 情感态度价值观: 让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。 教学重点:让学生经历圆面积公式的推导过程,理解和掌握圆面积的计算

公式。 教学难点:“化圆为方”的转化方法和极限思想的感受。 教学准备:平均分成16份的学具、课件。 教学策略: 1、本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。 2、教学本课时,重点引导学生参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动。 教学过程: 一、复习导入,激发探索欲望 1.复习圆的周长计算方方法,圆周长的一半计算方法。 2.复习圆的面积,学生自己总结圆的面积是什么? 3.复习已学的平面图形的计算方法。 4.我们先来回忆一下平行四边形的面积计算公式是怎样推导出来? 我们遇到没学过的图形可以转化成学过的图形来计算,那能否把圆也转化成学过的图形来计算呢? 【设计意图:复习铺垫,让学生能很快联系所学过的知识,很快就能进入新课的学习。】 二、新课探究

垂直档距和水平档距、代表档距的定义和计算

一、水平档距和水平荷载 在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。 为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。 悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC 两杆塔平均承担。 图2-10水平档距和垂直档距 如上图所示:此时对A杆塔来说,所要承担的总风压荷载为 (2-47) 令 则 式中P—每米导线上的风压荷载N/m;

—杆塔的水平档距,m; —计算杆塔前后两侧档距,m; P—导线传递给杆塔的风压荷载,N。 因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。它表示有多长导线的水平荷载作用在某杆塔上。水平档距是用来计算导线传递给杆塔的水平荷载的。 严格说来,悬挂点不等高时杆塔的水平档距计算式为 只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S; 当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为: 无冰时(2-48) 有冰时(2-49) 式中S—导线截面积,mm2。 二、垂直档距和垂直荷载 如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。同理,AO2段导线上的垂直荷载由A杆承担,O2C段导线上的垂直荷载由C杆承担。 在平抛物线近似计算中,设线长等于档距,即 则(2-50) 式中G—导线传递给杆塔的垂直荷载,N; g—导线的垂直比载,N/m.mm2; —计算杆塔的一侧垂直档距分量,m;

样本量计算方法

样本量及其计算依据: 根据现有文献[Gerald Holtmann,Nicholas Talley,Tobias Liebregts,Birgit Adam,Christopher Parow.A placebo-controlled trial of itopride in functional dyspepsia.The New England Journal of MEDICINE 2006;(8):832-840],功能性消化不良患者接受伊托必利50mg组治疗后,其NDI改善值的均数为18.0,本研究期望针刺本经取穴组治疗功能性消化不良的NDI改善值的均数为15.0,本研究共设了6个组别,检验水准α=0.05,检验效能1-β=0.90,采用多个样本均数比较的样本含量估计公式(王家良主编《临床流行学》.上海.上海科学技术出版社,2001.P142)进行样本量的估算,公式如下: k ψ2(Εs j2/k) n= j=1 k = Ε( X j- x ) 2/(k-l) j=1 通过公式计算,每组所需样本数n=77例,按15%的脱失率计算,每个组应不少于89例,6组应不少于534例。 样本量及其计算依据: 若分为三组或三组以上,采用多个样本均数比较的样本含量估计公式(王家良主编《临床流行学》.上海.上海科学技术出版社,2001.P142)进行样本量的估算,公式如下: k ψ2(Εs j2/k) n=

k = Ε(?X j- x ) 2/(k-l) k为研究所用的组数,?X j, s i各为每组的均数与标准差的估计值,x=Ε?X j/k,ψ为界值,可通过查阅ψ值表得到。

样本量计算(DOC)

1.估计样本量的决定因素 1.1 资料性质 计量资料如果设计均衡,误差控制得好,样本可以小于30例; 计数资料即使误差控制严格,设计均衡, 样本需要大一些,需要30-100例。 1.2 研究事件的发生率 研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。 1.3 研究因素的有效率 有效率越高,即实验组和对照组比较数值差异越大,样本量就可以越小,小样本就可以达到统计学的显著性,反之就要越大。 1.4 显著性水平 即假设检验第一类(α)错误出现的概率。为假阳性错误出现的概率。α越小,所需的样本量越大,反之就要越小。α水平由研究者具情决定,通常α取0.05或0.01。 1.5 检验效能 检验效能又称把握度,为1-β,即假设检验第二类错误出现的概率,为假阴性错误出现的概率。即在特定的α水准下,若总体参数之间确实存在着差别,此时该次实验能发现此差别的概率。检验效能即避免假阴性的能力,β越小,检验效能越高,所需的样本量越大,反之就要越小。β水平由研究者具情决定,通常取β为0.2,0.1或0.05。即1-β=0.8,0.1或0.95,也就是说把握度为80%,90%或95%。 1.6 容许的误差(δ) 如果调查均数时,则先确定样本的均数( )和总体均数(m)之间最大的误差为多少。容许误差越小,需要样本量越大。一般取总体均数(1-α)可信限的一半。 1.7 总体标准差(s) 一般因未知而用样本标准差s代替。 1.8 双侧检验与单侧检验 采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需样本量就大; 当研究结果仅高于或低于效应指标的界限有意义

