Flooding Stress-Induced Glycine-Rich

Flooding Stress-Induced Glycine-Rich
Flooding Stress-Induced Glycine-Rich

Mol. Cells OT, 47-54

DOI/10.1007/s10059-009-0004-4

Flooding Stress-Induced Glycine-Rich

RNA-Binding Protein from Nicotiana tabacum Mi-Ok Lee1, Keun Pill Kim1,3, Byung-gee Kim2, Ji-Sook Hahn2, and Choo Bong Hong1,*

A cDNA clone for a transcript preferentially expressed during an early phase of flooding was isolated from ká??J íá~?~=í~?~?ì?. Nucleotide sequencing of the cDNA clone identified an open reading frame that has high homology to the previously reported glycine-rich RNA-binding pro-teins. The open reading frame consists of 157 amino acids with an N-terminal RNA-recognition motif and a C-terminal glycine-rich domain, and thus the cDNA clone was desig-nated as ká??íá~?~=í~?~??ì?glycine-rich RNA-binding protein-1 (kídomN). Expression of kídomN was upregu-lated under flooding stress and also increased, but at much lower levels, under conditions of cold, drought, heat, high salt content, and abscisic acid treatment. RNA homopolymer-binding assay showed that NtGRP1 binds to all the RNA homopolymers tested with a higher affinity to poly r(G) and poly r(A) than to poly r(U) and poly r(C). Nu-cleic acid-binding assays showed that NtGRP1 binds to ssDNA, dsDNA, and mRNA. NtGRP1 suppressed expres-sion of the fire luciferase gene á?=?áíê?, and the suppres-sion of luciferase gene expression could be rescued by addition of oligonucleotides. Collectively, the data suggest NtGRP1 as a negative modulator of gene expression by binding to DNA or RNA in bulk that could be advantageous for plants in a stress condition like flooding.

INTRODUCTION

Flooding often causes severe damage to crops and this is es-pecially important in about 16% of the production area world-wide (Boyer, 1962). Although this problem occurs mainly in tropical rainforests, plants can also undergo such stress in cooler regions during much of the year when soil water remains saturated due to bad drainage and slow evaporation. Occa-sional heavy rainfalls also affect crops in temperate zones. Although there are plants that can cope with prolonged flooding conditions, most plants are tolerant to flooding in a very re-stricted level (Drew et al., 2000). When plants susceptible to flooding stress are subjected to submergence, most genes are silenced while some genes are newly induced. The proteins that are specifically up-regulated when this type of stress oc-curs are referred to as anaerobic proteins, and the proteins most studied so far mainly comprised metabolic pathway en-zymes (Dat et al., 2004; Dennis et al., 2000). However, much more diverse genes are induced when plants become sub-merged. These include putative transcription factor genes, signal transduction pathway component genes, and some without predicted functions (Agarwal and Grover, 2005; Klok et al., 2002). Among the flooding stress-induced proteins, we were interested in studying the GRPs that have been reported to function in posttranscriptional gene regulation. Regulation of gene expression at the posttranscriptional level is one major regulatory domain that influences and controls growth, development, and differentiation of organisms that often relate to stress response. Posttranscriptional gene regula-tion includes pre-mRNA splicing, capping and poly adenylation, mRNA transport, mRNA stability, and translation of the func-tional mRNA (Higgins, 1991; Simpson and Filipowicz, 1996). In these processes, regulation is mainly achieved either directly by the RNA-binding proteins (RBPs), or indirectly by the RBPs modulating function of other regulatory factors. RBPs that con-tain one or more RNA recognition motifs (RRMs) at the N-terminus and a variety of auxiliary motifs at the C-terminus, such as glycine-rich, arginine-rich, SR-repeat, RD-repeat, and acidic domain, have been identified (Alb and Pages, 1998; Bove et al., 2008; Fukami-Kobayashi et al., 1993; Fusaro et al., 2007; Kenan et al., 1991; Mousavi and Hotta, 2005; Nakami-nami et al., 2006; Palusa et al., 2007). The RRM contains two essential motifs, designated ribonucleoprotein (RNP)-1, posi-tioned centrally, and RNP-2, positioned toward the N-terminus (Query et al., 1989).

Posttranscriptional regulatory functions of RBPs in plants have not been studied as much as those in other eukaryotes (Fedoroff, 2002). Although it has been shown that ^ê~?á??é?á?genome encodes more than 200 putative RNA-binding proteins, only a few RBPs in plants have been studied for their function (Lorkovic and Barta, 2002; Rochaix, 2001). A gene encoding a protein containing RRMs at the N-terminus and glycine-rich region at the C-terminus (glycine-rich RNA-binding protein, GRP) was first isolated from maize (Gomez et al., 1988), following which, cDNAs encoding homologous proteins have been identified from various plant species (Carpenter et al.,

Molecules

and

Cells

?2009 KSMCB

1School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea, 2School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea, 3Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138, USA

*Correspondence: hcb@snu.ac.kr

Received July 11, 2008; revised October 7, 2008; accepted October 17, 2008; published online February 5, 2009

Keywords: flooding, glycine-rich RNA-binding protein, negative modulator I=NtGRP1, tobacco

48 Flooding-Induced Glycine-Rich RNA-Binding Protein

1994; Condit et al., 1990; Gendra et al., 2004; Hirose et al., 1993; Horvath and Olson, 1998; Masaki et al., 2008; Moriguchi et al., 1997; Shinozuka et al., 2006; van Nocker and Vierstra, 1993). Given their possible role in RNA recognition and proc-essing, plant GRPs with RNA-binding capacity may have im-portant roles in plant cell physiology, and their involvement in the stress responses of plants has been indicated by several expression analyses. The GRP mRNA accumulation levels were shown to be modified following exposure to stresses such as wounding, salt, and dehydration (Kim et al., 2005; Sachetto-Martins et al., 2000). The involvement of plant GRPs during cold acclimation has also been implicated by the fact that GRP transcription was significantly induced by low temperatures (Dunn et al., 1996; Stephen et al., 2003). Although the functions of the plant GRPs remain elusive, affinity of the GRPs for vari-ous types of nucleic acids has been reported. In riboho-mopolymer-binding assays, GRP proteins from maize, barley, and ^ê~?á??é?á? show higher affinity to poly r(U) and poly r(G) than to poly r(C) and poly r(A) (Dunn et al., 1996; Karlson et al., 2002; Kim et al., 2005; Ludevid et al., 1992). GRPs bind not only to double stranded DNA but also to single stranded DNA (Hirose et al., 1993; Karlson et al., 2002).

As a step toward understanding the biological role of GRPs in plants under flooding stress condition, a cDNA clone for a GRP was isolated from tobacco (ká??íá~?~=í~?~?ì?) under a flooding stress condition, and designated kídomN. Here we report experimental evidences for NtGRP1 that support its func-tion as a comprehensive negative modulator of gene expres-sion. It probably suggests that down regulation of expression of a wide range of genes in plants under stress conditions would be one mechanism to adapt to unfavorable conditions like flooding.

MATERIALS AND METHODS

Plant material and stress treatments

Tobacco (ká??íá~?~=í~?~?ì?=cv W38) plants were grown in soil in a growth room (16-h photoperiod, 23°C, 60% relative humid-ity, and 200 μE m-2 s-1 from fluorescent lamps), and 6-weeks old plants with 4 to 6 leaves were used as the source of plant tis-sue for all experiments, unless otherwise mentioned. Flooding stress was applied by fully immersing the pots in tap water for 2 or 4 h. For low-temperature treatment, the plants were placed at 4°C for 12, 24, or 48 h. For drought treatment, plants were placed on a filter paper and maintained for 12, 24, or 48 h. For salinity treatment, the root was immersed in 0.5 or 1 M NaCl solution for 12 h, and for ABA treatment, the root was im-mersed in 10 μM ABA solution for 12 or 24 h.

cDNA cloning for a GRP

A tobacco flooding-stressed cDNA library (Lee et al., 2007) was screened using 32P-labeled single-stranded cDNA probes that were synthesized from poly(A)+ RNA isolated from either flood-ing-stressed or unstressed tobacco plants. The cDNA clones showing induction under flooding stress were isolated, one-path nucleotide sequenced, and the sequences were analyzed based on the existing annotation for non-redundant databases at the NCBI (https://www.360docs.net/doc/029275781.html,) using BLASTX (Alt-schul et al., 1997; Lee et al., 2008). Among the cDNA clones analyzed, a clone encoding GRP was isolated. Since the clone did not carry the 5′-terminus, PCR was carried out with a de-generative forward primer, GRP-dF (5′-ATGGC(A/T)GAAGT (T/A)GAATAC(A/C)G(G/T)TGC-3′), based on the highly con-served sequence among the most closely related GRP se-quences and a reverse primer based on the nucleotide se-quence in the partial cDNA clone, GRP-R (5′-TGAAGGAAG-CTGGAGGAGTTAA-3′). The PCR products were cloned into the pCR-Blunt II-TOPO vector (Invitrogen, USA), and the nu-cleotide sequencing of the insert confirmed that the PCR prod-uct covers the full ORF. The clone was named kídomN=(ká??J íá~?~=í~?~?ì? glycine-rich RNA-binding protein 1).

RNA blot hybridization

Total RNA was isolated from tobacco according to the method of Sambrook et al. (1989) with minor modifications (Lee et al., 2007). Briefly, tissues were ground in liquid nitrogen with a mortar, and extracted with homogenization buffer (50 mM LiCl, 25 mM Tris-Cl pH 7.5, 35 mM EDTA, 35 mM EGTA, and 0.5% SDS) and then with phenol:chloroform:isoamylalcohol (25:24:1) mixture. The aqueous phase was separated by centrifugation, and extracted with chloroform:isoamylalcohol (1:1) mixture. RNA was precipitated by adding 4 M LiCl, and collected by centrifugation. Twenty μg of total RNA was loaded in each lane and subjected to electrophoresis on a 1.2% formaldehyde gel. RNA was then transferred onto a membrane (Hybond N; Am-ersham Bioscience, USA), and the membrane was pre-hybridized and hybridized with 32P-labeled kídomN cDNA clone at 65°C in a solution of 0.5 M sodium phosphate (pH 7.2), 7% (w/v) SDS, and 1 mM EDTA (pH 7.0). The membrane was washed and exposed to X-ray film.

