SR2830C 非隔离 低PF LED驱动恒流源

SR2830C 非隔离 低PF LED驱动恒流源
SR2830C 非隔离 低PF LED驱动恒流源

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs 类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V)

类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V 类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差

若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管 图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe 的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET 接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

大功率LED恒流驱动电路的设计实例(精)

大功率LED恒流驱动电路的设计实例 faceoff 发表于 2006-5-26 16:38:00 大功率LED恒流驱动电路的设计实例 虽然大功率LED现在还不能大规模取代传统的白炽灯,但它们在室内外装饰、特种照明方面有着越来越广泛的应用,因此掌握大功率LED恒流驱动器的设计技术,对于开拓大功率LED的新应用至关重要。LED按照功率和发光亮度可以划分为大功率LED、高亮度LED及普通LED。一般来说,大功率LED的功率至少在1W以上,目前比较常见的有1W、3W、5W、8W和10W。已大批量应用的有1W 和3W LED,而5W、8W和10W LED的应用相对较少。预计大功率LED灯会在2008年奥运会上大量应用,因此电子和照明行业都非关注LED照明新技术的发展应用。 恒流驱动和提高LED的光学效率是LED 应用设计的两个关键问题,本文首先介绍大功率LED的应用及其恒流驱动方案的选择指南,然后以美国国家半导体(NS的产品为例,重点讨论如何巧妙应用LED恒流驱动电路的采样电阻提高大功率LED的效率,并给出大功率LED驱动器设计与散热设计的注意事项。 驱动芯片的选择 LED驱动只占LED照明系统成本的很小部分,但它关系到整个系统性能的可靠性。目前,美国国家半导体公司的LED驱动方案主要定位在中高端LED照明和灯饰等市场。灯饰分为室内和室外两种,由于室内LED灯所应用的电源环境有AC/DC和DC/DC转换器两种方式,所以驱动芯片的选择也要从这两方面考虑。 图1:利用DC/DC稳压器FB反馈端实现从恒压驱动(左图到恒流驱动(右图的转换。 1. AC/DC转换器

AC/DC分为220V交流输入和12V交流输入。12V交流电是酒店中广泛应用的卤素灯的电源,现有的LED可以在保留现有交流12V的条件下进行设计。针对替代卤素灯的设计,美国国家半导体LM2734的主要优势是体积小、可靠性高、输出电流高达1A,恰好适合卤素灯灯口直径小的特点。 取代卤素灯之后,LED灯一般做成1W或3W。LED灯与卤素灯相比有两大优势:(1光源比较集中,1W照明所获得的亮度等同于十几瓦卤素灯的亮度,因此比较省电;(2 LED灯的寿命比卤素灯长。 LED灯的主要弱点是灯光的射角太窄,成本相对较高。但从长远来看,由于LED灯的寿命较长,所以还是具有非常大的成本优势。220V AC/DC转换器(例如LM5021主要锁定舞台灯和路灯市场。 图2:在FB反馈端和RFB之间放置一个运算放大器以降低功耗。 2. DC/DC转换器 目前,LED手电筒占据了DC/DC转换器的绝大部分需求量。手电筒采用的LED功率基本上是1W,供电方式包括锂电池和镍锌电池、碱性电池等。3W 手电筒的应用一直还存在一些难点,因为3W LED 灯本身需要散热,散热装置的体积大,从而在一定程度上削弱了LED灯体积小的优势。此外,由于3W LED灯的电流高达700mA,一次充电后的电池使用时间缩短。尽管如此,对于上述应用国家半导体提供LM3475、LM2623A和LM3485等方案。 矿灯也是LED灯的主要应用领域之一,它属于特种照明行业,需要专业的认证标准,中国对LED在矿灯领域的应用一直都很重视。目前,LED设计行业存在对特种行业的需求认识不足的问题,设计