圆的面积计算公式的推导(吴琼)

九年义务教育第十一册第94页 圆的面积计算公式的推导 江油市世纪奥桥小学吴琼 设计意图: 拓展学生的思路,培养学生的创新能力,多角度来推导圆的面积计算公式。教学目标: (一)知识与技能 1.知道圆面积的含义。 2.理解和掌握圆面积的计算公式。 (二)过程与方法 1. 通过公式推导培养操作、观察、比较、分析、判断、推理、归纳概括能力,发展空间观念。 2.培养学生迁移类推能力。 (三)情感态度价值观 1.通过对圆面积公式的推导,认识到事物在一定条件下可以互相转化,渗透转化和极限的思想和方法。 2.运用转化思考方法解决实际问题, 探究过程: 1.回忆学过的图形面积公式的推导过程。 2.推导圆面积的计算公式。 (1)教师指导转化。

将已分成16等份的圆用剪刀把每一份剪开,用这些近似等腰三角形的小纸片依次横着拼起来,并用固体胶粘在纸上,看能拼成什么图形? (2)学生动手操作。 按照老师的示范,请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。) 谁能向大家汇报一下,你把圆拼成了一个什么图形?(生答:拼成了一个近似的平行四边形。请把你拼好的图形放在实物投影上展示给大家看。) (3)课件演示过程。 把圆分成16等份,这些小纸片可以拼成一个近似的平行四边形;把圆分成32等份,可以拼成一个近似的长方形;如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。) (4)推导面积公式。 拼成的长方形与圆有什么联系?同位讨论。 学生汇报讨论结果。生答师继续演示课件。 生:拼成的长方形的面积与圆的面积相等。 师:这个长方形的长和宽与圆的周长和半径有什么关系? 生:长方形的长相当于圆周长的一半,宽相当于半径。 因为长方形的面积=长×宽 所以圆的面积=周长的一半×半径 S=πr×r S=πr2 [设计意图:动手操作是学生学习数学的重要方式,让学生经历公式的推导过程,

t检验计算公式

t 检验计算公式: 当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。 t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。t 检验分为单总体t 检验和双总体t 检验。 1.单总体t 检验 单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。检验统计量为: X t μ -= 。 如果样本是属于大样本(n >30)也可写成: X t μ -= 。 在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差; n 为样本容量。 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显著性进步? 检验步骤如下: 第一步 建立原假设0H ∶μ=73 第二步 计算t 值 79.273 1.63X t μ --= = = 第三步 判断 因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值 0.05(19)2.093t = ,而样本离差的t = 1.63小与临界值 2.093。所以,接受原假设, 即进步不显著。

2.双总体t 检验 双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过0r =。 相关样本的t 检验公式为: t = 在这里,1X ,2X 分别为两样本平均数; 1 2 X σ,2 2X σ分别为两样本方差; γ为相关样本的相关系数。 例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异? 检验步骤为: 第一步 建立原假设0H ∶1μ=2μ 第二步 计算t 值 X X t -= =3.459。 第三步 判断 根据自由度19df n =-=,查t 值表0.05(9) 2.262t =,0.01(9) 3.250t =。由于实际计算出来的t =3.495>3.250=0.01(9)t ,则0.01P <,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 由以上可以看出,对平均数差异显著性检验比较复杂,究竟使用Z 检验还是使用t 检验必须根据具体情况而定,为了便于掌握各种情况下的Z 检验或t 检验,

垂直档距和水平档距代表档距的定义和计算

垂直档距和水平档距代 表档距的定义和计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一、水平档距和水平荷载 在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以 保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是 否满足要求。杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘 子串的作用。就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。 为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。 悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载 ,如图2-10所示: 则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。

图2-10 水平档距和垂直档距 如上图所示:此时对A杆塔来说,所要承担的总风压荷载为 (2-47) 令 则 式中P—每米导线上的风压荷载 N/m; —杆塔的水平档距,m; —计算杆塔前后两侧档距,m; P—导线传递给杆塔的风压荷载,N。 因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。它表示有多长导线的水平荷载作用在某杆塔上。水平档距是用来计算导线传递给杆塔的水平荷载的。 严格说来,悬挂点不等高时杆塔的水平档距计算式为

