HIVID技术检测HBV病毒整合

HIVID技术检测HBV病毒整合
HIVID技术检测HBV病毒整合

HIVID:An ef ?cient method to detect HBV integration using low coverage sequencing ☆

Weiyang Li a ,b ,1,Xi Zeng a ,1,Nikki P.Lee c ,1,Xiao Liu a ,Shengpei Chen a ,Bing Guo a ,Shang Yi a ,

Xuehan Zhuang a ,Fang Chen a ,Guan Wang a ,Ronnie T.Poon c ,Sheung Tat Fan c ,Mao Mao d ,Yingrui Li a ,Songgang Li a ,Jun Wang a ,JianWang a ,Xun Xu a ,Hui Jiang a ,Xiuqing Zhang e ,?

a

BGI-Shenzhen,Shenzhen,518083,China

b

School of Bioscience and Bioengineering,South China University of Technology,China c

Department of Surgery,University of Hong Kong,Hong Kong,China d

P ?zer Oncology,San Diego,CA 92121,USA e

The Guangdong Enterprise Key Laboratory of Human Disease Genomics,BGI-Shenzhen,Shenzhen,China

a b s t r a c t

a r t i c l e i n f o Article history:

Received 18January 2013Accepted 8July 2013Available online xxxx Keywords:

Hepatocellular carcinoma Integration Capture

High-throughput Cost-effective

We reported HIVID (high-throughput Viral Integration Detection),a novel experimental and computational method to detect the location of Hepatitis B Virus (HBV)integration breakpoints in Hepatocellular Carcinoma (HCC)genome.In this method,the fragments with HBV sequence were enriched by a set of HBV probes and then processed to high-throughput sequencing.In order to evaluate the performance of HIVID,we compared the results of HIVID with that of whole genome sequencing method (WGS)in 28HCC tumors.We detected a total of 246HBV integration breakpoints in HCC genome,113out of which were within 400bp upstream or downstream of 125breakpoints identi ?ed by WGS method,covering 89.3%(125/140)of total breakpoints.The integration was located in the gene TERT,MLL4,and CCNE1.In addition,we discovered 133novel breakpoints missed by WGS method,with 66.7%(10/15)of validation rate.Our study shows HIVID is a cost-effective methodol-ogy with high speci ?city and sensitivity to identify viral integration in human genome.

?2013The Authors.Published by Elsevier Inc.All rights reserved.

1.Introduction

More than 350million people are infected by hepatitis B virus (HBV)all over the world [1,2],and approximately 30%–50%of the estimated 320,000annual HBV-related deaths are consequences of hepatocellular carcinoma (HCC)[3].Previous studies have discovered evidence of the involvement of HBV in the tumorigenesis [4,5],indi-cating HBV integration in host genome is suspected to be one of the most important etiological events in HBV-induced HCC [6].The recur-rent HBV integration event was ?rst reported to be located at the TERT gene in two HCC tumor samples [7,8],and subsequent studies also identi ?ed HBV integration breakpoints in FAR2,ITPR1(IP3R1),IRAK2,MAPK1,MLL2and MLL4genes [9,10].Previous reports have suggested that a number of cellular genes such as hTERT and FN1were frequently targeted by HBV in HCC tissue [7,9,10].Although HBV integration into the host genome has been reported in tumors from HBV-infected individuals,the mechanism of viral-host interaction

remains elusive.However,previous studies indicated integration of HBV can change the expression level and function of endogenous https://www.360docs.net/doc/0e7900596.html,parative analysis of gene expression levels indicated that samples with HBV integration demonstrated higher expression of TERT,MLL4and CCNE1than those samples not harboring HBV DNA integration [11].It is intriguing that the overall MLL4transcription output is much higher in the affected genome,but the resulting fusion transcript lacks the AT-hook DNA-binding domain of MLL4[12].Moreover,HBV integration was also reported to relate with somatic copy number variations [11].DNA copy number analysis in this region revealed that this viral integra-tion colocalized precisely with the junction of a large DNA copy number loss [12].

Traditionally,most of the HBV integration breakpoints are detect-ed by PCR-based methods,such as Alu-HBV PCR.In the process of Alu-HBV PCR,signi ?cant bias happens towards Alu regions;in other words,only the integration near Alu region can be ef ?ciently detected [9,13].It is still a challenge to study integrations at genome-wide scale using PCR-based methods.With the rapid development of mas-sive parallel sequencing technology,whole genome sequencing (WGS)brings new insight to detect HBV integration in HCC genome [11,12,14].However,this approach is also limited by the high cost to perform population-scale studies.Thus,a sensitive low cost method is urgently needed to study the relationship between virus integration and tumorigenesis.

Genomics xxx (2013)xxx –xxx

☆This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works License,which permits non-commercial use,distribution,and reproduction in any medium,provided the original author and source are credited.

?Corresponding author.Fax:+8675525273884.E-mail address:zhangxq@https://www.360docs.net/doc/0e7900596.html, (X.Zhang).1

These authors contributed equally to this work.

YGENO-08536;No.of pages:7;4C:

0888-7543/$–see front matter ?2013The Authors.Published by Elsevier Inc.All rights reserved.https://www.360docs.net/doc/0e7900596.html,/10.1016/j.ygeno.2013.07.002

Contents lists available at ScienceDirect

Genomics

j o u r n a l h o m e p a ge :w ww.e l s e v i e r.c o m/l o c a t e /y g e n o

Here,we present a novel experimental and computational meth-od,HIVID (high-throughput viral integration detection),to effectively detect hbv integration at a single base pair resolution using HBV cap-ture sequencing (Fig.1).Probes were prepared to capture the HBV inserted fragments in host genome and these fragments were further sequenced on Illumina HiSeq 2000platform.Based on the sequence data of enriched DNA,we recruited a pair-read assemble strategy to locate the integration breakpoints.To examine the performance of HIVID,this method was tested in 28HCC samples that were previously sequenced at the whole-genome level for identifying HBV integrations [11].The integration hotspots of human genome were located in the genes TERT,MLL4and CCNE1.Most of the breakpoints were signi ?cantly enriched in a 500bp region on HBV genome from 1500bp to 2000bp.We compared the results of HIVID and WGS method,and validated the novel HBV integration using PCR and Sanger sequencing.Our study provided an accurate and cost-effective method for HBV integration re-search,which can also be adapted to other virus integration studies.2.Materials and methods

Based on our previous study [11],28Chinese HCC samples from Queen Mary Hospital,Hong Kong were selected.All patients had been diagnosed with HCC with concurrent HBV https://www.360docs.net/doc/0e7900596.html,rmed written consents were obtained from each patient.Approvals were acquired from the BGI Ethics Committee and the Institutional Review Board of The University of Hong Kong/Hospital Authority Hong Kong West Cluster.All samples had been previously used to discover HBV integration breakpoints.The results from 30×WGS data were used to evaluate sensitivity and speci ?city of HIVID.2.1.HBV probes preparation

Full-length HBV genome of type B and type C were ampli ?ed by PCR using biotin-labeled dNTPs.PCR mix was prepared as follows:5μl of HBV DNA (1ng/μl);5μl of 10*LA Taq Buffer;26.5μl of H 2O;

4μl of 2.5mM dNTPs (1/4dNTPs biotin-labeled);2.5μl of 10pmol P1(TTT TTC ACC TCT GCC TAA TCA);2.5μl of 10pmol P2(AAA AAGTTG CAT GGT GCT GG);and 0.5μl of LA Taq enzyme (Takara Bio,Inc.).PCR was subjected to the following cycling condition:initial denaturation for 3min at 94°C;32cycles of denaturation for 30s at 94°C,annealing for 50s at 56°C,and extension for 2.5min at 68°C;?nal extension for 10min at 72°C.Amplicons were puri ?ed by Ampure beads (Beckman Coulter,Inc.)and were then fragmented by Covaris E-210(Covaris,Inc.,Woburn,MA)to 250bp –500bp through the 2%agarose electrophoresis.Single-stranded HBV probes were generated by high temperature denaturation at 94°C for 5min.2.2.HBV-inserted fragments enrichment and sequencing

Sequencing libraries of 170bp insert size were constructed for 28samples following the instruction of Illumina.Genomic DNA was sheared to around 150bp –200bp DNA fragments by Covaris E-210(Covaris,Inc.,Woburn,MA).These fragments were puri ?ed,end blunted,“A ”tailed,and adaptor ligated.10cycles of PCR were performed after size selection in 2%agarose gel.The concentration of libraries was quanti ?ed by Bioanalyzer 2100(Agilent Technologies,Santa Clara,CA).Libraries were hybridized with HBV probes at 47°C for 24hours and then washed to remove un-captured fragments.The eluted fragments were ampli ?ed by 16cycles of PCR to generate libraries for sequencing (Fig.2).Libraries were quanti ?ed and proceeded to 101cycles paired-end index sequencing in the Illumina HiSeq 2000sequencer according to manufacturer's instructions (Illumina Inc.,San Diego,CA).2.3.HBV integration breakpoints detection

The whole pipeline for data analysis in HIVID consists of six steps (Fig.1).After we isolated the paired-end reads which may contain the signals of HBV integration,paired-end read assembly was conducted to obtain reconstructed inserted fragment and detected HBV integra-tion

breakpoints.

Fig.1.Overall work ?ow of HIVID.The pipeline includes the work ?ow of experiment and bioinformatics process.In the process,we do Raw data ?lter ?rst,then perform Raw-mapping with ?ltered raw data.After that we pick out the chimeric paired-end reads to do Paired-end read assembly.PE-assembled reads are conducted to go through Re-mapping to locate the HBV integrations sites.Finally,Signal merging and Signal ?lter are performed to obtain the ?nal results.To do the step of Paired-end reads assembly,we used a program developed by ourselves.

2W.Li et al./Genomics xxx (2013)xxx –xxx

2.3.1.Raw data ?lter

Low quality reads and duplication reads,as well as adaptor contami-nation reads,was ?rst removed to obtain clean reads for subsequent analysis.If a read whose bases with quality value (b =5)occupy 50%of the read length,the read is considered as a low quality read.We then had the clean reads for detecting the HBV integration after the low qual-ity reads and duplication reads removal.