最简单的恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的这种正温度热敏电阻WMZD,专为LED应用而研制的,其常用规格见表1,下面介绍一下该热敏电阻的应用特性。 20mA LED恒流源WMZD-5A20的应用 我们可以用1只WMZD-5A20与5只LED(20mA)串联组成一个标准单元,它的LED恒流源电流20mA,工作电压U=3V+5×3.4V=20.0V。3V是WMZD-A20电阻压降,3.4V是LED的正向导通电压(或2.8V~4.2V),它的恒流特性见图1中的电流曲线II。

几种简单恒流源电路1

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。 关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻 一、方案论证 根据题目要求,下面对整个系统的方案进行论证。 方案一:采用开关电源的恒流源 采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则 SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。 缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。 方案二:采用集成稳压器构成的开关恒流源 系统电路构成如图1.2所示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为: ,式中为MC7805的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻 变化时,MC7805改变自身压差来维持通过负载的电流不变。

恒流源电路

4-20 ma电流环原理分析 最近接触到的传感器比较多,大多数接口信号为4-20ma的电流信号。于是查了一些资料,并不是太理想。以下是参考了一些网上的观点,结合自己的理解,写的东西。有不对的地方还请各位提出来,大家互相学习共同进步。 在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。4~20mA的电流环便是用4mA表示零信号,用20mA 表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。 一般传感器会把一个物理信号利用电桥等转化为与之对应的电信号,比如电压或电流。下面以一个恒流源电路来分析电压信号怎么产生与负载无关的电流信号,当然要产生4-20ma的电流信号,则把电压信号利用放大电路进行变换之后肯定是能做到的。如果传感器直接出来的是电流信号,则可以先变为电压信号,再经过信号调理电路肯定还能转换到4-20ma的电流信号。当然变换过程中的关系别人不需要知道。但是自己得知道,上学期在做测量PH值信号好离子浓度信号的电路时我就是把中间的关系一步一步推出来,这样才能知道4ma的电流对应的物理量是多上,20ma的信号对应的物理量是多上。废话太多了,下面看看这个恒流源电路吧 这个电路叫郝兰德电路,是典型的电压电流转换电路。其特点是负载电阻有一端接地(恒流源通常有这个要求),而取样电阻两端均不接地。之所以能够实现这个要求,关键就是上面一个运放和电阻的匹配。上面一个运放显然是跟随器,其输

恒流源总结

恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准, 电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。 电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1 TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。TL431组成流出源的电路,暂时我还没想到:) TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》

LED驱动电源恒流电路方案详解

恒流案大全 恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1

几种简单的恒流源电路5

几种简单的恒流源电路 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极 性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs

类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V) 类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V

类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测 输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V 类型5:

特征:使用JE FT,超低噪声 输出电流:由JE FT决定 检测电压:与JE FT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所 示, 图5 注:Is=IB+Iout=Iout(1+1/hFE)其中1/hFE为误差 若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采 用FE T管

图6 Is=Iout-IG 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利 用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温 度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽类型5,这是利用J-FE T的电路,改变Rgs 可使输出电流达到漏极饱和电流IDSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接RGS,则电流值变成IDSS,这样,J-FE T接成二极管形 式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐 出型电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vi n及环境温度的变化而变化,所以

运放中恒流源电路分析方法

运放电路中的恒流源电路分析方法 普通镜像恒流源、多集电极恒流源、高精度镜像恒流源、高内阻恒流源和镜像微恒流源电路,以及恒流源电路输出电阻的计算等。 分析恒流源电路的方法是: (1)确定恒流源电路中的基准晶体管或场效应管; (2)计算或确定基准电流; &nbbsp; (4)绘制恒流部分的交流通路,确定恒流源的内阻。 由于恒流源的内阻较大,计算恒流源内阻时不能忽略三极管集电极与发射极之间,或场效应管漏极与源极之间的动态电阻。 1、基本镜像恒流源分析 已知基本镜像恒流源电路如图1所示,试计算输出电流的大小和恒流源内阻。 图1