Production and purification of recombinant NtGRP1 proteins from bK=???á

Three recombinant constructs of kídomN were made with the N-terminal His6-fusion in the pBAD NH vector (Cho et al., 2005). The full ORF of NtGRP1 was prepared by PCR using primers of GRP F27 (5′-GGGGAGCTCATGGCTGAAGTTGAATACAG-3′) and GRP R28 (5′-GGGCATGCTTAACTCCTCCAGCTTCCT- 3′). The cDNA containing the N-terminal region (from 1 to 85 amino acid of NtGRP1, designated as NtGRP11-85) was pre- pared using GRP F27 and GRP R39 (5′-GGGCATGCTTA-GACAGACTGGGCTTCGT-3′), and the cDNA containing the C-terminal region (from 47 to 156 amino acid of NtGRP1, des-ignated as NtGRP147-156) was produced by primers of GRP F40 (5′- GGGAGCTCAGAGGATTTGGATTTGTTACC-3′) and GRP R28. The six underlined nucleotides are p~?I and péüI restric-tion sites. Amplified PCR products were digested with p~?I and péüI and ligated into the pBADNH vector. All DNA manipula-tions were performed according to the methods of Sambrook et al. (1989), and all constructs were confirmed by DNA sequenc-ing. The resulting constructs were transformed into bK=???á=strain MC1061. Expression of H6NtGRP1 and its truncated forms was induced by adding 0.1% L(+)-arabinose and incubating for 6 h at 37°C; the proteins were subsequently purified using an Ni-NTA agarose column (Qiagen, USA). Eluates were concen-trated in Centricon spin columns (Milllipore, USA). Concen-trated samples were spectrophotometrically quantified with the RC DC protein assay system (Bio-Rad Laboratories, USA). Antibody production and protein blot analysis

The purified H6NtGRP1 of 100 μg was intravenously injected into a rabbit to raise a polyclonal antibody. After the first injec-tion, three additional injections of H6NtGRP1 followed every 2 weeks. A week after the last injection, sera were collected and stored at 4°C in 50 mM phosphate buffered saline containing 30% glycerol at a concentration of 1 mg of IgG per ml (Sam-brook et al., 1989). Protein blot analyses basically followed Sambrook et al. (1989). Briefly, proteins were separated on SDS-PAGE gel and blotted onto nitrocellulose membrane (Am-ersham Bioscience). The membrane was incubated with either

Mi-Ok Lee et al. 49

polyclonal anti-H6NtGRP1 antibody or anti-luciferase antibody (Promega, USA). After three washes, the membrane was hy-bridized to the horseradish peroxidase-conjugated goat anti-rabbit secondary antibody and visualized using the enhanced chemiluminescence kit (Amersham Bioscience).

Binding assay on DNA

Gel-retardation assay for the binding activity of NtGRP1 onto ssDNA and dsDNA substrates was carried out as described previously (Nakaminami et al., 2006) with minor modifications. Briefly, 150 ng of either ssDNA (M13mp8) or dsDNA (pSPT18) were incubated with purified H6NtGRP1in a binding buffer (10 mM Tris-Cl pH 7.5). The protein was added in the following amounts: 0, 50, 100, 200, 300, and 500 ng. To test the binding affinity of NtGRP1 to ssDNA and dsDNA, 400 ng of H6NtGRP1 was added to 150 ng of DNA in the binding buffer with variable concentrations of KCl (0, 100, 200, 400, and 800 mM). The mix-tures were maintained on ice for 10 min before being subjected to agarose gel electrophoresis and visualization by ethidium bro-mide staining. The reaction volume was kept at 15 μl.

Binding assay on RNA

H6NtGRP1, H6NtGRP11-85, and H6NtGRP147-156proteins (300 μM each) were separated by SDS-PAGE and transferred to a nitrocellulose membrane. The membrane was washed with tris-buffered saline solution (20 mM Tris-Cl pH 7.5, 150 mM NaCl) for 20 min and prehybridized overnight at 4°C in a renaturation buffer (50 mM Tris-Cl pH 7.6, 50 mM NaCl, 1 mM EDTA, 1 mM DTT, and 1% BSA). It was then incubated for 2 h at 23°C in Northwestern binding buffer (10 mM Tris-Cl pH 7.6, 50 mM NaCl, 1 mM EDTA, and 1 mM DTT) with 32P-labeled riboho-mopolymers of 25 nucleotides. After washing four times with the northwestern binding buffer containing NaCl up to 500 mM at 23°C, the membranes were exposed to X-ray film. For the binding assay to luciferase mRNA (Promega), it was processed as the case of binding to DNA except additional RNase inhibitor RNasin (Promega) used and the incubation time kept at 15 min. Multiple bands observed in Fig. 3E for luciferase mRNA were due to the shorter and longer than expected transcripts of luciferase mRNA from the á?=?áíê?transcription process of luciferase gene (Promega). The mRNA and protein complexes were subjected to agarose gel electrophoresis and visualized by ethidium bromide staining.

Coupled á?=?áíê? transcription/translation

T N T Coupled Reticulocyte Lysate System (Promega) was used for coupled á?=?áíê?transcription/translation reaction. Briefly, plasmid T7-luciferase DNA was mixed with T7 RNA poly-merase, 0.02 mM amino acid mixture, RNase inhibitor, T N T Coupled Reticulocyte Lysate, and H6NtGRP1 (0-300 μM), and incubated at 30°C for 90 min. The amount of synthesized luciferase protein was quantified either by protein blot analysis as described above or by chemiluminescence assay. For the chemilumiscence assay, 5 μl of the 1/10 diluted á?=?áíê? transla-tion product was mixed with 20 μl of luciferase assay reagent (Promega), and chemiluminescence was measured for 2 s using a luminometer (Turner design, USA).

Oligonucleotide competition assay

DNA oligomer (10-500 μM; TTTTTTTTTTTTTTTTTTTTGGA-TCC) or RNA oligomer (100-500 μM; 25 mer of rU) was added to the coupled á?=?áíê? transcription/translation reaction mixture with 100 μM H6NtGRP1. The result was quantified by measur-ing chemiluminiscence from the luciferase activity as described above. RESULTS

Isolation and structural characterization of NtGRP1 cDNA clone

We constructed a cDNA library representing mRNAs from to-bacco plants exposed to a short-term flooding (Lee et al., 2007). From a differential screening of the cDNA library, we isolated cDNA clones with apparently increased expression under flood-ing. Nucleotide sequencing of the cDNA clones and homology search on the public database isolated a cDNA clone that showed high homology to the previously reported clones en-coding GRPs. The cDNA clone was named ká??íá~?~=í~?~?ì?glycine-rich RNA-binding protein-1 (kídomN). This clone con-tained an incomplete open reading frame (ORF) of 418 nucleo-tides and a 3′-untranslated region of 189 nucleotides that lacked a poly(A)-tail. The missing 5′-terminus of the ORF was obtained by degenerative polymerase chain reaction (PCR); the resulting ORF was initiated with ATG and was extended for 474 nucleotides, encoding a protein of 157 amino acids with a calculated molecular mass of 17.27 kDa. RNA-binding proteins commonly feature RRMs. RRMs, in turn, usually contain two highly conserved RNP motifs: RNP-1, which consists of eight amino acid residues (K/R)G(F/Y)(G/A)RVX(F/Y), and RNP-2, which contains six amino acid residues (L/I)(F/Y)(V/I)(G/K) (G/N)L (Hanano et al., 1996). NtGRP1 has a single RRM at the N-terminus that contains RNP-1 (RGFGFVTF) and RNP-2 (CFVGGL) sequences and a glycine-rich domain at the C-terminus. About 60% of the glycine residues in the glycine-rich domain are contiguous, and tyrosine residues and charged amino acid stretches (such as RRE or RRD) are inserted be-tween the glycine stretches (Fig. 1A). Multiple alignment of NtGRP1 with other plant GRPs showed more than 70% identi-ties toward the N-terminal region in the RRM (Fig. 1B). DNA blot hybridization for kídomN on kK=í~?~?ì?=genomic DNA showed a single band from two restriction digests that indicates kídomN as a single copy gene in the tobacco genome (Fig. 1C).

Effect of various stresses and ABA treatment on the expression of=kídomN

Effect of various stresses such as flooding, cold, drought, heat and salinity, and abscisic acid (ABA) treatment on the transcript level of kídomN in tobacco plants was examined by RNA blot analyses. As shown in Fig. 2, only minor level of kídomN=tran-script was detected in the unstressed-tobacco plants. Expres-sion of kídomN was markedly induced within an hour of flood-ing, increased till the 24-h time point, and then decreased. Ex-pression of kídomN was also induced by low temperature, drought, salinity, and heat, but at much lower levels. Slight in-crease in the transcript level was also observed under the ABA treatment (Fig. 2).

Nucleic acid-binding activity of NtGRP1

For the analysis of NtGRP1 activity, NtGRP1 was expressed in b??üéêá?üá~=???á as a His6-fused form (H6NtGRP1) and purified using Ni-NTA column chromatography (Fig. 3A). H6NtGRP1 showed strong binding activity to all four types of homoribonu-cleotide polymers at a lower salt concentration. At a higher salt concentration, H6NtGRP1 bound more preferentially to poly r(A) and poly r(G) than to poly r(U) and poly r(C) (Fig. 3B). When the truncated NtGRP1 proteins were subjected to the homori-boguanine polymer binding at an NaCl concentration of 250 mM, both truncated forms, i.e. H6NtGRP11J85 and H6NtGRP147-156, showed drastically reduced binding activity to poly r(G) (Figs. 3C and 3D). Gel-retardation assay on the incubation mixture of

50 Flooding-Induced Glycine-Rich RNA-Binding Protein

A B

C

Fig. 1. cDNA clone for a flooding stress-induced GRP from kK=í~?~?ì?. (A) Nucleotide and deduced amino acid sequences of kídomN.The RRM motif is in a grey-box, and the RNP-1 and RNP-2 sequences are underlined (RNP-2 is placed at the N-terminus). The glycine-rich region is indicated by a dashed underline. Numbers on the left indicate the position of nucleotide, and numbers on the right indicate the position of amino acid. (B) Multiple alignment of amino acid sequences of NtGRP1 and other plant GRPs in plants. The RNP-1 and RNP-2 motifs are indicated in grey. Amino acids common to all the aligned sequences are indicated by asterisks. The aligned sequences belong to the GRPs from ^ê~?á??é?á?=íü~?á~?~ (Z14987), pá?~é?á?=~??~ (L31374), p??~?ì?=íì?éê??ì? (Z49197), wé~=?~ó? (AF496726), lêóò~=?~íá?~ (AJ302060), and d?ó?á?é=?~? (AF169205). (C) DNA blot hybridization analysis of tobacco genome for kídomN. Genomic DNA of tobacco was digested with b??RI or b??RV and subjected to DNA blot hybridization to the 32P-labeled kídomN cDNA. The nucleotide sequence reported in this article has been submitted to NCBI under the accession number EU569289.