2.3.2.Raw-mapping

Clean reads were mapped to human (NCBI build 37,HG19)and HBV genome using SOAP2(-l 40-v 5-r 1)[15].We removed reads that perfectly paired-end aligned to human or HBV genome and reserved chimeric paired-end reads (partial read sequence aligned to human genome and partial aligned to HBV genome)for assembly.This might help identify HBV integration breakpoint.

2.3.3.Paired-end reads assembly

Paired-end reads assembly was used to reconstruct around 170bp of fragment sequences,assembly which might increase the potential to locate the exact position of breakpoints.The paired-end reads were ?rst changed to the same strand.In case that the tail of an upstream end (read1)and the head of a downstream end (read2)overlap by more than 5bp where the mismatch rate was less than 0.2,the two ends would be spliced into one continuous sequence,called PE-assembled read,which was reconstructed inserted fragment (Fig.3A).

2.3.4.Re-mapping

To determine the exact location of HBV integration breakpoint,the PE-assembled reads were re-mapped to human and HBV genome using BWA 0.5.9-r16(-a 1,-b 2,-q,5,-r,2)[16].If the match length on both HBV genome reference and human genome reference for one PE-assembled read was larger than 30bp,the PE-assembled read alignment result was reported to detect a precise breakpoint.The joint position of human and HBV sequence was the breakpoints for HBV inte-gration (Fig.3B).

2.3.5.Signal merging

We also calculated the total number of support PE-assembled reads (NSS)of each HBV integration breakpoint to examine its reliability.

Considering errors in the procedure of experiment and bioinformatics analysis and highly heterogeneous nature of tumors,we merged breakpoints within 20bp to select the breakpoint with largest NSS as the representative,and reset its NSS as sum of NSS of all breakpoints in this region.

2.3.6.Signal ?lter

To minimize the impact of total sequencing data for each breakpoint frequency and remove the noise signals,we normalized NSS to Normal-ized number of support PE-assembled reads (NNSS)using its number of effective paired-reads (EFR)as following:NNSS ?NSS ?106

=EFR

Effective paired-reads are de ?ned as reads used to search breakpoints except contaminated data.NNSS could be considered as the number of supporting reads of each HBV integration breakpoint out of every million read-pairs and represents the reliability and data utilization with no bias.In this study,HBV breakpoints with NNSS N =1was regarded as true signal.

2.4.PCR and Sanger sequencing validation

PCR and Sanger sequencing was used to verify the selected HBV integration breakpoints from HIVID.PCR primers were designed based on the PE-assembled fragment,in which one primer located in human genome and the other in HBV genome.PCR were performed by GeneAmp?PCR System 9700thermal cycler and then preceded to Sanger sequencing on Applied Biosystems 3730x DNA analyzer (Life Technologies,Inc).3.Results

3.1.HBV integration breakpoints detection

To get the overall evaluation of the accuracy of breakpoint detection using HIVID approach,we compared our results to that of previously re-ported ~30×WGS approach [11].Sung et al.reported a total of 399HBV integration breakpoints in 81HBV-positive and 7HBV-negative HCC and adjacent non-tumor samples,with a validation rate of 82.0%[11].We randomly selected 28samples for HIVID to conduct HBV capture sequencing on Illumina HiSeq 2000,generating ~1.43Gb on average (Table 1).The effect of paired-end reads for the following analysis were about 6millions,among them around 83.72%and 0.08%can be aligned to human genome and HBV genome,respectively.After paired-end assembly and re-mapping,we ?nally obtained an average of 1654reads supporting HBV integration breakpoints for each sample.A total of 246HBV integration breakpoints were detected within these 28sam-ples,in average 8.8breakpoints per sample.The number of integration breakpoints varied from 1to 27among samples (Table S1).3.2.HBV integration breakpoint detection comparison

We ?rstly compared HBV integration breakpoints between HIVID and WGS approach in 28selected samples.To minimize the impact of different work ?ows we de ?ned a shared breakpoint in HIVID and WGS method when the distance of two breakpoints from the same sam-ple was less than 400bp.There were 140HBV integration breakpoints from Sung's study with at least two paired-end reads supporting and 89.3%of them (125/140)was shared with HIVID test (Tables S2and S3),suggesting that the current approach has high speci ?city when com-pared with WGS approach.In contrast,only 45.9%of HBV integration breakpoints (113/246)from HIVID approach were shared with WGS approach (Fig.4).Fourteen of 113HBV integration sites that were select-ed for validation were all validated in previous WGS study,showing 100%validation rate [11].Further analysis for the average NNSS

value,

Fig.2.HBV capture work ?ow.The different colored images marked represented differ-ent meaning.The dark yellow color represented the HBV fragments,while the glaucous color represented the human genome fragments.DNA libraries were hybridized with HBV probes at 47°C for 24hours and then washed to remove un-captured fragments.The eluted fragments were ampli ?ed by 16cycles of PCR to generate libraries for se-quencing.(For interpretation of the references to color in this ?gure legend,the reader is referred to the web version of this article).

3

W.Li et al./Genomics xxx (2013)xxx –xxx

which was 13.6for 113WGS-shared HBV integration breakpoints and 8.5for all breakpoints,indicated WGS approach might tend to identify high frequency HBV integration breakpoints due to a relatively limited sequencing depth.The comparative analysis indicated HIVID test could detect almost the same HBV integration breakpoints as WGS approach with much less sequencing data.

In the 133novel breakpoints we randomly picked 15novel HBV integration breakpoints from six samples for PCR and Sanger sequencing validation test.66.7%(10/15)of novel HBV integration sites were suc-cessfully con ?rmed (Table S4),which is signi ?cantly lower than the validation rate for WGS-shared breakpoints.We then investigated the average NNSS value of the 133novel breakpoints,which were only 4.2,compared to 13.6for WGS-shared breakpoints and 8.5for the total ones.

It was obvious that HIVID showed a notable advantage on breakpoints enrichment ef ?ciency.On average,the HIVID approach generated 6mil-lion paired-end reads,compared to 600million read pairs for WGS meth-od.Moreover,the average NNSS values of two methods were 8.5and 0.0142,representing that HIVID approach could enrich HBV integration fragments close to 600times than WGS approach.This high ef ?ciency for HBV integration sites enrichment would be bene ?t for large-scale virus-related tumor development studies.

3.3.Characteristics of HBV integration breakpoints

We also investigated the characteristics of HBV integration breakpoints,which might be related with HCC development.Integra-tion events were detected in HBV subtype C (AB014381.1).Among them,33.5%(68/203;P =2.7×10?5)were signi ?cantly enriched in a 500bp region on HBV genome from 1500bp to 2000bp (Supplemen-tary Fig.S1),which was consistent with the results of the WGS study [11,12].Additionally,we also surveyed the frequency of integration breakpoints around HBV genes,showing 38.9%(79/203)breakpoints were located in the region of pre-S1(Table S5).

The analysis for recurrent genes with HBV integration breakpoints in those 28samples was also consistent with previous studies (Fig.5)[10,17–19].Using HIVID approach,HBV integration breakpoints were detected in TERT ,MLL4and CCNE1genes,affecting 25%,17.9%,and 7.1%of HCC samples (Table 2).Notably,we identi ?ed HBV integration breakpoint in TERT gene for sample 90T and 41T,which was missed in previous WGS approach.

Besides the frequent bias of HBV integration sites in HBV and human genome,we also noticed that HBV integration events with the deletion of human genome.For example,a 49bp human genome sequence in sample 43T was replaced by a 41bp HBV sequence on ChrX:20,156,148(Table S4).In sample 49T the human genome fragment of 728,975bp in chromosome 2were replaced by 127bp HBV sequence (Fig.6).The abundant supporting reads for breakpoints provided by HIVID may be helpful to explore the complex relation.4.Discussion

In this study,we developed a novel approach for HBV integration breakpoint detection and employed 28HCC samples to estimate the performance on integration sites with high frequency and low frequen-cy.With only 1.5Gb HBV capture sequencing data,HIVID approach can identify about 90%of HBV integration breakpoints identi ?ed from ~30×WGS data,and over 50%of novel low frequent integration sites missed by WGS approach.HIVID approach shows its strength on several aspects compared with previously reported approaches.

Unlike the widely used HBV-Alu PCR method,HIVID can be uti-lized to detect integration sites at the genome-wide level instead of the regions close to Alu repeats.In fact,83.3%(205/246)of the discov-ered HBV integration breakpoints were more than 10,000bp away from Alu repeats (Table S2),signi ?cantly larger than 7.8%of WGS ap-proach [11].Although both HIVID and WGS approach are based on mas-sively parallel sequencing platform,HIVID approach has dramatically higher ef ?ciency on virus integration detection.First,HIVID approach requires much less sequencing data due to the process of HBV

fragment

Fig.3.Insight of computational process of HIVID.A,principle of pair-end reads assembly.The ?gure shows that the tail of an upstream end (read1)and the head of a downstream end (read2)were spliced into one continuous sequence,called PE-assembled read;B,determination of breakpoint.The ?gure shows that one PE-assembled read consists of the part of human sequence and part of HBV sequence.The joint position was the breakpoint for HBV integration.