晶体管是基准管,且,工作在放大状态。 当与特性参数完全一致时,由可推得 由基准输入回路得, 所以, 当时,。 恒流输出管的交流通路如图1(b)所示,将晶体管用微变等效模型替代后的电路模型如图1(c),显然,恒流源的内阻。 必须注意,应用管的恒流特性时,必须满足,保证始终工作在放大状态。 基本镜像恒流源电路的扩展电路有两种,如图2所示。 图2 图2(b)的管采用多集电极晶体管(图2(a)已将其分散画),以基准管的集电极面积为基准,可得到一组与集电极

面积成正比的多个恒流源。 图2(c)中增加管可以进一步减少恒流输出与基准电流之间的近似程度,此时, 所以, 当时,基本镜像恒流值,增加管后,更接近。 2.高内阻(Wilson)恒流源 图3是Wilson恒流源电路,试计算恒流输出值。 图3 管是基准管,,工作在放大状态。 当、、均工作在放大状态时,各电流之间关系为:

整理后可得: 按二极管形式连接的管是管发射极的等效电阻,Wilson恒流源的内阻要大于。 3.微恒流源(Widlar)电路 图4是Widlar微恒流源电路,试计算输出恒流值。 图4 晶体管是基准管,且,工作在放大状态,。 管发射极电流与发射极电压之间的关系为: 所以, (1) 同理,当工作在放大状态时, (2) 由基极回路方程得:

6种最常用恒流源电路的分析与比较

恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs

类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V) 类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V

类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压 Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差 若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管

图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

基于单片机的恒流源.doc

随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为人们追求的一种趋势,设备的性能、价格,发展空间等备受人们关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件就越优越,那么设备的寿命就更长。基于此,人们对数控恒定电流器件的需要越来越迫切。 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出 了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的发展提供了一个良好的基础。在以后的一段时间里,数控电源技术有了长足的发展。但其产品存在数控程度达不到要求、分辨率不高、

功率密度比较低、可靠性较差的缺点。因此数控电源主要的发展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V 的数控电源,功率密度达到每立方英寸50W的数控电源。从组成上,数控电源可分成器件、主电路与控制等三部分。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。数字化智能电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。 当今社会,数控恒压技术已经很成熟,但是恒流源方面特别是数控恒流源的技术菜刚刚起步有待发展,高性能的数控横流器件的开发和应用存在巨大的发展空间。本数控直流恒流源系统输出电流稳定,不随负载和环境变化,并且有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要稳定度小功率横流源的领域。

LED恒流驱动电路(精)

中国照明网技术论文·LED照明驱动只占照明系统成本的很小部分,但它关系到整个系统性能的可靠性。目前,美国国家半导体公司的驱动方案主要定位在中高端照明和灯饰等市场。灯饰分为室内和室外两种,由于室内灯所应用的电源环境有和转换器两种方式,所以驱动芯片的选择也要从这两方面考虑。 中国照明网技术论文·LED照明 图:可变电流和可变电压基本电路 中国照明网技术论文·LED照明 中国照明网技术论文·LED照明分为交流输入和交流输入。交流电是酒店中广泛应用的卤素灯的电源,现有的可以在保留现有交流的条件下进行设计。针对替代卤素灯的设计,美国国家半导体的主要优势是体积小、可靠性高、输出电流高达,恰好适合卤素灯灯口直径小的特点。 取代卤素灯之后,LED灯一般做成1W或3W。LED灯与卤素灯相比有两大优势:(1光源比较集中,1W照明所获得的亮度等同于十几瓦卤素灯的亮度,因此比较省电;(2 LED灯的寿命比卤素灯长。 LED灯的主要弱点是灯光的射角太窄,成本相对较高。但从长远来看,由于LED灯的寿命较长,所以还是具有非常大的成本优势。220V AC/DC转换器(例如LM5021主要锁定舞台灯和路灯市场。 图2:RFB计算 2. DC/DC转换器 目前,LED手电筒占据了DC/DC转换器的绝大部分需求量。手电筒采用的LED功率基本上是1W,供电方式包括锂电池和镍锌电池、碱性电池等。3W 手电筒的应用一直还存在一些难点,因为3W LED灯本身需要散热,散热装置的体积大,从而在一定程度上削弱了LED灯体积小的优势。此外,由于3W LED灯的电流高达 700mA,一次充电后的电池使用时间缩短。尽管如此,对于上述应用国家半导体提供LM3475、LM2623A和 LM3485等方案。 矿灯也是LED灯的主要应用领域之一,它属于特种照明行业,需要专业的认证标准,中国对LED在矿灯领域的应用一直都很重视。目前,LED设计行业存在对特种行业的需求认识不足的问题,设计中常采用一些不切