只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有 风无冰时,比载取g 4,则p=g 4 S; 当计算气象条件为有风有冰时,比载取g 5,则p=g 5 S,因此导线传递 给杆塔的水平荷载为: 无冰时(2-48) 有冰时(2-49) 式中 S—导线截面积,mm2。 二、垂直档距和垂直荷载 如图2-10所示,O 1、O 2 分别为档和档内导线的最低点,档内导线 的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O 1 点划分,即 BO 1段导线上的垂直荷载由B杆承担,O 1 A段导线上的垂直荷载由A杆承 担。同理,AO 2段导线上的垂直荷载由A杆承担,O 2 C段导线上的垂直荷 载由C杆承担。 在平抛物线近似计算中,设线长等于档距,即 则(2-50) 式中G—导线传递给杆塔的垂直荷载,N; g—导线的垂直比载,N/; —计算杆塔的一侧垂直档距分量,m; —计算杆塔的垂直档距,m; S—导线截面积,。

样本量计算

样本量计算 调查研究中样本量的确定 在社会科学研究中,研究者常常会遇到这样得问题:“要掌握总体(population)情况,到底需要多少样本量(sample)?”,或者说“我要求调查精度达到95%,需要多少样本量?”。对此,我往往感到难以回答,因为要解决这个问题,需要考虑的因素是多方面的:研究的对象,研究的主要目的,抽样方法,调查经费…。本文将根据自己的经验,探讨在调查研究中确定调查所需样本量的一些基本方法,相信这些方法对于其他的社会调查研究也有一定的借鉴意义。 确定样本量的基本公式 在简单随机抽样的条件下,我们在统计教材中可以很容易找到确定调查样本量的公式: Z2 S2 n = ------------ (1) d2 其中: n代表所需要样本量 Z:置信水平的Z统计量,如95%置信水平的Z统计量为1.96,99%的Z为2.68。 S:总体的标准差; d :置信区间的1/2,在实际应用中就是容许误差,或者调查误差。 对于比例型变量,确定样本量的公式为: Z2 ( p ( 1-p)) n = ----------------- (2) d2 其中: n :所需样本量 z:置信水平的z统计量,如95%置信水平的Z统计量为1.96,99%的为2.68

p:目标总体的比例期望值 d:置信区间的半宽 关于调查精度 通常我们所说的调查精度可能有两种表述方法:绝对误差数与相对误差数。如对某市的居民进行收入调查,要求调查的人均收入误差上下不超过50元,这是绝对数表示法,这个绝对误差也就是公式(1)中置信区间半宽d。 而相对误差则是绝对误差与样本平均值的比值。例如我们可能要求调查收入与真实情况的误差不超过1%。假定调查城市的真实人均收入为10000元,则相对误差的绝对数是100元。 公式的应用方法 对于公式的应用,一些参数是我们可以事先确定的:Z值取决于置信水平,通常我们可以考虑95%的置信水平,那么Z=1.96;或者99%,Z=2.68。然后可以确定容许误差d(或者说精度),即我们可以根据实际情况指定置信区间的半宽度d。因此,公式应用的关键是如何确定总体的标准差S。如果我们可以估计出总体的方差(标准差),那么我们可以根据公式计算出样本量: 例如:要了解该城市的居民收入,假定我们知道该市居民收入的标准差为1500,要求的调查误差不超过100元,则在95%的置信水平下,所需的样本量为 n=1.962*15002/1002=8,643,600/10,000=864 即需要调查的样本量为864个。 最大样本量 以上公式只是理论上的,在实际调查中确定合理的样本量,必须考虑多方面的因素。 首先,由于人们通常缺乏对标准差的感性认识,因此对标准差的估计往往是最难的。总体的标准差是123,还是765?如果没有一点对样本的先验知识,那么对标准差的估计是不可能的。好在我们通常能对变量的平均值进行估计,如我们通过历史资料估计该地区目前的年人均收入大致为10,000元,那么根据统计学知识,我们引入变异系数的概念: 变异系数V=标准差S/平均值X<= 1 因此,我们知道人均收入的标准差应该小于平均值,就是说标准差应该在10000以下。当然,这对于我们确定样本量还不能起太大的作用。然而如果我们采用相对误差表述的精度,对公