H6NtGRP1 and luciferase mRNA showed shifting of mRNA band positions in case of the luciferase mRNA and H6NtGRP1 mixture but not from the luciferase mRNA and BSA mixture (Fig. 3E). Binding activity of NtGRP1 was again tested on M13mp8 phage ssDNA and pSPT18 dsDNA. Gel mobility shift assays showed that NtGRP1 bound both ssDNA and dsDNA, but with different affinities. With the increasing amount of H6NtGRP1, shifting of the DNA band was much more evident from the ssDNA than from the dsDNA. On the other hand, BSA did not affect the mobility of both forms of DNA (Fig. 3F). Binding affin-ity of NtGRP1 onto the ssDNA was not affected by salt concen-tration up to 800 mM, and in the case of the dsDNA, a slight increase in the binding was apparent as the salt concentration increased (Fig. 3G).

Effect of NtGRP1 on the coupled transcription/translation To test NtGRP1 activity on the expression of genes, H6NtGRP1 in different concentrations was added to the coupled á?=?áíê?transcription/translation system using the firefly luciferase gene as the reporter to monitor the concentration-dependent effect of NtGRP1 on gene expression. Protein blot analysis of the luciferase protein showed that addition of H6NtGRP1 to the cou-pled á?=?áíê? transcription/translation mixture lowered the amount of luciferase protein produced from the luciferase gene in the mixture in a concentration-dependent manner (Fig. 4A). Sup-pression activity of NtGRP1 on the expression of luciferase gene was again confirmed by quantifying the activity of luciferase in the reaction mixture. The luminescence of luciferase decreased with the increase in the amount of NtGRP1 added (Fig. 4B).

Oligomer DNA and RNA recover expression of the reporter gene that was suppressed by NtGRP1

We hypothesized that the suppression effect of NtGRP1 on the expression of luciferase gene is due to the binding of NtGRP1 to DNA and RNA that interferes with transcription and translation of the luciferase gene. However, other possible mechanisms, such as interaction of NtGRP1 with other proteins functioning in tran-scription and/or translation, are possible that can bring about the inhibition of transcription and/or translation. To further define the suppression activity of NtGRP1, we added small deoxyoligonu-cleotide to the coupled á?=?áíê? transcription/translation mixture. If addition of this deoxyoligonucleotide to the mixture can lower the suppression activity of NtGRP1 on the expression of luciferase gene in the coupled á?=?áíê? transcription/translation mixture, it is likely to be due to competition between the deoxyoligonucleotide and the luciferase DNA for binding to NtGRP1. When the de-oxyoligonucleotide was added to the coupled á?=?áíê?transcrip-tion/translation mixture with the luciferase gene and NtGRP1,

Mi-Ok Lee et al. 51

Fig. 2. Effects of ABA and various stresses on the level of kídomN transcript. Total RNA was isolated from tobacco plants that had been exposed to flooding, low temperature, drought, heat, salinity, and ABA. Each lane was loaded with 20 μg of total RNA. The num-ber above each lane indicates the number of hours that the plant had been treated for, except salinity where the number indicates molarity of NaCl.

luminescence by luciferase was recovered from the suppressed level in a concentration-dependent manner up to 200 μM of the deoxyoligonucleotide in the mixture with 100 μM NtGRP1. Above this concentration, the luminescence was again suppressed (Fig. 5A). The suppression activity of NtGRP1 by binding to the tran-script of luciferase was similarly evaluated. When an RNA oli-gomer instead of the deoxyoligonucleotide was used as a com-petitor, recovery from the suppressed level of luminescence by the luciferase gene in the coupled mixture was apparent for up to 200 μM of the RNA oligomer (Fig. 5B).

DISCUSSION

A cDNA clone for a glycine-rich RNA-binding protein (kídomN) was isolated from a cDNA library of flooding-stressed tobacco (Lee et al., 2007). Biological roles of GRPs in response to envi-ronmental stresses have been implicated based on the expres-sion analysis of GRPs in plants exposed to various biotic and abiotic stresses including low temperature, drought stress, and viral infection (Kwak et al., 2005; Palusa et al., 2007; Raab et al., 2006; Stephen et al., 2003). In this study, we showed that kídomN expression is strongly induced by flooding stress (Fig.

2). This is the first report of a GRP being strongly induced un-der a flooding stress condition and expands the role of GRP related to flooding stress.

The N-terminal RRM domain of GRPs is highly conserved but the C-terminal glycine-rich region shows substantial diver-sity (Lorkovic and Barta, 2002). NtGRP1, which is comprised of 157 amino acids, is one of the smallest among the GRPs. The size difference among the GRPs is mainly from the difference in the glycine-rich region, and NtGRP1 has a shorter glycine-rich region compared to other GRPs. NtGRP1 has a significant number of arginine residues in the glycine-rich region (Fig. 1B) that are probably responsible for the interaction with nucleic acids as shown in Fig. 3. The N-terminal RRM domain interacts with nucleic acids (Fusaro et al., 2007; Maris et al., 2005), and the C-terminal glycine-rich region is known to interact with other proteins and distinguish substrate nucleic acids (Mousavi and Hotta, 2005). Previously, GRPs from other plant species showed preferential affinity to poly r(U) and poly r(G) (Dunn et al., 1996; Kim et al., 2005; Ludevid et al., 1992; Nomata et al., 2004). On the other hand, NtGRP1 showed higher affinity to poly r(A) and poly r(G) than to poly r(U) and poly r(C). At pre-sent, no experimental evidence is available to link the structural difference observed in the glycine-rich regions of NtGRP1 and other reported GRPs: however, higher proportion of arginine residues in the region compared with other GRPs attracted our attention associated with the differences in substrate affinity. Genomic DNA blot analysis for kídomN suggests the pres-ence of a single copy of the gene in the tobacco genome (Fig. 1C). RNA blot analyses for kídomN showed strong induction of kídomN transcript under the flooding condition, and under other abiotic stress conditions, the induction was marginal (Fig.

2). Signal transduction pathways involved in abiotic stresses are well known to be crosslinked, and thus a gene whose ex-pression is induced under one abiotic stress condition is often induced by other abiotic stress conditions (Knight and Knight, 2001; Mahajan and Tuteja, 2005). However, the RNA blot analysis results shown in Fig. 2 demonstrate that kídomN is a directly flooding-stress-inducible GRP gene that is drastically induced under the flooding stress condition but not under other abiotic stress conditions. Signal transduction pathways induced under abiotic stress conditions are often described as ABA-dependent or ABA-independent (Knight and Knight, 2001; Ma-hajan and Tuteja, 2005). kídomN transcript level was slightly increased upon treatment with ABA (Fig. 2); this probably does not imply strong involvement of ABA related to NtGRP1 under flooding condition.

As mentioned earlier, NtGRP1 binds more preferentially to r(G) and r(A) than to r(U) and r(C) (Fig. 3B) that differentiates NtGRP1 from the previously reported binding affinity of GRPs to homoribonucleotide polymers (Dunn et al., 1996; Kim et al., 2005; Ludevid et al., 1992; Nomata et al., 2004). The histine tag attached at the N-terminus of NtGRP1 probably does not inter-fere with the binding activity of NtGRP1 to the nucleic acids at least at a high salt concentration such as 250 mM used in most buffers for the binding assays in this study. The truncated forms of NtGRP1 lost most of the binding activity (Figs. 3C and 3D). It probably indicates that NtGRP1 cannot accommodate signifi-cant deletion to carry out binding to nucleic acids. NtGRP1 binds not only to the homoribonucleotide polymers but also to mRNA (Fig. 3E); this proves its binding capacity to various types of RNAs probably in á?=?á??. The extent of NtGRP1 bind-ing to single stranded form of DNA is strong, while its binding to double stranded form of DNA is significantly weaker (Figs. 3F and 3G). This differential affinity of NtGRP1 between ssDNA and dsDNA probably indicates that NtGRP1 is able to bind DNA much more preferentially either in the replication or tran-scription processes.

If NtGRP1 binds to RNA and ssDNA, what would be the con-sequence?

To test the NtGRP1 function as a gene expression regulator, we used an á?=?áíê? gene expression system with luciferase as a quantifiable reporter. We applied different concentrations of NtGRP1 on each experiment and found a dramatic decrease in expression of the luciferase gene as the amount of NtGRP1 increased (Fig. 4). Competition experiments using oligomer DNA and RNA supported the notion that NtGRP1 can bind to

52 Flooding-Induced Glycine-Rich RNA-Binding Protein

A C F

D

G

E

B

Fig. 3. Nucleic acid-binding activities of NtGRP1. (A) H 6NtGRP1 overexpressed in b . ???á was purified, and separated by SDS-PAGE. C, bK=???á cellular proteins without H 6NtGRP1; I, H 6NtGRP1 highly expressed in bK=???á after arabinose addition; P, purified H 6NtGRP1. (B) North-Western blot analysis of NtGRP1. Purified H 6NtGRP1 protein was probed with 32

P-labeled ribohomopolymers. rA, rU, rG, and rC represent ribohomopolymers of A, U, G, and C, respectively. (C) Schematic structural representation of NtGRP1 and its truncated forms. Numerals rep-resent amino acid positions from the N-terminus. (D) Northwestern blot analysis for H 6NtGRP1, H 6NtGRP11-85, and H 6NtGRP1

47-156. 32

P-labeled ribohomopolymer of guanine was used for the hybridization probe. (E) Analysis of mRNA-binding activity of NtGRP1 by gel mobility shift assay. Luciferase mRNA was incubated with H 6NtGRP1 for 15 min on ice, and the mixture was subjected to agarose gel electrophoresis. ‘-’ stands for no addition of protein. Multiple bands in each lane are due to the combination of shorter and longer than expected transcripts of luciferase from the á?=?áíê? transcription. The band second from the bottom corresponds to the expected size of the luciferase transcript at about 1800 nucleotides (Promega). (F) Analysis of DNA-binding activity of NtGRP1 by gel mobility-shift assay. Purified H 6NtGR1 protein, up to 500 ng, was incubated with either ssDNA (M13mp8) or dsDNA (pSPT18) before agarose gel electrophoresis. (G) Analysis of NtGRP1 binding affinity to ssDNA and dsDNA. H 6NtGRP1 was mixed with either ssDNA or dsDNA of 150 ng at varying salt concentrations, i.e. up to 800 mM KCl, and incubated on ice for 15 min before agarose gel electrophoresis.