4W.Li et al./Genomics xxx (2013)xxx –xxx

capture,but with an enrichment close to 600times compared with WGS approach.HIVID could also be suitable for detecting the breakpoints of other types of viruses,such as human papillomavirus,human immuno-de ?ciency virus.Moreover,it also could decrease the cost and shorten the time to generate the results.Secondly,HIVID can detect 89.3%(125/140)integration breakpoints which had been identi ?ed by WGS method,and those integration sites are also characterized by higher NNSS and validation rate.These results demonstrate the HIVID method has a high speci ?city of detecting viral integration breakpoints.Thirdly,HIVID method is more sensitive for detecting low frequency HBV inte-gration breakpoints.Although the validation rate was 66.7%(10/15),HIVID methods could identify 50%more HBV integration sites.The reduced average NNSS value of the novel sites (4.2)compared with the WGS shared ones (13.6)indicates HBV integration in these sites may be less frequent among the tumor cells.The other cause for the lower veri ?cation rate of new breakpoints could be attributed to the primer design dif ?culty for the shorter support reads.The validation

rate might be improved if we adopt the 454long reads sequencing.The long reads also will help us to get more information about the HBV insertion sequence.The major limitation of this approach com-pared with WGS is that we can only target speci ?cally one or more virus that have genome references,and identify their integrations.This is a hypothesis driven approach.Another technical limitation is that human genome reads and free virus reads take up a high propor-tion of the data.The method had a low capture speci ?city,although it had an obvious enrichment.We will get more integration breakpoints and need less sequencing data if the capture speci ?city could get im-proved.The single cell study for virus integration breakpoints could ?g-ure out monoclonal evolution and the roles of high and low frequency integration events.Since we used part of samples from our previous study,the similar hotspot regions in human and HBV genome were de-tected with these two methods.However,with more supporting reads we annotated the complicated types of HBV integration events,which were omitted in our previous study.Herein,we found a trend of dele-tion in human genome accompanying with HBV fragments insertion,which might induce chromosomal instability and further carcinogene-sis.Genetic instability triggered by HBV integration has been considered in some reports to be an important contributing factor in the pathogen-esis of HCC [20,21].HBV insertions are commonly associated with large genetic alterations:deletions,duplications and chromosomal transloca-tions,which might re ?ect the abrogation of control mechanisms that safeguard chromosomal integrity [22].However,the impact of those human structure variations on molecular mechanism of HCC still re-mains unclear.

In summary we reported the HIVID approach to detect HBV inte-gration breakpoints with high speci ?city and sensitivity using only 1.5Gb sequencing data,for which this approach can be used to screen virus integration in a large cohort of samples and leads to a systematic study for its relationship with disease etiology and tumorigenesis in a comprehensive and unbiased way.

Supplementary data to this article can be found online at https://www.360docs.net/doc/0e7900596.html,/10.1016/j.ygeno.2013.07.002.

Table 1

Data production of 28tested samples.Sample Total Bases Reads number EFR (M paired-reads)Human alignment (pair end)HBV alignment (pair end)Integration rate 101T 1.50G 7.51M;7.51M 5.8895.58%0.03%738(0.01%)43T 1.32G 6.58M;6.58M 5.6686.30%0.04%2520(0.02%)71T 1.49G 7.45M;7.45M 6.4685.05%0.11%1858(0.01%)58T 1.47G 7.33M;7.33M 6.1684.35%0.05%1230(0.01%)34T 1.39G 6.93M;6.93M 5.9884.35%0.02%480(0.00%)55T 1.53G 7.63M;7.63M 6.4782.91%0.10%602(0.00%)35T 1.64G 8.22M;8.22M 7.0585.13%0.02%188(0.00%)41T 1.15G 5.77M;5.77M 4.9784.23%0.12%1042(0.01%)32T 0.70G 3.52M;3.52M 3.1287.08%0.08%424(0.01%)186T 1.99G 9.94M;9.94M 8.5986.70%0.01%374(0.00%)49T 1.17G 5.83M;5.83M 4.9582.61%0.11%2026(0.02%)26T 1.40G 7.01M;7.01M 5.9481.78%0.03%442(0.00%)90T 1.34G 6.70M;6.70M 5.8188.05%0.20%1212(0.01%)182T 1.55G 7.74M;7.74M 6.6887.93%0.03%474(0.00%)266T 1.36G 6.80M;6.80M 5.7786.27%0.03%860(0.01%)145T 1.41G 7.03M;7.03M 5.7486.09%0.08%1398(0.01%)174T 1.35G 6.75M;6.75M 5.7887.22%0.03%290(0.00%)122T 1.52G 7.59M;7.59M 6.4885.11%0.15%1086(0.01%)114T 1.85G 9.25M;9.25M 7.5986.53%0.01%176(0.00%)17T 1.47G 7.36M;7.36M 6.4386.35%0.23%584(0.00%)200T 1.45G 7.25M;7.25M 5.6274.33%0.18%1546(0.01%)95T 1.24G 6.21M;6.21M 5.1877.77%0.04%1546(0.01%)23T 1.17G 5.83M;5.83M 4.8879.94%0.08%2634(0.03%)64T 1.17G 5.83M;5.83M 4.8777.04%0.01%136(0.00%)30T 1.66G 8.28M;8.28M 6.9380.35%0.05%572(0.00%)65T 1.80G 9.01M;9.01M 7.5677.03%0.05%482(0.00%)70T 1.04G 5.19M;5.19M 4.3479.30%0.30%1752(0.02%)82T

1.90G

9.51

M;9.51

M

8.02

78.64%

0.03%

288(0.00%)

This table shows the data production of 28samples.Including human alignment ratio of pair-end reads,HBV alignment ratio of pair-end reads,raw data quantity and integration rate,

etc.

Fig.4.Overview of breakpoints detected by HIVID.The ?gure shows that HIVID detect-ed 246breakpoints on human genome in total.There were 113novel breakpoints and 133breakpoints shared with WGS method.The shared 133breakpoints covered 89.3%of WGS result.In addition the ?gure also provides the information of NNSS value and validated rate.

5

W.Li et al./Genomics xxx (2013)xxx –xxx

Fig.5.Distribution of breakpoints on human genome.In this CIRCOS ?gure,we showed the human chromosomes,the integration frequency of each breakpoint on the level of supporting reads and on the level of samples.The outer circle represents 24chromosomes and mitochondria with different color-code and number labeled.In the middle circle,the integration frequency of each breakpoint one the level of supporting reads is displayed as height of each blue point.In the inner circle,the height of each red point represents the integration frequency of each breakpoint on the level of samples.To explore the distribution of frequency of all integration breakpoints on the level of supporting reads,we pooled all breakpoints from all samples.We merged those breakpoints which appeared in several different samples but in the same location and reset NNSS of the new merged breakpoint as sum of NNSS of all breakpoints in this location.The new NNSS could be seen as the integration frequency of each merged breakpoint on the level of supporting reads.The middle circle was ?gured based on the process above and the NNSS of each merged breakpoint is displayed as the height of each blue point.To explore the distribution of frequency of integration breakpoints on the level of samples,the human genome sequence was divided into about three million windows,each with length of 1000bp.The total number of samples that the breakpoints in each window belonged to,was calculated.Each window was considered as one new breakpoint and the number of samples in each win-dow calculated above was considered as supporting samples that supported the window as a new breakpoint.The number could be seen as the integration frequency of each breakpoint on the level of samples.The inner circle was ?gured based on the process above and the height of each red point represents the integration frequency of each breakpoint on the level of samples.(For interpretation of the references to color in this ?gure legend,the reader is referred to the web version of this article).

Table 2

The enriched region of HBV integration.Sample ID Position

NSS NNSS Gene

266T chr5:1,295,4639716.82TERT:Promoter 34T chr5:1,295,3759616.05TERT:Promoter 58T chr5:1,295,3398012.98TERT:Promoter 65T chr5:1,295,4429712.82TERT:Promoter 90T chr5:1,295,6397212.38TERT:Promoter

41T chr5:1,295,12119 3.82TERT:NM_001193376:5-UTR;TERT:NM_198253:5-UTR;64T chr5:1,295,2959 1.85TERT:Promoter

49T chr19:36,212,74121242.83MLL4:NM_014727:Intron;71T chr19:36,213,142467.12MLL4:NM_014727:Intron;186T chr19:36,214,00716619.34MLL4:NM_014727:CDS;70T chr19:36,212,313465107.03MLL4:NM_014727:CDS;95T chr19:36,212,5665711.01MLL4:NM_014727:CDS;145T chr19:30,303,49923140.24CCNE1:NM_001238:Intron;200T

chr19:30,315,366

94

16.72

CCNE1:Downstream

This table shows the hotspots of HBV integration in the 28samples.The relative genes of these integration positions have been shown in the table.

6W.Li et al./Genomics xxx (2013)xxx –xxx

Author's contributions

Conceived and designed the experiments:WL HJ.Performed the experiments:WL BG GW.Analyzed the data:XZ WL SY XHZ SC.Con-tributed reagents/materials/analysis tools:NPL RTP STF XL MM YL SL JW XX XZ.Wrote the paper:WL XZ HJ.

Acknowledgments

The study belongs to the Chinese 863program (no.2012AA02A201)and is sponsored by Guangdong Innovative Research Team Program (no.2009010016).We thank our colleagues at the BGI-Shenzhen for sequencing.We sincerely thank Laurie Goodman for excellent advice and revision of the manuscript.

References

[1]M.Shamay,O.Barak,Y.Shaul,HBXAP,a novel PHD-?nger protein,possesses tran-scription repression activity,Genomics 79(2002)523–529.

[2]P.Michielsen,E.Ho,Viral hepatitis B and hepatocellular carcinoma,Acta Gastroenterol.

Belg.74(2011)4–8.

[3]P.A.Farazi,R.A.DePinho,Hepatocellular carcinoma pathogenesis:from genes to

environment,Nat.Rev.Cancer 6(2006)674–687.

[4]I.Chemin,F.Zoulim,Hepatitis B virus induced hepatocellular carcinoma,Cancer

Lett.286(2009)52–59.

[5]M.J.Bouchard,S.Navas-Martin,Hepatitis B and C virus hepatocarcinogenesis:

lessons learned and future challenges,Cancer Lett.305(2011)123–143.

[6]T.Ishikawa,Clinical features of hepatitis B virus-related hepatocellular carcino-ma,World J.Gastroenterol.16(2010)2463–2467.

[7]P.Paterlini-Brechot,et al.,Hepatitis B virus-related insertional mutagenesis occurs

frequently in human liver cancers and recurrently targets human telomerase gene,Oncogene 22(2003)3911–3916.

[8] D.Gozuacik,et al.,Identi ?cation of human cancer-related genes by naturally

occurring hepatitis B virus DNA tagging,Oncogene 20(2001)6233–6240.

[9]Y.Murakami,et al.,Large scaled analysis of hepatitis B virus (HBV)DNA integra-tion in HBV related hepatocellular carcinomas,Gut 54(2005)1162–1168.