怎样确定统计量的样本容量

样本量的确定方法(2008-10-14 09:12:34) 一、样本单位数量的确定原则 一般情况下,确定样本量需要考虑调查的目的、性质和精度要求。以及实际操作的可行性、经费承受能力等。根据调查经验,市场潜力和推断等涉及量比较严格的调查需要的样本量比较大,而一般广告效果等人们差异不是很大或对样本量要求不是很严格的调查,样本量相对可以少一些。实际上确定样本量大小是比较复杂的问题,即要有定性的考虑,也要有定量的考虑;从定性的方面考虑,决策的重要性、调研的性质、数据分析的性质、资源、抽样方法等都决定样本量的大小。但是这只能原则上确定样本量大小。具体确定样本量还需要从定量的角度考虑。 从定量的方面考虑,有具体的统计学公式,不同的抽样方法有不同的公式。归纳起来,样本量的大小主要取决于: (1)研究对象的变化程度,即变异程度; (2)要求和允许的误差大小,即精度要求; (3)要求推断的置信度,一般情况下,置信度取为95%; (4)总体的大小; (5)抽样的方法。 也就是说,研究的问题越复杂,差异越大时,样本量要求越大;要求的精度越高,可推断性要求越高时,样本量也越大;同时,总体越大,样本量也相对要大,但是,增大呈现出一定对数特征,而不是线形关系;而抽样方法问题,决定设计效应的值,如果我们设定简单随机抽样设计效应的值是1;分层抽样由于抽样效率高于简单随机抽样,其设计效应的值小于1,合适恰当的分层,将使层内样本差异变小,层内差异越小,设计效应小于1的幅度越大;多阶抽样由于效率低于简单随机抽样,设计效应的值大于1,所以抽样调查方法的复杂程度决定其样本量大小。对于不同城市,如果总体不知道或很大,需要进行推断时,大城市多抽,小城市少抽,这种说法原则上是不对的。实际上,在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。 二、样本量的确定方法 如何确定样本量,基本方法很多,但是公式检验表明,当误差和置信区间一定时,不同的样本量计算公式计算出来的样本量是十分相近的,所以,我们完全可以使用简单随机抽样计算样本量的公式去近似估计其他抽样方法的样本量,这样可以更加快捷方便,然后将样本量根据一定方法分配到各个子域中去。所以,区域二相抽样不能计算样本量的说法是不科学的。

圆的面积公式推导教案

圆的面积公式推导教案 教学目标; 1、通过操作,使学生理解圆的面积公式推导过程,掌握圆的面积的方法并能正确计算。 2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。 3、渗透转化的数学思想和极限思想 教学重点: 1、理解圆的面积公式的推导过程。 2、掌握圆的面积的计算公式,能够正确地计算圆的面积。 教学难点:理解圆的面积公式的推导过程。 教具准备:多媒体课件,圆片,剪刀。学具准备:分成十六等分的圆硬片,剪教学过程: 一、故事导入 【设计意图】引起学生学习兴趣,同时也让学生明白这个故事与所要学习的内容有联系。【出示课件1、2】 二、出示学习目标【出示课件3】 【设计意图】让学生清楚学习的重点,难点是什么?也提醒老师要有的放矢。 三、学习新知 (一)、定义: 1、摸一摸哪里是圆的面积?圆所占平面的大小就是圆的面积。【出示课件4】(二)、小组交流【出示课件5】 圆与以前我们研究的平面图形有什么不同? 不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。 如何化曲为直呢,推导出它的面积公式呢? (三)复习旧知,渗透极限思想【出示课件6】

1、还记得这些平面图形的面积计算公式吗? 2、平行四边形的面积公式推导过程还记得吗?(我们是通过剪拼的方法把它转化成长方形的。)【出示课件7、8】 小结:把圆转化成哪一个我们学过的平面图形,从而得到它的面积公式。(四)小组合作学习【出示课件9、10、11、12、13、14】 (1)老师引导学生将圆化曲为直,先将圆沿直径剪开,然后沿半径再把圆平均分成偶等份。然后把剪成多份并用拼的方法将其转化成学过的规则图形。 (2)请学生观察四组图。随着份数的不断增加,有何发现?【出示课件15】 (3)转化后的图形面积与圆的面积有什么关系?【出示课件16】 (4)长方形各部分相当于圆的什么?【出示课件17】 (5)试着推导出圆的面积公式。【出示课件18】 (五)风采展示 1、学生汇报推导过程。 2、学生齐读圆面积公式。并说一说圆的面积大小与什么有关系? 【设计意图】这两个环节是在教师的引导和启发中,每个学生都动口,动手,动脑,培养学生学习的主动性和积极性。 (六)当堂测试与应用 1、做课件图示,求半径为2分米的圆的面积【出示课件19】 2、做课前出示的圆形花坛的面积。【出示课件20】 3、根据下面所给的条件,求圆的面积。【出示课件21】 (1)、半径2分米 (2)、直径10厘米 4、一个雷达屏幕的直径是40厘米,它的面积是多少平方厘米? 5、判断对错: (1)圆的半径越大,圆所占的面积也越大。() (2)圆的半径扩大3倍,它的面积扩大6倍。() 【设计意图】在当堂测试与应用中设计了基本练习与综合练习。基本练习主要是加强学生对圆面积的认识,并能计算圆的面积。综合练习是培养学生的综合应用