DNA and RNA, and thus can regulate gene expression (Fig. 5). The maximum level of recovery at 200 μM and then downshift-ing of the effect in the competition assay is likely due to the excessive amount of competitors that probably interferes with overall transcription and translation processes in the system (Hofweber et al., 2005). The negative effect in gene expression diverts NtGRP1 from the previously reported plant GRPs func-tion known as RNA chaperones, i.e., GRPs can prevent the formation of secondary structures in mRNAs, and thus promote translation of the transcript under a stress condition like low temperature. The possibility of GRPs as a positive regulator in gene expression under abiotic stresses has been suggested for ^ê~?á??é?á? atRZ1a and bK=???á CspA (Bae et al., 2000; Fusaro et al., 2007; Jiang et al., 1997; Kim et al., 2005; 2007; Their-inger et al., 1998). Although we cannot provide experimental evidence at present to explain this difference, the structural difference between the aforementioned GRPs that carry cold-shock domains and NtGRP1 will probably be where the func-tional difference resides. Here, we provided experimental evi-dences that support NtGRP1 function as a negative regulator on gene expression by binding to DNA or RNA probably to a large extent. When plants encounter stresses, the synthesis of bulk proteins is temporally reduced. For an example, in the roots of maize seedlings under flooding stress, there is a rapid and dramatic shift in gene expression patterns and activities including about 70% reduction in total protein synthesis (Saab and Sachs, 1996). Although most gene expression is repressed in response to flooding, an important subset of genes is upregulated. kídomN was isolated from a cDNA library of to-bacco at an early phase of flooding-stress (Lee et al., 2007) and showed highly increased expression under flooding. Linked

A

B

Fig. 4. Inhibitory activity of NtGRP1 on the expression of luciferase gene. H 6NtGRP1 (25-300 μM) was added to the á?=?áíê?=coupled transcription/translation system of pT7-luciferase, and incubated for 90 min at 30°C. (A) The reaction product was separated by SDS-PAGE and subjected to protein blot analyses with either anti-luciferase antibody or anti-NtGRP1 antibody. (B) The reaction product was again analyzed by measuring chemiluminescence from the activity of luciferase. Chemiluminescence is represented as the relative light unit (RLU). Mean and standard error of the mean from five measurements for each datum point are presented.

Mi-Ok Lee et al. 53

A

B

Fig. 5.Deoxyoligonucleotide and oligonucleotide release the sup-pression of luciferase expression by NtGRP1. f?=?áíê? translation of luciferase mRNA was carried out in the presence of H6NtGRP1 and oligonucleotides. DNA (A) and RNA (B) oligomer of different con-centrations (10-500 μM) were added to the reaction and incubated for 90 min at 30°C. Chemiluminescence from the reaction product was measured and presented as the relative light unit (RLU). Mean and standard error of the mean from five measurements for each datum point are presented.

to its binding activities to ssDNA and RNA and negative func-tion on gene expression á?=?áíê?, we are tempted to hypothesize that the flooding-inducible NtGRP1 may function as a negative modulator of gene expression in bulk under flooding stress that could be beneficial for the plants to cope with the abiotic stress. Analyses of NtGRP1 function á?=?á??including knockdown and overexpressing transgenic plants of kídomN would be the next approach to understanding the functional roles of NtGRP1 in gene regulation under stress condition. ACKNOWLEDGMENTS

This work was supported by a grant for the Priority Research Institute from the Korean Research Foundation (grant no. 2005-005-J16002) to CBH. KPK was partially supported by a Brain Korea 21 Research Fellowship from the Ministry of Edu-cation and Human Resources Development, Korea. REFERENCES

Agarwal, S., and Grover, A. (2005). Isolation and transcription profil-ing of low-O2 stress-associated cDNA clones from the flooding-stress-tolerant FR13A rice genotype. Ann. Bot. VS, 831-844. Alb, M.M., and Pages, M. (1998). Plant proteins containing the RNA-recognition motif. Trends Plant Sci. P, 15-21. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

Nucleic Acids Res. OR, 3389-3402.

Bae, W., Xia, B., Inouye, M., and Severinov, K. (2000). b??üéêá?üá~=???á CspA-family RNA chaperones are transcription antitermina-tors. Proc. Natl. Acad. Sci. USA VT, 7784-7789.

Bove, J., Kim, C.Y., Gibson, C.A., and Assmann, S.M. (2008).

Characterization of wound-responsive RNA-binding proteins

and their splice variants in ^ê~?á??é?á?. Plant Mol. Biol. ST, 71-

88.

Boyer, J. (1962). Should we regularly use city water coming from river? Rev. Prat. NO, 3559-3563.

Carpenter, C.D., Kreps, J.A., and Simon, A.E. (1994). Genes en-coding glycine-rich ^ê~?á??é?á?íü~?á~?~proteins with RNA-binding motifs are influenced by cold treatment and an endoge-nous circadian rhythm. Plant Physiol K NMQI 1015-1025.

Cho, E.K., Lee, Y.K., and Hong, C.B. (2005). A cyclophilin from dêá??áíü?á~=à~é??á?~ has thermoprotective activity and is affected by CsA. Mol. Cells OM, 142-150.

Condit, C.M., McLean, B.G., and Meagher, R.B. (1990). Characteri-zation of the expression of the petunia glycine-rich protein-1 gene product. Plant Physiol. VP, 596-602.

Dat, J.F., Capell, N., Folzer, H., Bourgeade, P., and Badot, P.M.

(2004). Sensing and signaling during plant flooding. Plant Physiol. Biochem. QO, 273-282.

Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren,

F.U., Grover, A., Ismond, K.P., Good, A.

G., and Peacock, W.J.

(2000). Molecular strategies for improving waterlogging toler-ance in plants. J. Exp. Bot. RN, 89-97.

Drew, M.C., He, C.J., and Morgan, P.W. (2000). Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. R, 123-127.

Dunn, M.A., Brown, K., Lightowlers, R., and Hughes, M.A. (1996). A low-temperature-responsive gene from barley encodes a protein with single-stranded nucleic acid-binding activity which is phos-phorylated á?=?áíê?. Plant Mol. Biol. PMI 947-959.

Fedoroff, N.V. (2002). RNA-binding proteins in plants: the tip of an iceberg? Curr. Opin. Plant Biol. RI 452-459.

Fukami-Kobayashi, K., Tomoda, S., and Go, M. (1993). Evolution-ary clustering and functional similarity of RNA-binding proteins.

FEBS Lett K PPRI=289-293.

Fusaro, A.F., Bocca, S.N., Ramos, R.L., Barroco, R.M., Magioli, C., Jorge, V.C., Coutinho, T.C., Rangel-Lima, C.M., De Rycke, R., Inze, D., et al. (2007). AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta OOR, 1339-1351.

Gendra, E., Moreno, A., Alba, M.M., and Pages, M. (2004). Interac-tion of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from wé~=?~ó?.

Plant J. PU, 875-886.

Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdome-nech, P., and Pages, M. (1988). A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature PPQI 262-264.

Hanano, S., Sugita, M., and Sugiura, M. (1996). Structure and ex-pression of the tobacco nuclear gene encoding RNA-binding protein RZ-1: the existence of an intron in the 3′-untranslated region. DNA Res K P, 65-71.

Higgins, C.F. (1991). Stability and degradation of mRNA. Curr. Opin.

Cell Biol K P, 1013-1018.

Hirose, T., Sugita, M., and Sugiura, M. (1993). cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alter-native splicing. Nucleic Acids Res. ONI 3981-3987. Horvath, D.P., and Olson, P.A. (1998). Cloning and characterization of cold-regulated glycine-rich RNA-binding protein genes from leafy spurge (bìéü?ê?á~=é?ì?~ L.) and comparison to heterolo-gous genomic clones. Plant Mol. Biol. PU, 531-538.

Jiang, W., Hou, Y., and Inouye, M. (1997). CspA, the major cold-shock protein of b??üéêá?üá~=???á, is an RNA chaperone. J. Biol.

Chem K OTO, 196-202.

Karlson, D., Nakaminami, K., Toyomasu, T., and Imai, R. (2002). A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J. Biol.

Chem K OTT, 35248-35256.

Kenan, D.J., Query, C.C., and Keene, J.D. (1991). RNA recogni-tion: towards identifying determinants of specificity. Trends Bio-chem. Sci. NS, 214-220.

Kim, Y.O., Kim, J.S., and Kang, H. (2005). Cold-inducible zinc fin-ger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in ^ê~?á??é?á?=íü~?á~?~.

Plant J. QO, 890-900.

Kim, Y.O., Pan, S., Jung, C.H., and Kang, H. (2007). A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of

54 Flooding-Induced Glycine-Rich RNA-Binding Protein

^ê~?á??é?á?=íü~?á~?~under salt or drought stress conditions.

Plant Cell Physiol. QU, 1170-1181.

Klok, E.J., Wilson, I.W., Wilson, D., Chapman, S.C., Ewing, R.M., Somerville, S.C., Peacock, W.J., Dolferus, R., and Dennis, E.S.

(2002). Expression profile analysis of the low-oxygen response in ^ê~?á??é?á? root cultures. Plant Cell NQ, 2481-2494. Knight, H., and Knight, M.R. (2001). Abiotic stress signaling path-ways: specificity and cross-talk. Trends Plant Sci K=S, 262-267. Kwak, K.J., Kim, Y.O., and Kang, H. (2005). Characterization of transgenic ^ê~?á??é?á?plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. RS, 3007-3016.

Lee, M.O., Hwang, J.H., Lee, D.H., and Hong, C.B. (2007). Gene expression profile for ká??íá~?~í~?~?ì?in the early phase of flooding stress. J. Plant Biol. RM, 496-503.