[10]K.Saigo,et al.,Integration of hepatitis B virus DNA into the myeloid/lymphoid or

mixed-lineage leukemia (MLL4)gene and rearrangements of MLL4in human he-patocellular carcinoma,Hum.Mutat.29(2008)703–708.

[11]W.K.Sung,et al.,Genome-wide survey of recurrent HBV integration in hepatocellular

carcinoma,Nat.Genet.44(2012)765–769.

[12]Z.Jiang,et al.,The effects of hepatitis B virus integration into the genomes of

hepatocellular carcinoma patients,Genome Res.22(2012)593–601.

[13] A.Tamori,et al.,Alteration of gene expression in human hepatocellular carcino-ma with integrated hepatitis B virus DNA,Clin.Cancer Res.11(2005)5821–5826.[14]J.H.Leamon,D.R.Link,M.Egholm,J.M.Rothberg,Overview:methods and applica-tions for droplet compartmentalization of biology,Nat.Methods 3(2006)541–543.[15]R.Li,et al.,SOAP2:an improved ultrafast tool for short read alignment,Bioinfor-matics 25(2009)1966–1967.

[16]H.Li,R.Durbin,Fast and accurate long-read alignment with Burrows –Wheeler

transform,Bioinformatics 26(2010)589–595.

[17]I.Horikawa,J.C.Barrett,cis-Activation of the human telomerase gene (hTERT)by

the hepatitis B virus genome,J.Natl.Cancer Inst.93(2001)1171–1173.

[18]N.Nakayama,et al.,Gene ampli ?cation CCNE1is related to poor survival and po-tential therapeutic target in ovarian cancer,Cancer 116(2010)2621–2634.

[19]M.J.Ferber,et al.,Integrations of the hepatitis B virus (HBV)and human papillo-mavirus (HPV)into the human telomerase reverse transcriptase (hTERT)gene in liver and cervical cancers,Oncogene 22(2003)3813–3820.

[20]L.Wilkens,et al.,Cytogenetic aberrations in primary and recurrent ?brolamellar

hepatocellular carcinoma detected by comparative genomic hybridization,Am.J.Clin.Pathol.114(2000)867–874.

[21]T.Nakajima,et al.,Centrosome aberration accompanied with p53mutation can in-duce genetic instability in hepatocellular carcinoma,Mod.Pathol.17(2004)722–727.[22]G.Fallot,C.Neuveut,M.A.Buendia,Diverse roles of hepatitis B virus in liver cancer,

Curr.Opin.Virol.2(2012)467–

473.

Fig.6.One HBV integration with deletion in human genome of sample 49T.The ?gure shows that a 127bp of HBV insertion was observed in a 728,975bp physical distance be-tween two breakpoints on Chr2of human genome,there was a 728,975bp human genome sequence replaced by a 127bp HBV sequence at chr2:2,053,395,701.

7

W.Li et al./Genomics xxx (2013)xxx –xxx

植物病毒检测技术研究进展汇总

植物病毒检测技术研究进展 刘茂炎 摘要:随着现代技术的发展特别是分子技术的发展,鉴定和检测病毒的方法越来越多,也越来越精确快速。以PCR为基础的基因工程技术已经广泛应用于病毒核酸分子的鉴定,其高灵敏度和高特异性是与PCR扩增反应的特异性引物相关联的;于此同时传统的鉴定检测技术依然有其发展优势。不论怎样的方法技术,都是以病毒的理化性质以及侵染性为基础的。在此基础上,甚至出现了某些边缘技术在病毒鉴定检测方面的应用。本文主要综述的是对植物病毒鉴定检测技术的研究进展。 关键词:植物病毒;检测技术;PCR 病毒在生物学上特征(如病毒的理化性质,包括病毒粒子的形态、大小、对理化因子的耐受性等)以及在寄主上的反应(如寄主范围、症状表现、传播方式等)是对病毒最直观的认识。常规的对植物病毒的鉴定检测方法有:生物学测定方法、血清学技术、电子显微镜技术、分子生物学技术等。生物学测定依据病毒的侵染性,观察寄主植株或其它生物的症状表现;血清学技术以病毒外壳蛋白(CP)为基础;电子显微镜技术依据病毒的形状大小的不同;分子生物学鉴定则以病毒核酸为基础。 1.生物学鉴定 最直接的方法是目测法,直接观察病毒对植物的病害症状。如烟草花叶病毒(tobacco mosaic virus,TMV),病害症状为叶上出现花叶症状,生长陷于不良状态,叶常呈畸形;玉米鼠耳病的诊断主要依据田间症状表现[1]。目测法因观察的主观性和症状的不确定性的影响而不精准。1929年美国病毒学家霍姆斯(Holmes)用感病的植物叶片粗提液接种指示植物,2~3天后接种叶片出现圆形枯斑,枯斑数与侵染性病毒的浓度成正比,能测出病毒的相对侵染力,对病毒的定性有着重要的意义,这种人工接种鉴定的方法就是枯斑和指示植物检测法。国内报道的水稻黑条矮缩病毒(Rice black-streaked dwarf fijivirus,RBSDV)可侵染28属57种禾本科植物,该病毒的主要传毒介体是灰飞虱(Laodelphax striatella),

精选-乙型肝炎病毒抗体诊断(胶体金法SOP)标准操作程序

乙型肝炎病毒抗体诊断(胶体金法SOP) 测定标准操作程序 编写者:宿金涛 日期:2012年3月1日 一. 原理:乙型肝炎病毒表面抗原、表面抗体、e抗原、e抗体、核心抗体检测试剂盒(胶体金法)采用胶体金免疫层析分析技术、将五个诊断意义相关的试剂通过一个包装组合在一起,同时进行乙型肝炎病毒五项标志物的检测,在不影响各自性能的情况下,便于客户的储存和使用。 HBsAg检测试剂采用双抗体夹心法,试剂含有被事先固定于膜上测试区(T)的抗体。 测试时,标本滴入试剂加样处,标本与预包被的胶体金颗粒结合的抗HBsAg抗体反应。然后,混合物随之在毛细效应下向上层析。如是阳性,胶体金抗体在层析过程中先于标本中的HBsAg结合,随后家何物会被固定在膜上的抗HBsAg抗体结合,在测试区内(T)会出现一条紫红色带。这条带是HBsAg抗体-HBsAg-HBsAg抗体金标粒子的复合物在膜上结合形成的。如是阴性,则测试区内(T)将没有紫红色带。无论HBsAg是否存在于标本中,一条紫红色带都会出现在指控内(C)。质控区内(C)所显现的紫红色条带是判定是否有足够标本,层析过程是否正常的标准,同时也作为试剂的内控标准。 HBsAb检测试剂双抗原夹心法,试剂含有被事先固定于膜上测试区(T)的乙肝表面抗体。 测试时,标本滴入试剂加样处,标本与预包被的胶体金颗粒结合的HBsAg反应。然后,混合物随之在毛细效应下向上层析。如是阳性,胶体金抗体在层析过程中先于标本中的HBsAg结合,随后结合物会被固定在膜上的HBsAg抗体结合,在测试区内(T)会出现一条紫红色条带。这条带是HBsAg-HBsAb-HBsAg金标粒子的复合物在膜上结合形成的。如果阴性,则测试区内(T)将没有紫红色条带。无论HBsAg是否存在于标本中,一条紫红色条带都会出现在质控区内(C)。质控区内(C)所显现的紫红色条带是判定是否有足够标本,层析过程是否正常的标准,同时也作为试剂的内控标准。 HBeAg检测试剂采用双抗体夹心法,试剂含有被事先固定于膜上测试区(T)的乙肝e抗体。 测试时,标本滴入试剂加样处,标本与预包被的胶体金颗粒结合的HBeAg抗体反应。然后,混合物随之在毛细效应下向上层析。如是阳性,胶体金抗体在层析过程中先于标本中的HBeAg结合,随后结合物会被固定在膜上的HBeAg抗体结合,在测试区内(T)会出现一条紫红色条带。这条带是HBeAg抗体-HBeAg-HBeAg抗体金标粒子的复合物在膜上结合形成的。如果阴性,则测试区内(T)将没有紫红色条带。无论HBeAg抗体是否存在于标本中,一条紫红色条带都会出现在质控区内(C)。质控区内(C)所显现的紫红色条带是判定是否有足够标本,层析过程是否正常的标准,同时也作为试剂的内控标准。 HBeAb,HBcAb检测试剂才有竞争抑制法,试剂含有被事先固定于膜上测试区(T)的抗体。

关于计算机病毒检测技术分析

关于计算机病毒检测技术分析 【摘要】计算机的出现改变了人们的生活方式和工作方式,同时也改变了全球经济的结构,逐渐的成为人类物质社会最为重要的组成部分,随着互联网的迅速发展,网络安全问题也日益严重起来。计算机病毒给计算机系统的安全带来了严重的危害,并且造成的损失也比较大,一般认为,计算机网络系统的安全运行来自计算机病毒的攻击,那么研究分析计算机病毒检测技术也就有着极大的现实意义。本文探究了计算机病毒,以及计算机病毒的种类,并且着重分析研究了计算机病毒检测技术,以期提高计算机安全。 【关键词】计算机病毒;检测技术;分析 1.引言 对于计算机的安全广大的安全专家以及用户都是比较担忧的,虽然目前计算机反病毒的技术正在不断的更新,但是反病毒技术仍然是被动的,用户需要应付每一个出现的计算机病毒,并且随着互联网技术的逐渐普及,计算机病毒越来越多的泛滥而出。计算机病毒攻击的方式、传播的方式也在随着社会经济的发展逐渐的变化着,它能够隐形的依附在下载的视频或者资料中,或者利用图片传播等,计算机病毒的传播速度较快,并且危害性也相对较大,那么为了保证计算机的安全使用,就必须要提高计算机病毒检测技术,在计算机没被病毒侵害之前进行检测,并进行杀毒。 2.计算机病毒综述 计算机病毒是一种人为制造的,专门用来破坏或者攻击计算机软件系统,并复制本身传染其他应用程序的代码,随着计算机网络技术的逐渐发展和应用,计算机病毒已经成为信息系统安全的主要威胁之一[1]。计算机病毒能够像生物病毒一样进行繁殖,在程序正常运行的时候,能够进行运行自身复制,也就是说计算机病毒具有繁殖性,再有计算机病毒具有传染性,一旦病毒被复制或者是产生变种,那么它的传播速度是很难预防的,传染性是计算机病毒基本的特征。此外计算机病毒还具有潜伏性,这跟定时炸弹是差不多的,在之前设计好病毒爆发的时间,给人以措手不及,还具有隐蔽性、破坏性等特性。计算机病毒大致上被分为宏病毒、木马病毒、黑客工具、脚本病毒等种类,下面我们将对这些病毒进行系统的分析。 第一,宏病毒,这是脚本病毒中的一种,但是由于其特性故将其分为一类,宏病毒的前缀是Macro,第二前缀是Word、Excel等,较为著名的宏病毒有著名的美丽莎。 第二,脚本病毒,脚本病毒的前缀是Script[2],脚本病毒的共有特性是使用脚本语言编写的,借助网页进行传播的病毒。