电力基础测量公式

测量公式记录 一. 基础测量 测量用工器具 经纬仪,塔尺,花杆,30米皮尺,5米尺,工程线,线垂,记录本子,笔等, 资料有: 1、杆位明细表 2、基础施工说明 3、基础配置表 4、现浇基础施工图 5、地脚螺栓构造图 1.线路复测 资料有线路档距表,如图 两基础之间的挡距测量方法为:如图 B A

在A点置一仪器,在B点立塔尺,以仪器上镜头中看到的上丝减去下丝乘以100,再乘仪器上的角度,用sin角度的平方 注意:仪器上的角度不一定是90度,可能是任意角度 应用公式是: (1)sin角度=0.9xxxx (2)(0.9xxxx)2*[{上丝—下丝}*100], (0.9xxxx)2*[{上丝—中丝}*200] 两基础之间的高差测量方法是: 同上图,仪高是1.2M那么仪器镜子里的中丝就对准1.2M,然后看仪器上面的水平角度是多少以COS角度X上面计算出来的挡距就得出它们之间的高差了 应用公式是: (1)高差=COS角度*挡距 (2)仰视:H=D*fg角度+仪高-中丝读数 (中丝算法:中丝={上丝—下丝}/2+下丝) 府视: H=D*fg角度-仪高+中丝读数 (3)H=1/2kl sin2a+i-s H= 高差 k=100常数 l=上下丝中间间距 Sina=仪器垂直角读数 i=仪高 s=中丝在视距尺上读数 方向: 每个基础中心柱都有一个或两个方向柱,以保证整个线路的方向正确性,当有转角时应该有三个柱,有一个是角平分线,有时要我们自已去订柱, 如下图:

: 中心柱位移: (1)等长横担转角塔算法: S1=(b/2+c)tan a/2 S1=位移值 b=横担宽度 c=绝缘子金具串挂线板长度 a=线路转角度数 (2)不等长横担转角塔算法: S=(b/2+c)tan a/2+1/2(L2-L1) L1=转角杆塔短横担长度 L2=转角杆塔长横担长度 二.基础分坑 仪器架在中心柱上置平,将镜子对准方向柱然后将仪器角度恢复到零,以此转向45度,135度,225度,315度,分别订前后两个柱,在分出A,B,C,D,四个基础坑: 分坑公式是; 基础半根开*根号2=全根开 如果是斜柱式基础在另外加上基础全高乘以斜距: 公式是:基础全高*坡度+全根开 大号 小号 角平分线 原方向 转角方向

抽样调查的样本容量的确定方法

抽样调查的样本容量的确定方法 摘要:确定样本容量是抽样调查中重要的环节,影响到抽样估计的精确度和调查的成本和效益。单位标志变异程度、抽样极限误差、抽样推断的可靠度、抽样类型和方法等影响到样本容量地确定。样本容量的确定可以根据由抽样误差、抽样极限误差和概率度推算出来的公式计算,也可以根据建立在过去抽取满足统计方法要求的样本量所累积下来的经验法则来确定。 关键词:样本容量;抽样调查;抽样误差;极限误差 抽样调查是根据随机原则,从总体中抽取部分实际数据构成样本,同时运用概率估计方法,依据样本信息推断总体数量特征的一种非全面统计调查。根据抽选样本的方法,抽样调查可以分为等概率抽样和非概率抽样两类。等概率抽样又称为随机抽样,是按照概率论和数理统计的原理,从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征做出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。样本是从总体中抽出的部分单位的集合,样本中所包含的单位数被称为样本容量,一般用n表示。确定样本容量是制定抽样调查方案中的一个非常重要的环节。 1.确定样本容量的必要性 1.1样本容量大小影响抽样估计的精确度 抽样估计的精确度是指样本的统计量与其所代表的总体值的接近程度。调查结果相对于总体真实值的精确度与样本容量直接相关。样本容量越大,抽样误差相对就会减少,估计精度就会提高;若样本容量太小,抽样误差就会增大,从而影响抽样估计的精确度。 1.2样本容量大小影响抽样调查的成本和效益 样本量的设计通常受到研究经费及调查时间的限制。根据数理统计规律,样本量增加呈直线递增的情况下(样本量增加一倍,成本也增加一倍),而抽样误差只是样本量相对增长速度的平方根递减。若样本容量过大,调查单位增多,不仅增加人力、财力和物力的耗费,增加调查费用,而且还影响到抽样调查的时效性,从而不能充分发挥抽样调查的优越性。 因此,为节省调查费用,体现出抽样调查的优越性,在确定样本容量时,应在满足抽样调查对估计数据的精确度的前提下,尽量减少调查单位数,确保必要的抽样数目。 2.影响必要样本容量的主要因素 影响样本容量的因素是多方面的,在抽样调查总体、调查费用和调查时间既定的情况下,为确定最佳的样本容量,应首先分析影响样本容量的因素。从理论上说,影响样本容量的因素有以下几个方面: 2.1单位标志变异程度 或成数方差P(1-P)的大小来表示。在其他单位标志变异程度一般用方差2