Lee, H., Cho, K.H., Kim, I.-C., Yim, J.H., Lee, H.K., and Lee, Y.K.

(2008). Expressed sequence tag analysis of antarctic hairgrass aé??ü~?é?á~=~?í~ê?íá?~from King Geroge Island, Antarctica.

Mol. Cells ORI 258-264.

Lorkovic, Z.J., and Barta, A. (2002). Genome analysis: RNA recog-nition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant ^ê~?á??é?á?=íü~?á~?~. Nucleic Acids Res.=PM, 623-635.

Ludevid, D., Hofte, H., Himelblau, E., and Chrispeels, M.J. (1992).

The expression pattern of the tonoplast intrinsic protein gamma-TIP in ^ê~?á??é?á?=íü~?á~?~ is correlated with cell enlargement.

Plant Physiol. NMM, 1633-1639.

Mahajan, S., and Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. QQQ, 139-158. Maris, C., Dominguez, C., and Allain, F.H. (2005). The RNA recog- nition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. OTO, 2118-2131. Masaki, S., Yamada, T., Hirasawa, T., Todaka, D., and Kanekatsu, M. (2008). Proteomic analysis of RNA-binding proteins in dry seeds of rice after fractionation by ssDNA affinity column chro-matography. Biotechnol.=Lett. PM, 955-960.

Moriguchi, K., Sugita, M., and Sugiura, M. (1997). Structure and subcellular localization of a small RNA-binding protein from to-bacco. Plant J. NO, 215-221.

Mousavi, A., and Hotta, Y. (2005). Glycine-rich proteins: a class of novel proteins. Appl. Biochem. Biotechnol. NOM, 169-174. Nakaminami, K., Karlson, D.T., and Imai, R. (2006). Functional conservation of cold shock domains in bacteria and higher plants. Proc. Natl. Acad. Sci. USA NMP, 10122-10127. Nomata, T., Kabeya, Y., and Sato, N. (2004). Cloning and charac-

terization of glycine-rich RNA-binding protein cDNAs in the moss müó????áíêé??~=é~íé??. Plant Cell Physiol K QR, 48-56. Palusa, S.G., Ali, G.S., and Reddy, A.S. (2007). Alternative splicing of pre-mRNAs of ^ê~?á??é?á?=serine/arginine-rich proteins: regulation by hormones and stresses. Plant J K QV, 1091-1107. Phadtare, S., and Inouye, M. (1999). Sequence-selective interac-tions with RNA by CspB, CspC and CspE, members of the CspA family of b??üéêá?üá~=???á. Mol. Microbiol K PP, 1004-1014. Query, C.C., Bentley, R.C., and Keene, J.D. (1989). A common RNA recognition motif identified within a defined U1 RNA bind-ing domain of the 70K U1 snRNP protein. Cell RT, 89-101. Raab, S., Toth, Z., de Groot, C., Stamminger, T., and Hoth, S.

(2006). ABA-responsive RNA-binding proteins are involved in chloroplast and stromule function in ^ê~?á??é?á?seedlings.

Planta OOQ, 900-914.

Rochaix, J.D. (2001). Posttranscriptional control of chloroplast gene expression. From RNA to photosynthetic complex. Plant Physiol K NOR, 142-144.

Saab, I.N., and Sachs, M.M. (1996). A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethyl-ene and associated with aerenchyma. Plant Physiol K NNO, 385-391.

Sachetto-Martins, G., Franco, L.O., and de Oliveira, D.E. (2000).

Plant glycine-rich proteins: a family or just proteins with a com-mon motif? Biochim. Biophys. Acta NQVO, 1-14. Sambrook, J., Fritsch E.F., and Maniatis, T. (1989). Molecular Clon-ing: A Laboratory Manual, 2nd ed. (New York: Cold Spring Har-bor Laboratory).

Shinozuka, H., Hisano, H., Yoneyama, S., Shimamoto, Y., Jones,

E.S., Forster, J.W., Yamada, T., and Kanazawa, A. (2006).

Gene expression and genetic mapping analyses of a perennial ryegrass glycine-rich RNA-binding protein gene suggest a role in cold adaptation. Mol. Genet. Genomics=OTR, 399-408. Simpson, G.G., and Filipowicz, W. (1996). Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol. Biol. PO, 1-41.

Stephen, J.R., Dent, K.C., and Finch-Savage, W.E. (2003). A cDNA encoding a cold-induced glycine-rich RNA binding protein from mêì?ì?=~?áì? expressed in embryonic axes. Gene POM,177-183. Thieringer, H.A., Jones, P.G., and Inouye, M. (1998). Cold shock and adaptation. Bioessays OM, 49-57.

van Nocker, S., and Vierstra, R.D. (1993). Two cDNAs from ^ê~?áJ ??é?á?=íü~?á~?~ encode putative RNA binding proteins contain-ing glycine-rich domains. Plant Mol. Biol. ON, 695-699.

无线传感器网络各类路由协议仿真

实 验 报 告 课程无线传感网络各类路由协议仿真 1.实验目的 网络数据传输离不开路由协议,路由协议是其组网的基础,路由协议是无线

传感器网络研究的重点之一,其主要的设计目标是降低节点能量消耗,延长网络的生命周期。本次实验将仿真各类无线传感器网络路由协议。 2.实验要求 争取考虑全面,考虑到各因素对各类协议的影响,以提高无线传感网络的性能。 3.设计思想 (1)Flooding 泛洪是一种传统的路由技术,不要求维护网络的拓扑结构,并进行路由计算, 接收到消息的节点以广播形式转发分组。对于自组织的传感器网络,泛洪路由是 一种较直接的实现方法,但消息的“内爆”(implosion)和“重叠”(overlap)是其固有的 缺陷。为了克服这些缺陷,S.hedetniemi等人提出了Gossiping策略,节点随机选 取一个相邻节点转发它接收到的分组,而不是采用广播形式。这种方法避免了消 息的“内爆”现象,但有可能增加端到端的传输延时。 Flooding路由协议中的内爆和重叠问题 (2)SPIN (sensor protocol for information via negotiation) SPIN是以数据为中心的自适应路由协议,通过协商机制来解决泛洪算法中 的“内爆”和“重叠”问题。传感器节点仅广播采集数据的描述信息,当有相应的请 求时,才有目的地发送数据信息。SPIN协议中有3种类型的消息,即ADV,REQ 和DATA。 ADV—用于新数据广播。当一个节点有数据可共享时,它以广播方式向外发送

DATA数据包中的元数据。 REQ—用于请求发送数据。当一个节点希望接收DATA数据包时,发送REQ数据包。 DATA—包含附上元数据头(meta一header)的实际数据包。 SPIN协议有4种不同的形式: ? SPIN-PP:采用点到点的通信模式,并假定两节点间的通信不受其他节点的干扰,分组不会丢失,功率没有任何限制。要发送数据的节点通过ADV向它的相邻节点广播消息,感兴趣的节点通过REQ发送请求,数据源向请求者发送数据。接收到数据的节点再向它的相邻节点广播ADV消息,如此重复,使所有节点都有机会接收到任何数据。 ? SPIN-EC:在SPIN-PP的基础上考虑了节点的功耗,只有能够顺利完成所有任务且能量不低于设定阈值的节点才可参与数据交换。 ? SPIN-BC:设计了广播信道,使所有在有效半径内的节点可以同时完成数据交换。为了防止产生重复的REQ请求,节点在听到ADV消息以后,设定一个随机定时器来控制REQ请求的发送,其他节点听到该请求,主动放弃请求权利。? SPIN-RL:它是对SPIN-BC的完善,主要考虑如何恢复无线链路引入的分组差错与丢失。记录ADV消息的相关状态,如果在确定时间间隔内接收不到请求数据,则发送重传请求,重传请求的次数有一定的限制。图3.2表明了SPIN协议的路由建立与数据传送。 SPIN协议的路由建立与数据传送 基于数据描述的协商机制和能量自适应机制的SP创协议能够很好地解决传统的Flooding协议所带来的信息爆炸、信息重复和资源浪费等问题。此外,由于协议中每个节点只需知道其单跳邻居节点的信息,拓扑改变呈现本地化特征。SP 州协议的缺点是数据广告机制不能保证数据的可靠传递,如果对数据感兴趣的节点远离源节点或者在源节点和目的节点中间的节点对数据不感兴趣,那么数据就不可能被传递到目的地。因此,对于入侵发现等需要在定期间隔内可靠传递数据

仲裁协议需要包括什么内容

仲裁协议需要包括什么内容 仲裁协议,是指双方当事人在自愿、协商、平等互利的基础之上将他们之间已经发生或者可能发生的争议提交仲裁解决的书面文件,是申请仲裁的必备材料。一份完整、有效的仲裁协议必须具备法定的内容。下面是小编整理的仲裁协议需要包括的内容,仅供参考。 仲裁协议应当包括下列内容 请求仲裁的意思表达 请求仲裁的意思表达是仲裁协议的首要内容。 当事人在表达请求仲裁的意思表示需要注意四个问题: (1)仲裁协议中当事人请求仲裁的意思表达要明确。 请求仲裁的意思表示不明确的仲裁协议无法判断当事人的真实意思,仲裁机构也无法受理当事人的仲裁申请。 申请仲裁的意思表示明确,最主要是要求通过该意思表示,可以得出当事人排除司法管辖而选择仲裁解决争议的结论。 对这个要求,英国早在1856斯科特诉艾费里案中就确立了这项判例规则,也就是这个案件的判词所说的:仲裁协议中必须包含有当事人不寻求通过诉讼解决纠纷的意图。 那么根据这个要求,人们平常所看得到的一些约定,比如约定因本合同引起的