两种方法检测乙型肝炎病毒五项指标的结果对比

两种方法检测乙型肝炎病毒五项指标的结果 对比 作者:龙青文,何建军,马家驹,何秀琳,肖金平 【关键词】酶联;血清乳胶;定性分析 [关键词]酶联;血清乳胶;定性分析 乙型肝炎表面抗原(HBsAg)、乙型肝炎表面抗体(HBsAb)、e 抗原(HBsAg)、e抗体(HBeAb)、核心抗体(HBcAb)的检测在许多方面如诊断乙肝判断愈后、筛选献血员、乙肝的流行病学调查、判断人群对乙型肝炎的免疫水平,对食品、保育及饮水管理行业人员定期进行健康体检等起着重要的作用。故选择一种特异、敏感、稳定的实验室检测方法检测乙型肝炎病毒的五项指标显得尤为重要。现将56例检测者血清同时用酶联免疫法和血清乳胶层析法对比检测结果报告如下。 1材料与方法 1.1 标本来源56例受检者中,男29例,女27例,最大年龄72岁,最小年龄29岁,平均年龄46岁;来自健康体检人群15例,其中13例检测具有阳性结果,2例各项指标均为阴性、另41例为门诊检查结果有阳性的患者,均系血清标本。

1.2 方法酶联免疫法用乙型肝炎病毒(HBsAg,HBsAb,HBeAg、HBeAb,HBcAb)诊断试剂盒,由上海华泰生物工程实业有限公司生产,48人份,批号20040503,按说明书操作。乙肝两对半血清/血浆乳胶层析法检测试剂板由ACONLaboratories.Inc.SanDiegoCA92121USA提供,批号200407029,按说明书操作。 1.3 质量控制酶联免疫法每项检测项目均设阴、阳性对照各2孔,每空加入阴性对照(或阳性对照)各1滴,并设有空白对照1孔。乳胶层析法各项检删项目均设质控区(C)。 1.4 检测结果判定标准:酶联免疫法是根据颜色的变化,作定性分析。此法HBsAg、HBsAb、HBeAg呈黄色为阳性反应,无色为阴性反应,阳性对照为黄色,阴性对照为无色。HBeAb、HBcAb无色为阳性,黄色为阴性,阳性对照为无色,阴性对照为黄色。乳胶层析法HBsAG、HBsAb、HBeAg在测试区内(T)出现一条红色条带则是阳性结果,不出现红色条带则为阴性。HBeAb、HBcAb结果则相反,强阳性标本测试区内(T)将没有红色条带,弱阳性标本测试区内(T)将有一条非常弱的红色条带,阴性标本测试区(T)将会出现明显的红色条带。无论相应的待测物质是否存在于标本中,质控区(C)都会出现红色条带。两种检测方法结果对比分析用卡方检验两两比较进行统计学处理。

计算机病毒与防范基础知识考试题及答案【最新】

计算机病毒与防范基础知识考试题及答案 (单选);姓名得分: 注:每题5分,满分100分; 1.下面是关于计算机病毒的两种论断,经判断___; (1)计算机病毒也是一种程序,它在某些条件上激活;A)只有(1)正确B)只有 (2)正确;C)(1)和(2)都正确D)(1)和(2)都不正; 2.通常所说的“计算机病毒”是指______; A)细菌感染 B)生物病毒感染; C)被损坏的程序 D)特制的具 计算机病毒知识测试题(单选) 姓名得分: 注: 每题5分,满分100分

1.下面是关于计算机病毒的两种论断,经判断______ (1)计算机病毒也是一种程序,它在某些条件上激活,起干扰破坏作用,并能传染到其他程序中去;(2)计算机病毒只会破坏磁盘上的数据. A)只有(1)正确 B)只有(2)正确 C)(1)和(2)都正确 D)(1)和(2)都不正确 2.通常所说的“计算机病毒”是指______ A)细菌感染 B)生物病毒感染 C)被损坏的程序 D)特制的具有破坏性的程序 3.对于已感染了病毒的U盘,最彻底的清除病毒的方法是_____ A)用酒精将U盘消毒 B)放在高压锅里煮 C)将感染病毒的程序删除 D)对U盘进行格式化

4.计算机病毒造成的危害是_____ A)使磁盘发霉 B)破坏计算机系统 C)使计算机内存芯片损坏 D)使计算机系统突然掉电 5.计算机病毒的危害性表现在______ A)能造成计算机器件永久性失效 B)影响程序的执行,破坏用户数据与程序 C)不影响计算机的运行速度 D)不影响计算机的运算结果,不必采取措施 6.计算机病毒对于操作计算机的人,______ A)只会感染,不会致病 B)会感染致病 C)不会感染 D)会有厄运

病毒分子生物学鉴定常用技术

实验二十三病毒核酸检测常用技术 (Techniques of Detecting Nucleic Acid of Viruses in Common Use ) 近年来随着分子生物学的发展,基因检测技术在微生物学实验室诊断中也取得了长足的进展。由于部分病原微生物的基因组已成功地被克隆并进行了核苷酸序列测定,因此根据病原微生物的基因特点,应用分子生物学技术检测样品中有无相应病原微生物的核酸,从而可以特异、灵敏地判定标本中是否含有相应的病原微生物。在微生物学的研究及感染性疾病的诊断中,最常使用的微生物核酸检测技术有PCR、RT-PCR、核酸杂交等技术,现对病毒核酸(DNA、RNA)的分离、PCR、RT-PCR、核酸杂交等技术的基本原理、操作方法、应用及影响因素等进行概述。 实验 1 PCR 检测传染性喉气管炎病毒核酸 【目的要求】 通过本实验使学生初步了解和熟悉病毒核酸(DNA)的分离与PCR技术的基本原理、操作方法、影响因素和应用。 【基本原理】 鸡传染性喉气管炎(Infectious laryngotracheitis, ILT)是由疱疹病毒科、α-疱疹病毒亚科的喉气管炎病毒(Infectious laryngotracheitis Virus, ILTV)引起的一种急性上呼吸道传染病, 常表现呼吸困难、产蛋鸡产蛋下降和死亡, 是危害养鸡业发展的重要疫病之一。但在临诊上极易与其它一些呼吸道疾病相混淆, 如禽流感、新城疫、传染性支气管炎、支原体感染等。常规检测IL TV 的方法有病原分离鉴定和血清学试验, 这些方法虽经典,但费时且敏感性差, 不能检测亚临床感染, 而传染性喉气管炎潜伏感染是疾病的一种重要表现形式。聚合酶链式反应(Polymerase Chain Reaction,PCR)是目前比较快速、敏感、特异的检测手段,已被广泛应用在病毒核酸检测方面。本实验以PCR方法检测鸡传染性喉气管炎病毒核酸为例,对PCR方法进行介绍。 PCR是体外酶促合成特异DNA片段的一种方法,典型的PCR由(1)高温变性模板;(2)引物与模板退火;(3)引物沿模板延伸三步反应组成一个循环,通过多次循环反应,使目的DNA得以迅速扩增。其主要步骤是:将待扩增的模板DNA置高温下(通常为93~94℃)使其变性解成单链;人工合成的两个寡核苷酸引物在其合适的复性温度下分别与目的基因两侧的两条单链互补结合,两个引物在模板上结合的位置决定了扩增片段的长短;耐热的DNA聚合酶(Taq酶)在72℃将单核苷酸从引物的3’端开始掺入,以目的基因为模板从5’→3’方向延伸,合成DNA的新互补链。如此反复进行,每一次循环所产生的DNA 均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍(图23-1)。

两对半检查是用来判断是否感染乙肝或粗略估计病毒复制水平的初步检查

两对半检查是用来判断是否感染乙肝或粗略估计病毒复制水平的初步检查, 乙肝两对半吸头 两对半对于病情严重程度的评估参考性不大。而肝功能是衡量肝脏是否有肝细胞坏死或炎症存在的重要检查,其中转氨酶是重中之重,治疗需要以肝功能为重要参考指标。HBVDNA检查是判断如何治疗的参考依据,同时也对传染性有一定的参考意义,一般DNA越高,传染性越强,也需要同肝功能一起检查。 乙肝两对半中 1(HBsAg-乙肝病毒表面抗原)为已经感染病毒的标志,并不反映病毒有无复制、复制程度、传染性强弱 2(HBsAb-乙肝病毒表面抗体)为中和性抗体标志,是否康复或是否有抵抗力的主要标志。乙肝疫苗接种者,若仅此项阳性,应视为乙肝疫苗接种后正常现象;感染乙肝病毒后依靠自身免疫力清除乙肝病毒的人体内也会产生乙肝表面抗体,这是一种好现象 3(HBeAg-乙肝病毒e抗原)为病毒复制标志。持续阳性3个月以上则有慢性化倾向 4(HBeAb-乙肝病毒e抗体)为病毒复制停止标志。病毒复制减少,传染性较弱,但并非完全没有传染性 5(HBcAb-乙肝病毒核心抗体)为曾经感染过或正在感染者都会出现的标志。核心抗体IGM是新近感染或病毒复制标志,核心抗体IgG是感染后就会产生的,对于辅助两对半检查有一定意义。 乙肝前S1抗原三病毒复制的另一个指标,人体感染乙型肝炎病毒后,最早的免疫应答就是针对前S1抗原的。由于前S1抗原的出现在HBV感染的最早期,因而可以起到早期诊断的作用。 由于核心抗原在血中不易测到,目前试剂盒也不过关,所以还剩两对半抗原抗体,这就是人们常说的“乙肝两对半”检查,或称“乙肝五项”检查。 编辑本段乙肝两对半正常值 乙肝两对半检查分为定性检查和定量检查,在定性检查和定量检查中,乙肝两对半正常值是不同的。 在乙肝两对半定性检查中,检查结果通常用“+”或“-”号来表示,“+”号表示阳性,“-”号表示阴性。乙肝两对半正常值是“-”阴性,说明血清中检测不到这项乙肝病毒标志物。 在乙肝两对半定量检查中,乙肝两对半正常值为①HBsAg:<0.5ng/ml(毫微克/毫升) ②HBsAb:<=10MIU/ml[米尤(音)/毫升] ③HBeAg<=0.5PEI U/ml ④HBeAb:当HBeAb定量<=0.2PEI U/ml ⑤HBcAb:<=0.9PEI U/ml。 编辑本段临床意义 以下是乙肝病毒血清标志物(即常说的乙肝五项或称两对半)的临床意义: 序号HBsAg HBsAb HBeAg HBeAb HBcAb临床意义 9种常见模式