基于恒流源驱动的热电阻测温电路系统的设计与研究

基于恒流源驱动的热电阻测温电路系统的设计与研究 【摘要】针对热电阻测温系统中,导线电阻所带来的测量误差难以克服的问题,通过采用恒流源驱动热电阻以及通过加减运算电路来克服导线带来的测量误差,从而获得了具有较高精度的模拟信号。通过STM32对返回的模拟信号进行定时采样滤除干扰后进行AD转换从而获得了较高精度的温度值。 【关键词】STM32;恒流源;热电阻 Thermal resistance temperature circuit system design and research based on the constant current source driver Wang Long-XIN (College of Automation and Electronic Engineering,Qingdao University of Science and Technology Shandong Qingdao 266042) 【Abstract】RTD temperature measurement system for measuring lead resistance errors brought insurmountable problem by using a constant current source drives the thermal resistance and by adding and subtracting circuit to overcome the measurement error caused by wire,which has won high precision analog signal. After AD conversion of the analog signal by returning timed sampling filter out interference and using STM32 so as to obtain a high accuracy temperature values. 【Key words】STM32;Constant current source;PT100 0.引言 温度是化工生产过程的四大参数之一[1],温度测量在生产生活各种参数测量中占有非常重要的地位,测量温度的传感器既有传统的热电阻,热电偶等模拟量温度传感器,又有诸如DS18B20等可以直接获取数字量的温度传感器。铂热电阻是一种精度高、线性度好、测量范围宽的温度传感器[2]。因此在实际温度测量中铂热电阻获得了非常广泛的应用。但在实际热电阻温度测量电路中,由于设计不当常常会将导线电阻带来的误差引入测量电路中。对于PT100型热电阻,温度每变化一度,其阻值大约变化0.4欧姆,试想在远距离布线测量温度时,若不能很好的消除导线电阻带来的影响,那势必会大大降低测量结果的精度。因此设计合适的热电阻温度采集电路系统来消除导线电阻对温度测量结果影响具有非常现实的重要性。 1.系统组成 基于恒流源驱动的热电阻测温电路系统以STM32F103C8T6为核心控制器,系统的原理框图,如图1-1所示,包括核心控制器STM32F103C8T6、恒流源驱

关于恒流源电路的研究与几种设计方案

第一章引言 随着现代技术的发展,恒定电流源的应用将十分重要,如机器人、工业自动化、卫星通信、电力通讯、智能化仪器仪表以及其它数字控制等方面都迫切需要应用恒定电流器件,因此, 研究和开发恒流器件具有十分重要的意义。许多场合, 尤其是高精度测控系统需要高精度的电压源与电流源。微电子工艺的高度发展, 给我们提供了许多小型化、集成化的高精度电压源, 但电流源, 特别是工作电流大的高精度电流源仍需使用者自行设计实现。 恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。例如在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。恒流源还被广泛用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。 本论文主要概括了恒流源的基本概念,并设计出几种不同要求的恒流源,运用了SPCE061A单片机设计出新型数控恒流源,具有高稳定性和高灵敏性。对以往恒流源进行了改进创新。 第二章基本恒流源电路 2.1恒流源基础知识 基本恒流源电路是恒流源电路的基本组成,是分析恒流源电路的基础。2.1.1恒流源介绍 恒流源,是一种能向负载提供恒定电流之电路.它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作 为其有源负载,以提高放大倍数.并且在差动放大电路、脉冲产生电路中得到了广泛应用. 过一定的论述.然而,对各种恒流电路之对比分析,各自应用特点,以及需要改进的方面,还有待进一步研究,本文就来探 讨这些问题. 2.1.2恒流源的原理和特点