争议由双方协商解决,协商不成的,提交某仲裁机构仲裁或者向法院起诉等,这样一些约定就是请求仲裁的意思表示不明确的约定。 (2)请求仲裁的意思表达必须是双方当事人共同的意思表示,而不是一方当事人的意思表示。 不能证明是双方当事人的意思表示的仲裁协议是无效的’。 (3)请求仲裁的意思表达必须是双方当事人的真实意思表示,即不存在当事人被胁迫、欺诈等而订立仲裁协议的情况,否则仲裁协议无效。 (4)请求仲裁的意思表达必须是双方当事人自己的意思表示,而不是任何其他人的意思表示。 如上级主管部门不能代替当事人订立仲裁协议。 仲裁事项 仲裁事项即当事人提交仲裁的具体争议事项。 它解决的是仲裁什么的问题。 在仲裁实践中,当事人只有把订立于仲裁协议中的争议事项提交仲裁,仲裁机构才能受理。 同时,仲裁事项也是仲裁庭审理和裁决纠纷的范围。 即仲裁庭只能在仲裁协议确定的仲裁事项的范围内进行仲裁,超出这一范围进行仲裁,所作出的仲裁裁决,经一方当事人申请,法院可以不予执行或者撤销仲

实验7 OSPF路由协议配置 实验报告

浙江万里学院实验报告 课程名称:数据通信与计算机网络及实践 实验名称:OSPF路由协议配置 专业班级:姓名:小组学号:2012014048实验日期:6.6

再测试。要求写出两台路由器上的ospf路由配置命令。

[RTC-rip-1]import ospf [RTC-rip-1]quit [RTC]ospf [RTC-ospf-1]import rip [RTC-ospf-1]quit

结合第五步得到的路由表分析出现表中结果的原因: RouteB 通过RIP学习到C和D 的路由情况,通过OSPF学习到A 的路由信息 实验个人总结 班级通信123班本人学号后三位__048__ 本人姓名_ 徐波_ 日期2014.6.06 本次实验是我们的最后一次实验,再次之前我们已经做了很多的有关于华为的实验,从一开始的一头雾水到现在的有一些思路,不管碰到什么问题,都能够利用自己所学的知识去解决或者有一些办法。这些华为实验都让我受益匪浅。 实验个人总结 班级通信123班本人学号后三位__046__ 本人姓名_ 金振宁_ 日期2014.6.06 这两次实验都可以利用软件在寝室或者去其他的地方去做,并不拘泥于实验室,好好的利用华为的模拟机软件对我们来说都是非常有用的。 实验个人总结 班级通信123班本人学号后三位__044_ 本人姓名_ 陈哲日期2014.6.06

理解OSPF路由协议,OSPF协议具有如下特点: 适应范围:OSPF 支持各种规模的网络,最多可支持几百台路由器。 快速收敛:如果网络的拓扑结构发生变化,OSPF 立即发送更新报文,使这一变化在自治系统中同步。 无自环:由于OSPF 通过收集到的链路状态用最短路径树算法计算路由,故从算法本身保证了不会生成自环路由。 实验个人总结 班级通信123班本人学号后三位__050 本人姓名_ 赵权日期2014.6.06 通过本次实验学会了基本的在路由器上配置OSPF路由协议,组建一个简单的路由网络。想必以后的生活中有可能会用到。

仲裁协议有哪些主要内容

仲裁协议有哪些主要内容 仲裁协议的形式和作用有哪些?怎样才算是符合法律效力的仲裁协议呢?又有哪些要求和格式?小编为大家收集整理了关于仲裁协议的形式和作用的相关内容,一起来看看吧! 仲裁协议的形式和作用: (一)仲裁协议的形式 仲裁协议有两种形式:一种是在争议发生之前订立的,它通常作为合同中的一项仲裁条款(Arbitration Clause)出现;另一种是在争议发生之后订立的,它是把已经发生的争议提交仲裁的协议(Submission)。 这两种形式的仲裁协议,其法律效力是相同的。 (二)仲裁协议的作用 1.约束双方当事人只能以仲裁方式解决争议,不得向法院起诉。 2.排除法院对有关案件的管辖权,如果一方违背仲裁协议,自行向

法院起诉,另一方可根据仲裁协议要求法院不予受理,并将争议案件退交仲裁庭裁断。 3.仲裁机构取得对争议案件的管辖权。 上述三项作用的中心是第二条,即排除法院对争议案件的管辖权。 因此,双方当事人不愿将争议提交法院审理时,就应在争议发生前在合同中规定出仲裁条款,以免将来发生争议后,由于达不成仲裁协议而不得不诉诸法院。 根据中国法律,有效的仲裁协议必须载有请求仲裁的意思表示、选定的仲裁委员会和约定仲裁事项(该仲裁翦项依法应具有可仲裁性);必须是书面的;当事人具有签订仲裁协议的行为能力;形式和内容合法。 否则,依中国法律,该仲裁协议无效。 仲裁协议书范文 范文[1]

申请人:XXX,男,汉族,19XXX年6月7日出生,住XXX省XXX 县XXX镇XXX村XXX号,系死者XXX之子。 被申请人:XXX公司。 法定代表人:XXX,职务:经理。 申请人与被申请人经友好协商,就申请人申请确认XXX与被申请人劳动关系一案,就相关赔偿自愿达成如下协议: 一、申请人亲属XXX与被申请人存在劳动关系; 二、申请人与被申请人认为XXX于20xx年7月3日在XXX省XXX 市XXX路XXX镇XXX高速入口辅道发生交通事故死亡是工伤; 三、被申请人向申请人一次性支付人民币75000元(大写柒万伍仟元整),作为本案工伤赔偿金等一切款项。 此外申请人不再要求被申请人支付任何款项或承担任何责任,包括劳动关系存续期间的任何其他责任。 申请人保证XXX其他亲属同意该协议书,否则由XXX承担责任。

(合同范本)路由协议与配置过程

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 (合同范本)路由协议与配置过程 甲方:___________________ 乙方:___________________ 日期:___________________

路由选择协议是路由器之间进行信息交流的语言,通过信息的交流建立网络的完整拓扑 结构,从而选择最优路径,并将该路径记录到路由表中。一旦路由表建立,路由器便可以通 过其输入接口接收数据包,确定其目的地址,然后根据路由表中的信息,将该数据包转送到相应的输出接口。 8.1 IP路由 。动态路由 由路由器通过运行路由协议而生成的到达目标网络的路径。 。静态路由 如果到达目标网络只有一条路径或我们只希望发送的数据包以同一路径传输时,就直接设置路由器的相应接口来指定一条到达目的地址的特定路径。这就是静态路由。静态路由的计量值为0或1,计量值越小则可靠性越高。可以通过提高计量值的方法将静态路由作为备份路由或浮动静态路由。 。缺省路由 当数据包到达路由器时,路由器根据数据包的目标地址到路由表中查找最佳路由。如果没有该路由信息,则使用缺省路由转发,当无缺省路由时则丢弃该数据包。所以,缺省路由就是用户设置的当不知道数据包该往何处发送时,一律发送到一个特定接口的路由。 8. 1. 1实验静态路由和缺省路由

k WXI UK), 2Q2207. 129. 1/27 .1, ULCI 100, 202.307. 12E.2/27 实验配置如图: cisco2610配置如下: Current configuration: ! version 11.3 hostname 2610 ! enable password cisco ! interface Ethernet。/。 ip address 202.207.126.253 255.255.255.224 ! interface Serial0/0 ip address 202.207.128.2 255.255.255.0 encapsulation frame-relay no ip mroute-cache frame-relay Imi-type ansi ! ip classless !

仲裁协议的形式和作用

仲裁协议的形式和作用 (一)仲裁协议的形式 仲裁协议有两种形式:一种是在争议发生之前订立的,它通常作为合同中的一项仲裁条款(Arbitration Clause)出现;另一种是在争议发生之后订立的,它是把已经发生的争议提交仲裁的协议(Submission)。这两种形式的仲裁协议,其法律效力是相同的。 (二)仲裁协议的作用 1.约束双方当事人只能以仲裁方式解决争议,不得向法院起诉。 2.排除法院对有关案件的管辖权,如果一方违背仲裁协议,自行向法院起诉,另一方可根据仲裁协议要求法院不予受理,并将争议案件退交仲裁庭裁断。 3.仲裁机构取得对争议案件的管辖权。 上述三项作用的中心是第二条,即排除法院对争议案件的管辖权。因此,双方当事人不愿将争议提交法院审理时,就应在争议发生前在合同中规定出仲裁条款,以免将来发生争议后,由于达不成仲裁协议而不得不诉诸法院。 根据中国法律,有效的仲裁协议必须载有请求仲裁的意思表示、选定的仲裁委员会和约定仲裁事项(该仲裁翦项依法应具有可仲裁性);必须是书面的;当事人具有签订仲裁协议的行为能力;形式和内容合法。否则,依中国法律,该仲裁协议无效。

以下内容可在阅读后自行删除。 声明:1.本合同文本及具体条款,不是标准及最终法律文本,仅供参考。 2.本文本不能作为您的决定或行为的支持依据,使用前应根据实际情况对具体内容进行更改。如不能确定,建议咨询相关律师。 3.文书中需填写的内容应在电脑上填写完毕后再打印出来,除签名外不应手填。 法律知识之无效合同: 无效合同是指合同虽然成立,但因其违反法律、行政法规、社会公共利益而无效。可见,无效合同是已经成立的、欠缺生效要件的、不具有法律约束力的合同,不受国家法律保护。无效合同自始无效,但部分条款无效,不影响其余部分的效力。 确认合同无效的条件: 1、订立合同内容不合法,表现为:违反法律、行政法规的强制性规定的合同,无效;违反社会公共利益的合同,无效;恶意串通,损害国家、集体或三人利益的合同,无效;以合法形掩盖非法目的合同,无效;无处分权的人处分他人财产的合同,无效。但有两例外:事后经权利人追认的,有效;事后取得处分权的,有效。 2、意思表示不真实,即意思表示有瑕疵,如:一方以欺诈、胁迫的手段订立合同,损害国家利益的,无效。 3、订立合同主体不合格,表现为:无民事行为能力人或者限制民事行为能力人订立合同且法定代理人不予追认的,该合同无效,但有例外:纯获利益的合同和与其年龄、智力、精神健康状况相适应而订立的合同,不需追认,合同有效;代理人不合格且相对人有过失而成立的合同,该合同无效;法人和其他组织的法定代表人、负责人超越权限订立的合同,且相对人知道或应当知道其超越权限的,该合同无效。

计算机网络实验六 rip路由协议配置 )