-临床试验样本量的估算

临床试验样本量的估算 样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。因此样本量估计有些时候不是想做就能做的。SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。 但是中国的国情?有多少厂家愿意多做? 建议方案里这么写: 从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。 或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。 非劣性试验(α=0.05,β=0.2)时:

计数资料: 平均有效率(P)等效标准(δ) N= 公式:N=12.365×P(1-P)/δ2 计量资料: 共同标准差(S)等效标准(δ) N= 公式:N=12.365× (S/δ)2 等效性试验(α=0.05,β=0.2)时: 计数资料: 平均有效率(P)等效标准(δ) N= 公式:N=17.127×P(1-P)/δ2 计量资料: 共同标准差(S)等效标准(δ) N= 公式:N=17.127× (S/δ)2 上述公式的说明: 1) 该公式源于郑青山教授发表的文献。 2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数; 3) P 是平均有效率,

圆面积公式的各种证明方法刘晓丽李小龙

圆面积公式的各种证明方法刘晓丽李小龙 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

圆面积公式的各种证明方法证明方法1:转化(小学段) (1)拼成平行四边形,4份,8份,16份。 (2)拼成长方形。 近似长方形的长等于圆周长的一半,宽等于圆的半径。 长方形的面积 = 长×宽 圆的面积 = πr × r 所以,圆的面积公式是:S =πr2 (3)拼成两层平行四边形(两层) 近似平行四边形的面积 = 底×高 圆的面积 = 1 2 C × 2r = 1 2πr × 2r 所以,圆的面积公式是: S =πr2(4)用三角形(小)拼 三角形的面积 = 1 2×底×高 圆的面积 = 1 2×( 1 16× C )× r ×16 所以,圆的面积公式是:S =πr2(5)拼成梯形 梯形的面积 = 1 2(上底+下底)×高 圆的面积 = 1 2×( 5 16 + 3 16)× C × 2r 所以,圆的面积公式是:S =πr2

拼成三角形(大) (6)三角形的面积 = 1 2底×高 圆的面积 = 1 2×( 1 4× C )× 4r 所以,圆的面积公式是:S =πr2 证明方法2: 半径为r的圆的圆周长为2πr 1.先将圆周等分成n份:每份长为2πr/n. 2.连接每个分点与圆心,并且连接各个分点,组成三角形. 3.那么,根据三角形面积公式,该圆的面积近似等于:(n-1)·r·(2πr)/n/2.(因为在n充分大时,各个三角形的高近似等于r,并且有n-1个三角形,所以有该公式) 取极限:l im (n→+∞)(n-1)·r·(2πr)/n/2,因为lim(n→+∞)(n-1)/n=1 所以lim (n→+∞)(n-1)·r·(2πr)/n/2=πr^2 证明方法3:极限法(高中段: 以圆的正n边形表示圆的面积: 设圆的半径为r,内接一个正n边形,它的任意一边所对的圆心角为2π/n,先算出其中一个三角形的面积(用两边夹角的公式S=(1/2)a*b*sinC),然后得到这个正n六边形的面积: Sn=(n/2)r2sin(2π/n) 当n无限增大时,内接正n边形的形状无限接近于圆,它的面积也无限接近圆的面积.求这个极限要用一高等数学中一个重要的极限公式(函数的极限): 当x→0时,lim[(sinx)/x]=1 [题外话:这个极限的几何意义是,当x无限减小时,y=sinx的图象与直线y=x是重合的,在这种情况下,我们可以用x的值来代替sinx,以在某些领域做近似计算]