压控恒流源电路设计

压控恒流源电路设计 Last updated on the afternoon of January 3, 2021

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图所示。其中,运算放大器U3是一个反相加法器,一路输入为控制信号 V1,另一路输入为运放U1的输出反馈,R8是U3的反馈电阻。用达林顿管TIP122和TIP127组成推挽式电路,两管轮流导通。U2是电压跟随器,输入阻抗高,基本没有分流,因此流经R2的电流全部流入负载RL。U1是反相放大器,取R14=R11时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图恒流源部分电路 若U3的输入电压为Vin,根据叠加原理,有

半导体激光器LD恒流源驱动电路的设计与实验

半导体激光器LD恒流源驱动电路的设计与实验 这款半导体激光器的恒流源驱动电路,是根据实际的项目需求进行设计的。项目要求是半导体激光器得根据探测距离,能改变输出光功率,这就要求半导体激光器的驱动电路输出的电流是可调的,这样现阶段几种半导体激光器驱动电路中只有恒流源驱动电路可以做到这一点,实现这种功能是通过改变恒流源电路的基准电压而实现的。进行恒流源驱动电路的设计的方法是在先仿真的基础上进行的,项目所需要的恒流源驱动电路的设计参数是恒流源输出电流是0-1A可调。1恒流源软件仿真 为精确仿真出结果,为以后的设计提供理论依据,选用的电路仿真软件是NI公司的Multisim10软件,该款软件经历几代的发展,功能不断的完善,其数据库包含常用的所有元器件,能进行模拟电路的仿真、数字电路的仿真,其仿真结果的准确性高,能为设计提供设计依据。

恒流源仿真结果 恒流源仿真电路选取了单电源供电的集成运放LM2900N、功率管IRF540、供电的电源电压是9V,为测量电路输出的电流,将万用表调整到电流档串联到电路中进行测量,以上图可见、设计的电路是很简单的。集成运放U2B的作用是将采样电阻所测得电压反馈回输入端,通过集成运放U2A与输入端的基准电压进行比较。恒流源仿真电路是一款很经典恒流源电路,具有的优点是电路稳定性很高、这款恒流源电路在基准电压不变的情况下,可以很容易的进行恒流源输出电流大小的调整,因为只需要调整电阻3R、3R的阻值即可。 R R 、基准电压选仿真结果显示,当将采样电阻的阻值选为1欧姆、341 取为2V时,仿真结果得到的电流是1.5A。在仿真过程中、通过选取不同的基准电压和3R、3R的值可以得到不同的电流值,这样仿真结果为实际的电路设计提供很好参考依据。 为了进一步简化恒流源驱动电路的设计、又作了如下的设计仿真。选取的功率管是IRF530、采样1R的阻值为1欧姆、选取的电压比较器是单电源供电的集

恒流源电路工作原理

恒流源电路工作原理 恒流源是输出电流保持不变的电流源,而理想的恒流源为: a)不因负载(输出电压)变化而改变。 b)不因环境温度变化而改变。 c)内阻为无限大。 恒流源之电路符号: 理想的恒流源实际的流源 理想的恒流源,其内阻为无限大,使其电流可以全部流出外面。实际的恒流源皆有内阻R。三极管的恒流特性:

从三极管特性曲线可见,工作区内的IC受IB影响,而VCE对IC的影响很微。因此,只要IB值固定,IC亦都可以固定。 输出电流IO即是流经负载的IC。 电流镜电路Current Mirror:838电子 电流镜是一个输入电流IS与输出电流IO相等的电路: Q1和Q2的特性相同,即VBE1 = VBE2,β1 = β2。

三极管之β受温度的影响,838电子但利用电流镜像恒流源,不受β影响,主要依靠外接电阻R经Q2去决定输出电流IO(IC2 = IO)。 例: 三极管射极偏压设计 范例1: 从左边看起:基极偏压 所以V E=V B - 0.6=1.0V 又因为射极电阻是1K,流经射极电阻的电流是 所以流经负载的电流就就是稳定的1mA新艺图库