计算机病毒行为特征的检测方法

2012.4 37 计算机病毒行为特征的 检测分析方法 谢辰 国际关系学院 北京 100091 摘要:在研究计算机病毒之前,如果我们能先对被研究病毒的行为特征有足够的了解,那么对于之后的反汇编代码分析以及查杀工作都会起到事半功倍的效果。本文先介绍了计算机病毒行为特征,然后通过实验的方法,利用虚拟机和软件分析技术,从动态和静态两个角度,以new orz.exe 病毒为例,来阐述和总结检测分析计算机病毒行为特征的方法。 关键词:计算机病毒;行为特征;虚拟机;软件分析技术 0 引言 随着互联网技术的日渐普及和高速发展,全球化通信网络已经成为大势所趋。但网络在提供巨大便利的同时,也存在种种安全隐患和威胁,其中危害最大影响最广的莫过于计算机病毒。在网络带宽不断升级的今天,计算机病毒的传播速度和变种速度也随之加快,问题也越来越严重,引起了人们的广泛关注,并成为当前计算机安全技术研究的热点。据国内外各大反病毒公司统计,2008 年截获的各类新病毒样本数已经超过1000万,日均截获病毒样本数万。对于现如今计算机病毒变种的不断增加,反计算机病毒的一个研究方向便是怎样在不对病毒汇编代码分析的前提下,分析出已知或未知的计算机病毒的全部行为特征。 1 计算机病毒行为特征 (1) 传染性 传染性是计算机病毒最重要的特征,是判断一段程序代码是否为计算机病毒的依据。计算机病毒是一段人为编制的计算机程序代码,这段程序代码一旦进入计算机并得以执行,它会搜寻其他符合其传染条件的程序或存储介质,确定目标后再将自身代码插入其中,达到自我繁殖的目的。是否具有传染性是判别一个程序是否为计算机病毒的重要条件。 (2) 非授权性 病毒隐藏在合法程序中,当用户调用合法程序时窃取到系统的控制权,先于合法程序执行,病毒的动作、目的对用户是未知的,是未经用户允许的。 (3) 隐蔽性 病毒一般是具有很高编程技巧、短小精悍的程序,它们一般附着在合法程序之中,也有个别的以隐含文件形式出现,目的是不让用户发现它的存在。如果不经过代码分析,病毒程序与合法程序是不容易区别开来的。 (4) 潜伏性 大部分的病毒传染系统之后一般不会马上发作,它可长期隐藏在系统中,只有在满足其特定条件时才启动破坏模块。如著名的在每月26日发作的CIH 病毒。 (5) 破坏性 病毒可分为良性病毒与恶性病毒。良性病毒多数都是编制者的恶作剧,它对文件、数据不具有破坏性,但会浪费系统资源。而恶性病毒则会破坏数据、删除文件或加密磁盘、格式化磁盘等。 (6) 不可预见性 从对病毒检测方面看,病毒还有不可预见性。不同种类的病毒,它们的代码千差万别。虽然反病毒技术在不断发展,但是病毒的制作技术也在不断的提高,病毒总是先于相应反病毒技术出现。 (7) 可触发性 计算机病毒一般都有一个或者几个触发条件。如果满足其触发条件,将激活病毒的传染机制进行传染,或者激活病毒的表现部分或破坏部分。病毒的触发条件越多,则传染性越强。

实验三 乙型肝炎病毒表面抗原检测

实验三乙型肝炎病毒表面抗原检测 一、目的 掌握ELISA原理和方法 二、实验原理 采用EIA双抗原夹心法检测人血清或血浆中的抗-HBs。并采用HBsAg包被反应板,加入待测标本,同时加入HBsAg-HRP,进行孵育,当标本中存有抗-HBs 时,该抗-HBs与包被的HBsAg结合并与酶结合形成酶结合物HBsAg-抗-HBs-HBsAg-HRP复合物,洗去反应物,加入显色剂后,将有明显的颜色变化;当标本中没有抗-HBs时,加入底物后没有或只有很轻微颜色变化。 三、试剂与器材 1.试剂 酶结合物、抗-HBs阳性对照,浓缩洗涤液、显色剂A、显色剂B、终止液(2mol/L H2SO4)、7号待测样品、8号待测样品 2.器材 预包被反应板(9孔)、封板胶条、移液枪、摇床 四、操作步骤 1.取7号待测样品分别填装到4孔中,每孔50μL。同样取8号待测样品分别 填装到4孔中,每孔50μL。剩余一孔装填50μL抗-HBs阳性对照。 2.加酶结合物,每孔50μL,并充分混匀,贴上标签纸,置于37℃孵育30min。 3.手工洗板:弃去孔中液体,在吸水纸上拍干,用洗涤液350μL灌注每孔, 静置5-10秒,弃去孔内洗涤液拍干,如此反复五次。 4.加显色剂:先加显色剂A,每孔50μL;再加显色剂B,每孔50μL;充分混 匀,放置37℃避光孵育15,min。 5.终止反应:每孔加入终止液50μL,混匀。

6.观察颜色变化。 五、实验结果分析 从实验结果看出7、8号待测样品皆无明显的颜色变化,但是阳性对照组再加入显色剂A、B后立即显现蓝色,再加入终止液后立即显现黄色。表明7、8号待测样品皆无抗-HBs。 而反应显色原因为底物过氧化氢脲溶液和TMB,在HRP酶的作用下,产生蓝色的阳离子根;加入终止液后,一方面,硫酸破坏了HRP酶的活性,使酶的催化功能丧失,另一方面,pH降低,即可使蓝色的阳离子根转变为黄色的联苯醌。但本实验并未用上酶标仪,故测定联苯醌的消光系数也无法进行。

乙型肝炎病毒检测技术的研究进展

乙型肝炎病毒检测技术的研究进展 吴淑秋 [关键词] 乙型肝炎病毒检测技术 乙型肝炎病毒(hepatitis B virus,HBV)感染是世界范围内严重的公共卫生问题之一,约5%的世界人口现行慢性感染,在我国乙型肝炎是常见的传染病和多发病之一,主要通过血液、血制品、性传播及母婴传播,是引起肝硬化和肝癌的常见病因。我国一般人群中HBsAg阳性率约为10%左右,乙型肝炎其传染性和病死率均居高不下[1],已经成为现在最为严重的社会公共卫生问题,严重影响着人们的身体健康。所以乙型肝炎病毒的早期、准确、定量检测对乙型肝炎临床诊断、疗效观察及预防具有重要的意义。随着检测技术的不断发展,对乙型肝炎血清标记物的认识也在不断深入和更新。到目前为止, 乙型肝炎病毒病原学检测主要是电子显微镜技术、免疫学技术和分子生物学技术和基因芯片技术, 现将乙型肝炎病毒几种检测技术作一综述。 1电子显微镜技术 电子显微镜技术主要包括常规电镜法(electron micros-copy, EM)和免疫电镜法(immune electron microscopy,IEM)。 1.1 常规电镜法1970年英国学者Dane等在电镜下发现了完整HBV颗粒即Danes颗粒[2],R De V os等随后用电子显微镜观察18例HBsAg阳性的慢性肝炎患者的肝组织,发现了直径约25 nm的核心抗原(HBcAg)颗粒[3]。常规电镜法的优点是标本用量小、制样速度快、观察比较直观,不过因其观察灵敏度较低而要求病毒在标本中大量存在,所以本检测技术在观察HBV方面的应用受到限制。 1.2免疫电镜法免疫电镜技术是免疫化学技术与电镜技术结合的产物,是在超微结构水平研究和观察抗原、抗体结合定位的一种方法学。Takashi等[4]对96例HBsAg阳性患者的肝组织进行免疫电镜观察,发现在肝细胞胞浆和胞核中存在HBcAg和HBeAg。胡莲美等[5]在HBV转基因小鼠血清中发现直径约22 nm的球形HBsAg,以及少量直径约42 nm的Danes颗粒。免疫电镜法较常规电镜法的敏感性高,从而可增加HBV的检出率,但该检测技术的样本制备过程较复杂,对操作者的技能要求较高。 2 免疫学技术