代表档距的定义

代表档距的概念: 架空线在安装时,在同一个耐张段内各连续档的水平应力是相等的。当气象条件变化时,各档距应力变化不完全相同,但由于直线杆塔悬垂绝缘子串向张力大的一侧偏斜,使各档距应力趋于相等,这个应力称为耐张段的代表应力,与该应力对应的档距就称之为代表档距,它与导线的型号没有关系的。 在不考虑悬挂点高差情况下,代表档距为=(每档档距的立方和/每档档距的代数和)的1/2次方。 如何根据代表档距计算观测档弧垂 如何根据代表档距计算观测档弧垂 1.运用等长法观测弧垂时应注意:在测量导(地)线弧垂时,若气温变化导致架空线温度发生变化,此时应调整观测的弧垂值。其方法是当气温变化不超过±10℃时,保持视点端弧垂板不动,在测站端调整弧垂板:当气温升高时,将弧垂板向下移动一段距离a;当气温降低时,将弧垂板向上移动a(其中a为因气温变化引起观测档弧垂变化值的2倍)。当气温变化超过±10℃时,应将视点端弧垂板按气温变化后的弧垂重新绑扎。 2.运用异长法观测弧垂时应注意:如果气温变化时,采用异长法观测弧垂应作调整。即视点端的弧垂板保持不动,观测站端的弧垂板应移动一段距离△a,其值按下式计算:△a=2△f (△f随气温变化架空线弧垂的变化量;a 为测站端低于同侧架空线悬挂点的垂直距离)。 3.运用角度法观测弧垂时应注意:用角度法观测弧垂对架线工序的质量检查步骤为:架线工序完成后,复查架空线弧垂时,原则上应在观测档上复查,经纬仪摆放位置应尽可能摆放在原来观测弧垂的位置;调平经纬仪后,调整经纬仪的垂直度盘,使望远镜的视线与架空线的轴线相切,读出观测角,利用观测角推算架空线的弧垂;将计算的弧垂值与设计弧垂值相比较确定误差率,在比较时应考虑架空线已释放初伸长的因素。 什么叫水平档距,垂直档距?垂直档距的大小和什么因素有关? 1)平常说的水平档距,是指相邻两档的每一档中点之间的距离。垂直档距,是指相邻两档中每一档离地面最近的点的两点之间的距离。 2)如果是电路的水平档距指的是两级杆塔之间的水平距离。那垂直档距就是线路到地面的垂直距离。大小的话要根据,风荷载,覆冰,等做出张力的计算,再算出弧垂。 水平档距 220kV~500kV电力线路中的,线路垂直档距、水平档距计算公式,要excel版的,可以根据里面的提示输入数据即可。 水平档距 词性解释 假设有挨着的两档线,杆塔号为 1#、2#、3# , 档距分别为L1、L2。 则:这两档的水平档距(即为2#水平档距)LH=(L1+L2)/2。 垂直档距为L1的弧垂最低点与L2的弧垂最低点之间的水平距离。 如果你不是搞设计的,那么这个距离要用尺子来靠平断面图,根据图上面的比例来确定这个距离;如果你的搞设计的我想这个事对你来说很简单,要么用软件来解决,要么用弧垂板来确定。 垂直档距没有固定的计算式,如果有,那也很麻烦,要计算档内弧垂最低点出现在档内的哪个位置··· 下图做个简单的参考:[回目录] 水平档距

样本量计算

1. 估计样本量的决定因素 1.1 资料性质 计量资料如果设计均衡,误差控制得好,样本可以小于30例; 计数资料即使误差控制严格,设计均衡, 样本需要大一些,需要30-100 例。 1.2 研究事件的发生率研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。 1.3 研究因素的有效率 有效率越高,即实验组和对照组比较数值差异越大,样本量就可以越小,小样本就可以达到统计学的显著性,反之就要越大。 1.4 显著性水平 即假设检验第一类(α)错误出现的概率。为假阳性错误出现的概率。α越小,所需的样本量越大,反之就要越小。α水平由研究者具情决定,通常α取0.05 或0.01 。 1.5 检验效能 检验效能又称把握度,为1-β,即假设检验第二类错误出现的概率,为假阴性错误出现的概率。即在特定的α水准下,若总体参数之间确实存在着差别,此时该次实验能发现此差别的概率。检验效能即避免假阴性的能力,β越小,检验效能越高,所需的样本量越大,反之就要越小。β水平由研究者具情决定,通常取β为0.2,0.1 或0.05 。即1-β=0.8,0.1 或0.95 ,也就是说把握度为80%,90%或95%。 1.6 容许的误差(δ) 如果调查均数时,则先确定样本的均数()和总体均数(m)之间最大的误差为多少。容许误差越小,需要样本量越大。一般取总体均数(1-α)可信限的一半。 1.7 总体标准差(s)一般因未知而用样本标准差s 代替。 1.8 双侧检验与单侧检验