这是个利用稳压二极管提供的基极偏压5.6V V E=V B - 0.6= 5V 流经负载的电流 范例3. 这个例子有一点不同:利用PNP三极管供应电流给负载电路.首先,利用二极管0.6 V的压降,提供8.2 V基

极偏压(10 – 3 x 0.6 = 8.2). 4.7 K电阻只是用来形成通路,而且不希望(也不会)有很多电流流经这个电阻。 V E=V B + 0.6=8.8V PNP晶体的560欧姆电阻两端电位差是1.2V, 所以电流是2mA 晶体恒流源应用注意事项 如果只用一个三极管不能满足需求,可以用两个三极管架成: 或是 也可以是

最简单的恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。就是专门针对LED 照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上就是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱与。更为严重的就是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1、将LED装在散热板上,或风机风冷降温。2、LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实就是行之有效的措施。但当LED灯进入寻常百姓家就碰到如下问题了:散热板与风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃ -85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的这种正温度热敏电阻WMZD,专为LED应用而研制的,其常用规格见表1,下面介绍一下该热敏电阻的应用特性。 20mA LED恒流源WMZD-5A20的应用 我们可以用1只WMZD-5A20与5只LED(20mA)串联组成一个标准单元,它的LED恒流源电流20mA,工作电压U=3V+5×3、4V=20、0V。3V就是WMZD-A20电阻压降,3、4V就是LED的正向导通电压(或2、8V~4、2V),它的恒流特性见图1中的电流曲线II。

直流可调恒流源设计说明

2013年3月 直流可调恒流源设计 学生:徐乐 指导教师:王留留 电气信息工程学院自动化专业 1课程设计的任务与要求 1.1课程设计的任务 设计一个直流可调恒流源电路。通过调节线性电位器,产生可控恒定电流,当固定时产生恒定电流。 1.2课程设计的要求 设计一个简易可调恒流源产生电路,满足日常生活对恒定电流的需要 (1)输入(AC):U=220V,f=50HZ。 (2)输出电流稳定,在一定围可调。 (3)设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。 (4)自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量。 (5)在Multisim软件上画出电路图,并仿真和调试,并测试其主要性能参数。 1.3课程设计的研究基础 电子技术基础(模电部分) 变压器、整流电路、滤波电路、稳压芯片、镜像电流源的工作原理 2 直流可调恒流源系统方案制定 2.1 方案提出 方案一 (1)电网提供交流220V(有效值)频率为50Hz的电压,要获得低压直流输出,首先必须采用 电源变压器将电网电压降低获得所需要交流电压。 (2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大。 (3)脉动大的直流电压经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留

其直流成份。 (4)滤波后的直流电压,再通过稳压经可调恒流源电路,便可得到可调的恒定直流电流输出, 供给负载R L 。 方案二 (1)将交流电220v 电压转化为可调恒压源输出。包括降压器、整流电路、滤波稳压芯片、 取样电路。 (2)电压电流转换电路。 (3)两电路整合,将220v 电压转化为可调恒流源。 2.2 方案论证 第一种方案是直接设计直流可调恒流源电路,只有一个电路。第二种方案是通过电压电流转换电路,将两个电路整合,要设计的电路比较多。第一种方案比较简单,通过比较选择第一种方案。 3 直流可调恒流源系统方案设计 3.1各单元模块功能介绍及电路设计 直流恒流电源是一种将220V 交流电转换成恒流输出的直流电的装置,它需要变压、整流、滤波、恒流四个环节才能完成。一般由电源变压器、整流滤波稳压电路及恒流电路所组成,基本框图如下: 图1 系统框图 (1) 电源变压器:它的作用是将220V 的交流电压变换成整流滤波电路所需要的交流电压。变压 器的变比由变压器的副边确定,变压器副边与原边的功率比为P2/P1=n ,式中n 是变压器的效率。 (2)整流电路:利用单向导电元件,将50HZ 的正弦交流电变换成脉动的直流电路。 T 负 载

相关文档
最新文档