太原理工大学现代科技学院计算机通信网络课程实验报告专业班级 学号 姓名 指导教师

实验名称同组人 专业班级学号姓名成绩 一、实验目的 《计算机通信网络》实验指导书 掌握RIP 动态路由协议的配置、诊断方法。 二、实验任务 1、配置RIP 动态路由协议,使得3台Cisco 路由器模拟远程网络互联。 2、对运行中的RIP 动态路由协议进行诊断。 三、实验设备 Cisco 路由器3台,带有网卡的工作站PC2台,控制台电缆一条,交叉线、V35线若干。 四、实验环境 五、实验步骤 1、运行CiscoPacketTracer 软件,在逻辑工作区放入3台路由器、两台工作站PC ,分别点击各路由器,打开其配置窗口,关闭电源,分别加入一个2口同异步串口网络模块(WIC-2T ),重新打开电源。然后,用交叉线(CopperCross-Over )按图6-1(其中静态路由区域)所示分别连接路由器和各工作站PC ,用DTE 或DCE 串口线缆连接各路由器(router0router1),注意按图中所示接口连接(S0/0为DCE ,S0/1为DTE )。 2、分别点击工作站PC1、PC3,进入其配置窗口,选择桌面(Desktop )项,选择运行IP 设置(IPConfiguration ),设置IP 地址、子网掩码和网关分别为 PC1gw: PC3gw: 3、点击路由器R1,进入其配置窗口,点击命令行窗口(CLI )项,输入命令对路由器配置如下: 点击路由器R2,进入其配置窗口,点击命令行窗口(CLI )项,输入命令对路由器配置如下: 同理对R3进行相应的配置: 4、测试工作站PC 间的连通性。 从PC1到PC3:PC>ping (不通) 5、设置RIP 动态路由 接前述实验,继续对路由器R1配置如下: 同理,在路由器R2、R3上做相应的配置: 6、在路由器R1上输入showiproute 命令观察路由信息,可以看到增加的RIP 路由信息。 … … … … … … … … … … … … … … 装 … … … … … … … … … … … …… … … 订 … …… … … …… … … … …… … … … … 线 … … …… … …… … …… … … … … …

路由选择协议和配置的详细步骤

路由选择协议和配置的详细步骤 静态路由的配置: router(config)ip route +非直连网段+子网掩码+下一跳地址 router(config)#exit 动态路由按照是否在一个自治系统内使用又可以分为内部网关协议(igp)和外部网关协议(bgp)常见的内部网关协议有rip、ospf等,外部网关协议有bgp、bgp-4,这里主要说下内部网关路由选择协议:rip(routing information protocol)是一种距离矢量选择路由协议,由于它的简单、可靠、便于配置,所以使用比较广泛,但是由于它最多支持的跳数为15,16为不可达所以只适合小型的网络,而且它每隔30s一次的路由信息广播也是造成网络广播风暴的重要原因之一。 rip的配置: router(config)#router rip router(config-router)#network network-number network_number为路由器的直连网段 由于rip的局限性,一种新的路由选择协议应运而生:igrp,igrp(interoor gateway routing protocol)igrp由于突破了15跳的限制,成为了当时大型cisco网络的首选协议 rip与igrp 的工作机制,均是从所有配置接口上定期发出路由更新。但是,

rip是以跳数为度量单位;igrp以多种因素来建立路由最佳路径;带宽(bandwidth),延迟(delay),可靠性(reliability),负载(load)等因素但是它的缺点就是不支持vlsm和不连续的子网。 igrp的配置: router(config)#router igrp 100(100为自治系统号) router(config-router)#network network-number router(config-router)#exit 注意: 1)编号的有效范围为1-65535,编号用确定一组区域编号相同的路由器和接口; 2)不同的编号的路由器不参与路由更新。 eigrp(enhanced interoor gateway routing protocol)eigrp 是最典型的平衡混合路由选择协议,它融合了距离矢量和链路状态两种路由选择协议的优点,使用散射更新算法,可实现很高的路由性能。eigrp特点是采用不定期更新,即只在路由器改变计量标准或拓扑出现变化时发送部分更新路由。支持可变长子网掩码vslm,具有相同的自治系统号的eigrp和igrp之间,可无缝交换路由信息。eigrp的配置和igrp的大致相同: router(config)#router eigrp(100为自治系统号) router(config-router)#network network-number router(config-router)#exit ospf: ospf是一种链路状态路由选择协议所谓链路状态是指路由器接口的状态,如up,down,ip及网络类型等链路状态信息通过链

路由与路由协议详情详情配置

实用标准文案路由器与路由协议配置实验三 一、实验目的理解和掌握路由器的基本配置,以及设置路由器的静态路由、缺省路由和动态路由等。1. 查看路由器的工作状态、接口状态与配置。2. 掌握静态路由、缺省路由的配置与测试。3. )的工作原理。4.了解路由器动态路由协议(RIP RIP5.掌握的配置与测试。 二、实验理论 三、实验条件网络交换与路由操作系统、Boson NetSim 1.软件环境:windows 2000 professional/xp 模拟器。模拟器。2.硬件环境:计算机、路由器/ E0:192.168.1.1/24E0:11.0.0.1/24E0:11.0.0.2/24S0:10.0.0.1/24 192.168.1.0/24E0:12.0.0.2/24S0:10.0.0.2/24LANE1:12.0.0.1/24四、实验内容 实验内容1:路由器的IOS软件使用 精彩文档. 实用标准文案 实验内容2:为路由器添加静态路由和默认路由 实验内容3:测试路由器接口、静态路由和缺省路由 五、实验步骤 实验内容1:路由器的IOS软件使用 (1)使用计算机串行口连接到路由器的Console端口,通过Windows2000/Professional/XP操作系统的“超级终端”软件连接到路由器。或者通过Telnt的方式远程登录到路由器。 (2)设置路由器R3,熟悉路由器的基本操作命令。

1. 初始化配置(为路由器命名、关闭域名解析、日志同步) router(config)#host r3 R3(config)#no ip domain-lookup R3(config)#line con 0 R3(config-line)#logging synchronous 日志自动同步(自动换行) R3(config-line)#exec-time 0 0 会话永不超时(默认10分钟) 2 设置密码(console口、VTY接口和特权) r1(config)#line con 0 r1(config-line)#password ccna console口配置密码 r1(config-line)#login r1(config)#line vty 0 4 r1(config-line)#pass ccnp 精彩文档. 实用标准文案 r1(config-line)#login r1(config)#enable password cisco r1,r2,r4的配置( 略) 密码配置结束后待实验设备调试通后可以通过任何一个设备telnet其它设备。为了配置方便可以放最后做。 2. 按照网络拓扑图所示的IP地址规划,配置路由器R3的接口。

实验基于Opnet的路由协议仿真

实验报告册 课程名称: TCP/IP协议分析 实验名称:实验3:基于Opnet的路由协议仿真学号: 120708112 姓名:王鹏 学院名称:新媒体学院 班级: 12网络工程1 任课教师:张宝军 学期: 13-14-2学期 报告分数:

实验3:基于Opnet的路由协议仿真 1实验目的和要求 1)熟悉Opnet网络仿真软件的使用; 2)RIP路由协议仿真与分析; 3)OSPF路由协议仿真与分析; 4)BGP路由协议仿真与分析。 2实验设备及材料 操作系统:Windows 2003/XP主机 网络模拟器:OPNET 3实验内容 3.1 OPNET实例 试想一下,你需要为公司内部互联网的扩展制定一个合理的方案。目前,公司在办公楼的第一层有一个星型拓扑的网络,现在要在第二层增加另一个星型拓扑网络。这时一个典型的“what-if”问题,所要解决的是确保增加的网络不会导致整个网络的连通失败,如图2所示:

图2. 计划中扩展后的网络模型 3.1.1步骤1:创建新的项目和场景 1) 打开Modeler。 2) 从File 菜单中选择New...。 3) 从弹出的下拉菜单中选择Project 并单击OK。 图3. 新建项目和场景 4) 单击OK 按钮, 出现开始向导,创建新的背景拓扑图,如图4所示: 图4. 开始向导:创建新的背景拓扑图 5) 单击Next,选定网络的范围,如图5所示:

图5. 开始向导:选择网络范围 6) 单击Next,指定网络的大小,如图6所示: 图6. 开始向导:指定网络大小 7) 单击Next,选择OPNET 自带的对象模型家族种类,如图7所示: 图7. 开始向导:选择对象模型家族种类 8) 单击Next,再次确认环境变量,如图8所示: 图8. 设置完毕的开始向导 9) 单击完成,这时出现大小和规格如同所指定的工作空间,同时弹出一个对象模板(包含刚刚选定的对象模型家族的所有模型),如图9所示:通过对象模板中的节点和链路模型来创建网络模型。 节点模型:代表实际的设备。 链路模型:代表连接设备的物理媒质,可以是电缆或者光缆。 可以通过对象模板中的图标直观地看出节点模型和链路模型。可以使用以下三种方法之一创建网络拓扑: 导入拓扑图。

仲裁协议的作用是

仲裁协议的作用是 仲裁协议的作用是:仲裁协议表明双方当事人愿意将他们的争议提交仲裁机构裁决,任何一方都不得向法院起诉。仲裁协议也是仲裁机构受理案件的依据,任何仲裁机构都无权受理无书面仲裁协议的案件。 仲裁协议还排除了法院对有关案件的管辖权,各国法律一般都规定法院不受理双方订有仲裁协议的争议案件,包括不受理当事人对仲裁裁决的上诉。 1.它是双方当事人在发生争议时,以仲裁方式解决争议的依据,双方须受仲裁协议的约束。 2.它是仲裁机构和仲裁员取得对有关争议案件的管辖权的依据。 3.有仲裁协议,可以排队法院对有关争议案件的官辖权的任何一方不应再向法院起诉。 仲裁协议书【1】 甲方:_______省_______贸易公司地址:_______省___市___路___号 法定代表人:王______职务:经理 乙方:_______省___县___路___号 法定代表人:于______职务:经理

当事人双方愿意提请___市仲裁委员会按照《中华人民共和国仲裁法》规定,仲裁如下争议:…… 双方于______年______月签订购销_________合同。 合同履行中,因买方对卖方提供的_________的质量等级提出异议,导致双方发生争议,经协商解决不成。 双方一致同意选择___市仲裁委员会依据《中华人民共和国仲裁法》及该会仲裁规则,对双方合同中所涉_________的质量等级和双方如何继续履行合同作出裁断。 附: 仲裁协议书,是当事人双方在争议发生前或争议发生后,达成的将争议提交仲裁委员会仲裁的书面协议。 仲裁协议书是仲裁机构办理案件的法律依据。 仲裁协议书的结构一般由标题、正文和结尾三部分组成: ①标题。 它是全文的眉目,语言要高度概括。 一般写法有三种: 第一种写法,争议者加文种。 第二种写法,内容加文种。 第三种写法,只写文种。 如“仲裁协议”。