采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时, 应该选择双侧检验, 所需样本量就大; 当研究结果仅高于或低于效应指标的界限有意义时,应该选择单侧检验,所需样本量就小。当进行双侧检验或单侧检验时,其α或β的Ua 界值通过查标准正态分布的分位数表即可得到。 2. 样本量的估算由于对变量或资料采用的检验方法不同,具体设计方案的样本量计算方法各异,只有通过查阅资料,借鉴他人的经验或进行预实验确定估计样本量决定因素的参数,便可进行估算。 护理中的量性研究可以分为 3 种类型:①描述性研究:如横断面调查,目的是描述疾病的分布情况或现况调查;②分析性研究:其目的是分析比较发病的相 关因素或影响因素;③实验性研究:即队列研究或干预实验。研究的类型不同,则样本量也有所不同。 2.1 描述性研究 护理研究中的描述性研究多为横断面研究,横断面研究的抽样方法主要包括单纯随机抽样、系统抽样、分层抽样和整群抽样。分层抽样的样本量大小取决于作者选用的对象是用均数还是率进行抽样调查。 例. 要做一项有关北京城区护士参与继续教育的学习动机和学习障碍的现状调查,采用分层多级抽样,选用的是均数抽样的公式,Uα为检验水准α对应的υ值,σ为总体标准差,δ为容许误差,根据预实验得出标准差σ =1.09 ,取α=0.05 ,δ=0.1 ,样本量算得520例,考虑到10%-15%的失访率和抽样误差,样本扩展到690 例。 2.2 分析性研究 2.2.1 探索有关变量的影响因素研究有关变量影响因素研究的样本量大多是根据统计学变量分析的要求,样本数至少是变量数的5-10 倍。例如,如果研究肺结核患者生存质量及影响因素,首先要考虑影响因素有几个,然后通过文献回顾,可知约有12 个预测影响变量,如年龄、性别、婚姻、文化程度、家庭月收

输电技能类计算题

输电技能类计算题计算题(线路) 1.某线路采用LGJ-70型导线,其瞬时拉断力T p 为19471N ,完全系数K=2.5,计算截面S 为79.3mm 2。求导线的最大使用应力。 解:导线的破坏应力 P σ=T P /S=19417/79.3=244.85(MPa) 导线最大使用应力m σ=K P σ=244.85/2.5=97.94(Mpa) 答:导线的最大使用应力为97.94Mpa 2.图示为某220kV 输电线路中的一个耐张段,导线型号为LGJ-300/25,计算重量为1058kg/km ,计算截面积为33 3.31mm2,计算直径d =23.76mm 。3#杆塔的垂直档距为653.3(m )。试计算该耐张段中3#直线杆塔在带电更换悬垂线夹作业时,提线工具所承受的荷载。 解:按题意求解如下。 3#杆塔的垂直荷载 v o l G G 3108.9-?= 3.6531010588.93???=- 6.6773=(N ) 答:3#直线杆塔作业时,提线工具所承受的荷载为6773.6N 。 3.一根绝缘操作杆,如果加上40kV 电压U ,其泄漏电流I 不允许超过1mA ,问操作杆的绝缘电阻R 应是多少? 解:由欧姆定理 R = U/I = 40×103/1 = 40000(k Ω) = 40 M Ω 答:操作杆的绝缘电阻应不小于 40 M Ω. 4.已知某100KV 线路有意耐张段,其各直线档档距分别为: 1l =260mm ,2l =310mm ,3l =330mm,

4l =280mm 。在最高气温时比载为36.51×10-3N/(m ·mm 2),由耐张段代表档距查得最高气温时的弧垂0f =5.22m 。求在最高气温条件下3l 档的中点弧垂。 解:∵线路代表档距 30()i i l l m l ∑=∑ ∴110KV 线路耐张段的代表档距为 3333333 1240123260310330280260310330280 l l l l l l l +++++==+++++=298.66(m ) 又∵23300()l f f l = ∴233305.22 6.373()289.66f m ??=?= ??? 答:在最高气温气象条件下3l 档的中点弧垂为3.373 m 5.某220KV 输电线路,使用XWP-70型号绝缘子,有效泄露距离L=400mm ,线路通过第二级污区,爬电比距λ=2cm/KV (2.3cm/KV ),系统最高工作电压取工作电压的1.15倍,运行情况安全系数K=2.7。 问:(1)单串运行情况能够承受的最大荷载是多少? (2)工作电压下需要多少片绝缘子? 解:(1)max 7026()2.7T T kN k === (2)2 1.15220/12.651340m U L λλ??== =≈片 6.已知某悬挂点等高耐张段的导线型号为LGJ-185/30,代表档距l o 为50m ,计算弧垂f o 为0.8m ,采用减少弧垂法减少12%补偿导线的初伸长。现在档距l c 为60m 的距离内进行弧垂观测。求弧垂f 为多少应停止紧线?(5分) 解:按题意求解,得

相关文档
最新文档