植物的病毒检测技术

植物的病毒检测技术 植物病毒病害是一类重要病害,几乎在各类作物上都有发生,严重影响农作物的产量和质量,用一般的方法难以防治,是生产上的一大难题。种植无病毒种子、苗木是一种非常有效的防治措施。因而如何对种子、苗木等无性繁殖材料以及在发病早期对植株进行快速准确地检测诊断就显得尤为重要。最初植物病毒检测主要依靠生物学性状,但生物学方法费时费力,检测周期长,而且易受环境条件的影响,反应不稳定、重复性差。目前植物病毒检测主要是血清学检测(以病毒外壳蛋白为基础)和核酸检测,前者主要包括ELISA、快速免疫滤纸测定、免疫胶体金技术、免疫毛细管区带电泳、免疫PCR 等;后者主要有PCR、分子信标、实时RT-PCR和核酸杂交等。 1 血清学检测方法 1.1 酶联免疫吸附测定(ELISA) 酶联免疫吸附测定是一种采用固相(主要为聚苯乙烯酶联板) 吸附,将免疫反应和酶的高效催化反应有机结合的方法,其基本原理是以酶催化的颜色反应指示抗原抗体的结合。该方法首先将同源特异抗体吸附在反应器皿底部,加入欲测试的含病毒的样品,病毒与抗体结合,病毒颗粒被固定,再加入标记的特异抗体和酶的底物,酶与底物反应后会出现有颜色的溶液其强度与病毒浓度成正比,用此方法可测定出病毒的浓度。ELISA方法简单,灵敏度高,特异性强,适于大量样品的检测,目前该方法已被广泛用于植物病毒检测。在此基础上加以改进又发展了一些新的检测方法,如A 蛋白酶联吸附(SPA-ELISA)、斑点免疫吸附(DIBA)、直接组织斑免疫测定( IDDTB) 、伏安酶联免疫分析[1]、快速ELISA 等。 1.2 快速免疫滤纸测定法(Rapid immuno-filter paper assay , RIPA) 快速免疫滤纸测定类似乳胶凝集反应,其原理是把待测病毒的抗体吸附在乳胶颗粒上,通过大颗粒乳胶间接反应小颗粒病毒的存在。所不同的是RIPA使用了一种红色乳胶,从而使检测更加简单和直观。RIPA[2]目测检测提纯TMV 的灵敏度分别可达 5ng/ml~50ng/ml 。 1.3 免疫胶体金技术( Immunogold2label as2say) 免疫胶体金技术最早起源于电镜方面的研究,由于金在生物学上是惰性的,且有良好的电荷分布,可以和蛋白质(如抗体、A 蛋白等)紧密结合,因此广泛应用于生物学和微生物学的各个领域。其原理是用柠蒙酸钠将氯金酸金离子还原为胶体金。胶体金颗粒在适当的条件下,以静电、非共价键方式吸附抗体IgG(或A蛋白)分子,从而形成稳定的IgG(或A蛋白) - 胶体金复合物。通过抗原抗体特异性结合,抗体(或A蛋白)胶体金复合物就可以结合在抗原上。金颗粒吸附在病毒粒体周围,从而得到明显的鉴别性和可见度[3] 。 随着技术的发展,1971年Taylor 等报道了免疫金染色技术( Immunogold staining) ,1981年Danscher又创建了免疫金- 银染色技术( Immunogold-silver staining) 。自1983年首次成功使用胶体金标记的抗体检测植物病毒以来,该技术逐渐被应用于植物病毒的检测。20 世纪80年代发展起来的斑点免疫金渗滤试验(Dot immunogold fitration assay) 是一种快速免疫胶体金诊断技术,该技术以硝酸纤维素膜为载体,利用微孔滤膜的渗滤浓缩和毛细管作用,使抗体抗原反应和洗涤在一特殊的渗滤装置中迅速完成,从而大大缩短了检测时间。在此基础上,又建立了更为简

浅谈计算机病毒的检测技术

浅谈计算机病毒的检测技术 摘要:在互联网高速发展的今天,计算机病传染性越来越强,危害性也越来越大。计算机病毒的检测方法主要有长度检测法、病毒签名检测法、特征代码检测法、检验和法、行为监测法、感染实验法、病毒智能检测法等。本文对其特点以及优缺点逐一进行了叙述。 关键词:计算机病毒检测技术 一、引言 Internet改变了人们的生活方式和工作方式,改变了全球的经济结构、社会结构。它越来越成为人类物质社会的最重要组成部分。但在互联网高速发展的同时,计算机病毒的危害性也越来越大。在与计算机病毒的对抗中,早发现、早处置可以把损失降为最少。因此,本文对计算机病毒的主要检测技术逐一进行了讨论。计算机病毒的检测方法主要有长度检测法、病毒签名检测法、特征代码检测法、检验和法、行为监测法、感染实验法、病毒智能检测法等。这些方法依据原理不同,检测范围不同,各有其优缺点。 二、计算机病毒的检测方法 (1)长度检测法 病毒最基本特征是感染性,感染后的最明显症状是引起宿主程序增长,一般增长几百字节。在现今的计算机中,文件长度莫名其妙地增长是病毒感染的常见症状。长度检测法,就是记录文件的长度,运行中定期监视文件长度,从文件长度的非法增长现象中发现病毒。知道不同病毒使文件增长长度的准确数字后,由染毒文件长度增加大致可断定该程序已受感染,从文件增长的字节数可以大致断定文件感染了何种病毒。但是长度检测法不能区别程序的正常变化和病毒攻击引起的变化,不能识别保持宿主程序长度不变的病毒。 (2)病毒签名检测法 病毒签名(病毒感染标记)是宿主程序己被感染的标记。不同病毒感染宿主程序时,在宿主程序的不同位置放入特殊的感染标记。这些标记是一些数字串或字符串。不同病毒的病毒签名内容不同、位置不同。经过剖析病毒样本,掌握了病毒签名的内容和位置之后,可以在可疑程序的特定位置搜索病毒签名。如果找到了病毒签名,那么可以断定可疑程序中有病毒,是何种病毒。这种方法称为病毒签名检测方法。但是该方法必须预先知道病毒签名的内容和位置,要把握各种病毒的签名,必须解剖病毒。剖析一个病毒样本要花费很多时间,是一笔很大的开销。 (3)特征代码检测法

计算机病毒原理及防范技术(精简版)

《计算机病毒原理及防范技术》----秦志光张凤荔刘峭著 43.8万字 第1章计算机病毒概述 1.1.1计算机病毒的起源----第一种为科学幻想起源说,第二种为恶作剧,第三种为戏程序(70年代,贝尔实验室,Core War), 第四种为软件商保护软件起源说。 1.计算机病毒的发展历史-----第一代病毒,传统的病毒, 第二代病毒(1989-1991年),混合型病毒(或“超级病毒”),采取了自我保护措施(如加密技术,反跟踪技术);第三代病毒(1992-1995年)多态性病毒(自我变形病毒)首创者Mark Washburn-----“1260病毒”;最早的多态性的实战病毒----“黑夜复仇者”(Dark Avenger)的变种MutationDark Avenger ;1992年第一个多态性计算机病毒生成器MtE,第一个计算机病毒构造工具集(Virus Construction Sets)----“计算机病毒创建库”(Virus Create Library), ”幽灵”病毒;第四代病毒(1996-至今),使用文件传输协议(FTP)进行传播的蠕虫病毒,破坏计算机硬件的CIH,远程控制工具“后门”(Bank Orifice),”网络公共汽车”(NetBus)等。 2.计算机病毒的基本特征----1.程序性(利用计算机软、硬件所固有的弱点所编制的、具有特殊功能的程序),2、传染性,3、隐蔽性(兼容性、程序不可见性)4、潜伏性(“黑色星期五”,“上海一号”,CIH),5、破坏性,6、可触发性,7、不可预见性,8、针对性,9、非授权可执行性,10、衍生性。 1.2.2.计算机病毒在网络环境下表现的特征------1.电子邮件成主要媒介(QQ,MSN等即时通讯软件,可移动存储设备,网页,网络主动传播,网络,“钓鱼”),2.与黑客技术相融合(“Nimda”,CodeRed,”求职信”),3.采取了诸多的自我保护机制(逃避、甚至主动抑制杀毒软件),4.采用压缩技术(压缩变形----特征码改变,压缩算法,“程序捆绑器”),5.影响面广,后果严重,6.病毒编写越来越简单,7.摆脱平台依赖性的“恶意网页”。 1.2.3.计算机病毒的生命周期----1.孕育期(程序设计,传播),2.潜伏感染期,3.发病期,4.发现期,5.消化期,6.消亡期。 第2章计算机病毒的工作机制 2.1.1计算机病毒的典型组成三大模块-----1.引导模块(将病毒引入计算机内存,为传染模块和表现模块设置相应的启动条件),2.感染模块(两大功能-----1.依据引导模块设置的传染条件,做判断;2启动传染功能), 3.表现模块(两大功能----依据引导模块设置的触发条件,做判断;或者说表现条件判断子模块 2.1启动病毒,即表现功能实现子模块) 2.2.1计算机病毒的寄生方式-----1.替代法(寄生在磁盘引导扇区);2.链接法(链接在正常程序的首部、尾部、或中间)。 2.2.2.计算病毒的引导过程-----1。驻留内存,2.获得系统控制权, 3.恢复系统功能。 2.4.1.计算机病毒的触发机制----1.日期,2.时间, 3.键盘 4.感染触发, 5.启动, 6.访问磁盘次数, 7.调用中断功能触发, 8.CPU型号/主板型号触发。 第三章计算机病毒的表现 3.1.计算机病毒发作前的表现----1.经常无故死机,操作系统无法正常启动,运行速度异常, 4.内存不足的错误, 5.打印、通信及主机接口发生异常, 6.无意中要求对软盘进行写操作, 7.以前能正常运行的应用程序经常死机或者出现非法错误, 8.系统文件的时、日期和大小发生变化, 9.宏病毒的表现现象,10、磁盘空间迅速减少,11.网络驱动器卷或者共享目录无法调用,陌生人发来的电子邮件,13.自动链接到一些陌生的网站。

LAMP技术在病毒检测中的应用

LAMP技术在病毒检测中的应用 发表时间:2013-01-31T16:04:31.107Z 来源:《医药前沿》2012年第31期供稿作者:吴昊1 孙立新2 叶松1 陆军1 杨庆贵2 [导读] LAMP(Loop-mediated Isothermal Amplification)环介导等温扩增技术,是近年来新兴的分子生物学检测技术 吴昊1 孙立新2 叶松1 陆军1 杨庆贵2 (1安徽理工大学医学院病原生物教研室安徽淮南 232001) (2江苏出入境检验检疫局医学媒介生物监测实验室江苏南京 210001) 【摘要】LAMP(Loop-mediated Isothermal Amplification)环介导等温扩增技术,是近年来新兴的分子生物学检测技术。因其特异性强、等温扩增,反应灵敏、操作简单、产物易检测,此项技术已被用于多种病原微生物的检测。本文综述了LAMP技术的原理以及其在几种常见病毒检测项目中的应用。 【关键词】 LAMP 技术原理病毒检测 【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2012)31-0064-02 病原微生物带来的卫生问题时常出现,各种检测手段也不断更新。但由于非特异性扩增、反应操作程序复杂、及仪器昂贵等问题,很多方法在疾病爆发时筛查现场和监测站点的应用受到限制。 LAMP技术是由日本学者Notomi等[1]在2000年开发的一种新型快速的扩增技术,它能在一定温度范围内,通过一个步骤在短时间内对目的片段进行大量有效扩增。其具有高特异性、高效性、快速、低成本、易检测、结果易观察等特点,被广泛用于各种病原体检测和研究中并取得了一定的成就。 1 LAMP技术原理 1.1 扩增机制 LAMP技术利用能够特异性识别靶序列上的6个独立区域的两对内、外引物,及具有链置换活性的BstDNA聚合酶启动循环链置换反应来进行靶序列的扩增[1]。反应中,先由外部引物将内部引物扩增所需要的模板扩增出来,然后由内部引物对靶基因片段进行引导合成。由于内部引物所扩增出的片段含有与该引物5’端DNA片段的反相互补序列,因此这些反相互补序列之间形成茎-环结构,同时,另外一条内部引物与也可形成茎-环结构,片段的两端形成哑铃状结构,如此循环往复的过程最后形成花椰菜形状的茎-环结构,可在15min-60min之内实现109-1010倍的括增[2]。 1.2 结果观察 扩增后可以通过琼脂糖电泳后染色进行观察,更可通过扩增衍生物焦磷酸镁进行观察:阳性的样本会出现白色浑浊沉淀,而阴性则无此现象。同时也可以应用SYBR Green I染色,呈现绿色的为阳性,橙色的为阴性[2]。 2 病毒检测 2.1 日本脑炎病毒 日本脑炎又称乙脑,是由日本脑炎病毒(Japanese encephalitis virus)引起的一种常见的蚊媒传染病。JEV的检测方式很多,如血清学,病毒分离等,但耗时繁琐、敏感性特异性都较低。TORINIWA等[3]利用LAMP技术原理建立了快速Real-time RT-LAMP方法,该方法通过扩增JEV病毒的包膜(E)蛋白基因来定量检测JEV病毒,可将检测用时缩短至1h,检测下限为1PFU并与常规RT-PCR具有相似的敏感性。且不需特殊设备、操作方便,有利于推广其在基层的应用。 2.2 西尼罗河病毒 西尼罗河病毒(West Nile Virus,WNV)是引起西尼罗河热的病原体,近年来在世界部分地区的流行并造成了重大的损失。PARIDA 等[4]创立了一种一步法来检测WNV,通过凝胶电泳或者浊度仪来对扩增结果进行判定。结果显示其敏感性比常规RT-PCR高10倍。 2.3 甲型流感病毒 甲型流感病毒(AIV)具有高度传染性,致病性,以及致死率。对甲流病毒的检测方法主要为病毒分离,抗原和抗体检测以及PCR方法,但是过程费时繁琐。POON等[5]设计了特异性引物,利用LAMP技术成功的检测了H1-H3型的AIV,与PCR方法比较阳性符合率为100%,敏感度可达传统方法的100倍。LAMP技术由于其检测的简便快速且高度敏感,可更多的用于现场检测。 2.4 禽流感病毒的检测 禽流感是由禽类A型流感病毒引起的一种急性、高接触性的传染病,可带来重大损失。禽流感检测方法有各类血清学试验以及免疫学实验等。这些方法都存在着如试验周期较长,操作繁琐,检测材料受限制等不足。国内李启明等[8]对H5N1亚型禽流感病毒进行了RT-LAMP检测,验证和分析后证明其特异性与常规方法一致,并且其灵敏度可达到10个拷贝。侯佳蕾等[6]根据H5亚型禽流感病毒血凝素基因序列设计了引物,并建立了一种针对性的检测诊断方法。结果表明,该方法的灵敏度高于一步RT-PCR法。 2.5 口蹄疫病毒的检测 口蹄疫是由口蹄疫病毒(FMDV)引起的一种急性,热性,高度接触性传染病,主要侵害偶蹄兽并给经济带来极大威胁。血清学检测不足以确定整群动物是否带毒而PCR方法由于需要专门的仪器。吴绍强等[7]以灭活的亚洲I型口蹄疫细胞培养病毒为材料,设计引物并建立了口蹄疫病毒RT-LAMP检测法,为口蹄疫现场快速检测提供了有效的方法。 2.6 丙型肝炎病毒(HCV)的检测 HCV是一种常见的病毒,传播途径为母婴传播和血液传播。目前最常用的方法是ELLSA法检测抗原抗体或PCR法。但是由病毒的抗原量极少,所以常规免疫学方法常无法检测出病毒。PCR方法操作复杂繁琐,特异性较低。李启明等[8]利用LAMP技术的原理,利用特殊引物进行了LAMP扩增,成功的检测HCV基因,实验结果阳性符合率高达98%。这一成果证实了LAMP技术的优势。 2.7 严重急性呼吸窘迫综合征冠状病毒(SARS-CoV)的检测 SARS带来的阴影提醒人们对此类病毒检测的重要性。目前临床上对其检测的方法主要有2种。一是检测SARS-CoV抗体,虽然此法灵敏度较高,但在发病初期不能检出。二是Real-time PCR,这种方法可在发病早期检测出SARS-CoV,但是其需要熟练操作技术以及高成本仪器,不适于常规筛查。POON等[9]利用改良LAMP法对人群的鼻咽分泌物样本进行了检测。结果显示SARS病人中的SARS-CoV检出率为

浅析马铃薯病毒检测技术

马铃薯是我国重要的粮食作物和经济作物,马铃薯在定西市种植也有200多年的历史,在保障全市粮食有效供给和繁荣城乡经济中发挥了十分重要的作用,已由过去的“救命粮”变成了现在的“致富薯”,是定西最具生产潜力、市场优势和开发前景的特色农产品,也是农业增效、农民增收的第一大优势产业。近年来,定西市委、市政府对马铃薯产业高度重视,作为全市农业和农村经济发展的战略性主导产业来扶持,制定了“全市马铃薯产业发展规划”,省上也制定下发了“关于进一步加快发展马铃薯产业的意见”,提出了工作思路和具体目标,促进了本市马铃薯产业的快速发展。2013年全市种植面积达到319.84万亩,总产量506万t,是全国三大马铃薯集中产区之一。但是由于定西经济条件落后,全市的马铃薯种薯的病毒检测并未随着种植面积的扩大而提高和普及,以至于马铃薯各种病每年在生长期发生,严重影响了全市马铃薯的产量和质量。马铃薯病毒已成为马铃薯生产中的重要制约因素,急需大力提高马铃薯种薯的病毒检测,为马铃薯产业的持续快速发展把好第一增长关。 马铃薯病毒检测包括:基础试管苗、马铃薯原原种、大田种薯的检测。严格的检测大大提高了种薯合格率,而种植合格的种薯,每亩可以提高产量500kg 以上。马铃薯的病毒有6种,分别是马铃薯X病毒(PVX)、马铃薯Y病毒(PVY)、马铃薯S病毒(PVS)、马铃薯A病毒(PVA)、马铃薯M病毒(PVM)、马铃薯卷叶病毒(PLRV)。目前最常用的马铃薯病毒检测是用双抗体夹心酶免疫吸附测定法(DAS-ELISA)检测,是用于快速、灵敏、准确的血清学技术,是国际通用的检测方法之一。下面就本市引进的“马铃薯病毒DAS-ELISA检测”全套生产技术进行浅述。 1马铃薯病毒的概况 1.1马铃薯X病毒(PVX) 也称普通花叶病毒,是一种长520~550nm的线状病毒,有时在电镜下能看到病毒颗粒的中心孔。在病毒外壳由亚基形成时,可看到它的横纹,这一点是与马铃薯重花叶病毒在形态结构上的主要区别。一般减产5%~10%,症状是叶片从轻型花叶到叶片有较轻的皱缩。马铃薯X病毒靠汁液传播,也是传播最广泛的一种病毒。 1.2马铃薯Y病毒(PVY) 也称重花叶病毒,是马铃薯第二个重要病毒性病害,是一种长680~900nm的线状病毒,在电镜下找不到它的中心孔和外壳蛋白亚基的横纹,它比PVX更细一些、更长一些。通过感染的块茎长期存在并由蚜虫非持续性地传播,产量损失可达80%。症状随着病毒株系、马铃薯品种及环境条件变化很大。1.3马铃薯A病毒(PVA) 又称轻花叶病毒,在许多方面类似于马铃薯Y病毒。在某些品种中出现时,一般比马铃薯Y病毒轻,产量损失可达40%。马铃薯A病毒引起花叶(有时很严重),同时也发生脉缩和卷曲,叶片可能出现闪光。 1.4马铃薯S病毒(PVS) 也称潜隐性花叶病毒,感病块茎变小,一般减产 浅析马铃薯病毒检测技术 景彩艳 (甘肃省定西市农产品质量安全监督管理站定西743000) 摘要:随着科学技术的不断发展,马铃薯病毒检测技术在日益的完善,DAS-ELISA法已经成为马 铃薯病毒检测的常规方法。容易侵染马铃薯的病毒类型主要有6种,分别是马铃薯的PVX、PVY、PLRV、PVS、PVM、PVA病毒。马铃薯在生长的过程中,因受到各种不同病害的侵染,容易造成减产 和退化。血清学技术是马铃薯病毒检测的主要手段。 关键词:马铃薯病毒;血清学技术;双抗体夹心酶联免疫吸附法 215 --

相关文档
最新文档