如何在路由器上配置几种路由协议

第2章路由协议设置 在这一章的学习中,我们将学习到如何在路由器上配置以下这几种路由协议: ●静态路由本节简述了路由器的工作原理,并讨论了静态路由的配置。 ●距离向量路由协议——RIP与IGRP本节将详细讨论RIP与IGRP的配置细节。 ●IPX RIP的配置 2.1 静态路由 2.1.1 实验目的 通过配置静态路由,用户可以人为地指定对某一网络访问时所要经过的路径,在网络结构比较简单,且一般到达某一网络所经过的路径唯一的情况下采用静态路由。本次实验将告诉大家如何手工向路由器中添加路由表。 2.1.2 实验原理 当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP 分组送到网络上,对方就能收到。而要送给不同IP子网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(default gateway)”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。 路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。这样,通过路由器把知道如何传送的IP 分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级级地传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。 目前TCP/IP网络,全部是通过路由器互连起来的,Internet就是成千上万个IP子网通过路由器互连起来的国际性网络。这种网络称为以路由器为基础的网络(router based network),形成了以路由器为节点的“网间网”。在“网间网”中,路由器不仅负责对IP 分组的转发,还要负责与别的路由器进行联络,共同确定“网间网”的路由选择和维护路由表。 路由动作包括两项基本内容:寻径和转发。寻径即判定到达目的地的最佳路径,由路由选择算法来实现。由于涉及到不同的路由选择协议和路由选择算法,要相对复杂一些。为了判定最佳路径,路由选择算法必须启动并维护包含路由信息的路由表,其中路由信息依赖于所用的路由选择算法而不尽相同。路由选择算法将收集到的不同信息填入路由表中,根据路由表可将目的网络与下一站(nexthop)的关系告诉路由器。路由器间互通信息进行路由更新,更新维护路由表使之正确反映网络的拓扑变化,并由路由器根据量度来决定最佳路径。

无线Mesh网路由协议仿真及性能分析

2010年第10期,第43卷 通 信 技 术 Vol.43,No.10,2010 总第226期 Communications Technology No.226,Totally 无线Mesh网路由协议仿真及性能分析 莫金旺①, 蒋文芳②, 赵 利② (①桂林电子科技大学 信息科技学院,广西 桂林 541004;②桂林电子科技大学 信息与通信学院,广西 桂林 541004) 【摘 要】当前对无线网格网络(Mesh网络)主要研究之一是无线路由技术,即针对无线Mesh网络自身的特点进行路由设计。在熟悉基于Linux平台的网络仿真器(NS2)针对Mesh网络路由协议的仿真过程的基础上, 利用NS2网络仿真软件分别从端到端平均时延、分组递交率、归一化路由开销三个方面比较了目前三种典型的路由协议——按需平面距离矢量路由(AODV)、动态源路由(DSR)和目的序列距离矢量路由(DSDV)的性能,并详细介绍了整个仿真过程的步骤。最后,通过分析AODV协议的吞吐量,得出网络最佳容纳的节点数,研究成果对协议的实现具有重要的应用价值。 【关键词】无线网络;路由协议;仿真;吞吐量 【中图分类号】TP393 【文献标识码】A【文章编号】1002-0802(2010)10-0065-03 Simulation and Performance Analysis of Routing Protocols based on Wireless Mesh Network MO Jin-wang①, JIANG Wen-fang②, ZHAO Li② (①School of Information Technology, Guilin University of Electronic Technology, Guilin Guangxi 541004, China; ②School of Information and Communication Engineering, Guilin University of Electronic Technology, Guilin Guangxi 541004, China) 【Abstract】At present, one of the main studies on wireless grid networks(mesh networks) is wireless routing technology. A routing protocol based on characteristic of wireless mesh network is designed. In familiarity with the simulation process of wireless mesh networks routing protocol by network simulator(NS2) based on Linux platform, the performance of the typical routing protocols –Ad hoc On-Demand Distance Vector Routing(AODV), Dynamic Source Routing(DSR) and Destination Sequenced Distance Vector(DSDV) is compared from the three aspects of average end-to-end delay, packet submission rate, and normalized routing overhead, and the details of simulation process are given. Finally, by analyzing the throughput of AODV protocol, the best accommodation of node number by the network is obtained. And the research result is of important application value for the protocols implementations. 【Key words】wireless network; routing protocol; simulation; throughput 0 引言 无线网状网(WMN)本质上属于移动自组织网络(Ad hoc 网络),它与后者的最大区别在于前者的用户终端相对来说移动性较低,WMN一般不是作为一个独立的网络形态存在,而是因特网核心网的无线延伸。通常,会有一个或多个网关节点与因特网高速相连,家庭或办公室等用户通过自身的无线接入点与网关节点相连。对于网关节点信号覆盖之外的区域,用户节点负责来往业务的中继或转发,从而实现大范围的廉价和快速信号覆盖。显然,这种方式的组网省去了网络建设初期昂贵的基础设施建设投资,比传统的点到多点方式的无线接入有很多无可比拟的优点[1]。 自组网路由协议是目前无线网络研究的热点之一,互联网工程任务组(IETF)特别成立了移动自组织网络工作组(MANET工作组)来研究无线自组网中的路由协议。路由协议是自组网体系结构中不可或缺的重要组成部分,其主要作用是发现和维护路由。近年来人们对自组网技术持续增长的兴趣导致了许多路由协议方案的提出[2]。现对目前几种典型的路由协议的性能进行了仿真比较,并通过对按需平面距离矢量路由协议(AODV)吞吐量的分析,得出网络最佳容 收稿日期:2010-01-12。 基金项目:广西教育厅科研项目基金(NO.200808XL128);2009年广西 区教育厅研究生创新项目(NO.2009105950810M14)。 作者简介:莫金旺(1960-),男,硕士,副教授,主要研究方向为移动 通信;蒋文芳(1984-),女,硕士研究生,主要研究方向 为移动通信与个人通信;赵 利(1965-),男,博士,教 授,主要研究方向为移动通信与信号处理。 65

RIP路由协议配置

. 2.1实验目的 通过本实验,学生可以掌握以下技能: 1.路由器基本配置使用方法; 2.配置RIP协议; 3.配置RIPv2协议; 4.查看上述配置项目的相关信息。 2.2实验任务 1.配置路由器端口的IP地址; 配置2.RIP协议; 配置3.RIP v2协议; 使得不同网段的4.PC机能够通信; 2.3实验设备 CISCO2600交换机三台,带网卡的PC机两台,控制电缆两条,串口连接线两条。 交叉线序网线两条以及Consoie电缆; 2.4实验环境 如图所示,用串口连接线把路由器router1的串口s0和router3的串口s0连接起来;把路由器router2的串口s0和router3的串口s1连接起来。PC1与路由器router1的FastEthernet0/1连接,PC2与路由器router2的FastEthernet0/11连接,电缆连接完成后。给所有设备加电,开始进行实验。 文档Word . 2.5实验报告要求 实验报告信息要求完整,包括学号、、班级、专业、课程名称、教师名称、实验目的、实验任务、实验环境、实验步骤及详细记录、实验过程中存在的问题及实验心得体会等内容。

2.6实验步骤通过PC1上的超级终端连接路由器router1,并为路由器命名 Router> enable Router# configure terminal Router(config)# Router(config)# hostname router1 router1(config)# 1.设置路由器router1的Ethernet0端口的IP地址 router1(config)# interface ethernet0 router1(config-if)# ip address 11.168.1.11 255.0.0.0 router1(config-if)# no shutdown 2.设置路由器router1的串口s0端口的IP地址 router1(config-if)# int s0 router1(config-if)# ip address 192.168.1.13 255.255.255.0 router1(config-if)# no shutdown 3.设置PC1的IP地址11.168.1.10,网关为11.168.1.11 文档Word .

DSDV路由协议分析与仿真

毕业设计(论文) 题目DSDV路由协议分析与仿真 学院(全称) 信息科学与工程学院 专业、年级通信工程06级02班 学生姓名学号 指导教师 论文评阅人 重庆交通大学 2010年

前言 物联网的英文名称为“The Internet of Things”,简称:IOT。由该名称可见,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网的概念是在1999年提出的。最早时期,物联网被称之为传感网。中科院早在1999年就启动了传感网的研究,并已取得了一些科研成果,建立了一些适用的传感网。1999年,在美国召开的移动计算和网络国际会议提出了,“传感网是下一个世纪人类面临的又一个发展机遇”。2003年,美国《技术评论》提出传感网络技术将是未来改变人们生活的十大技术之首。 随着通信技术、嵌入式计算技术和传感器技术的飞速发展和日益成熟,人们研制出了各种具有感知能力、计算能力和通信能力的微型传感器。由许多微型传感器构成的无线传感器网络(WSN)引起了人们的极大关注。由设置在无人值守的监控区域内大量的具有通信与计算能力的微小传感器节点构成的智能自治测控网络系统称为无线传感器网络(Wireless sensor networks)。它包括传感器、感知对象和观察者。人们可以通过传感器网络直接感知客观世界,称为人与自然之间重要的交互方式。 WSN的主要任务是对分布在传感节点监测范围内的数据进行查询,收集和处理,并将最终数据发布给终端节点,方便人们感知客观世界;而路由算法则是WSN中最重要的部分,它用来建立源节点与目的节点之间的路径,实现数据通信。DSDV是对传统的Bellman-Ford路由协议的改进,是一种无环路距离向量路由协议,同时也是一种表驱动主动路由协议。由于其算法简单,同时又具有获取路由的延时小,较适合具有实时要求的应用;引入目的节点序列号,既能区别路由的新旧,又能有效避免路由环路的产生和无限计数的问题;有效减少端到端的时延,从一定程度上满足各种应用对QoS的要求。在此对其进行研究,通过仿真,分析其有点以及存在的问题,并相对应的提出改进办法。 NS2(Network Simulator, version 2)称为网络模拟器,又称网络仿真器。最初由UC Berkeley开发,专门用来研究大规模网络以及当前和未来的网络协议交互行为。由于NS2中所有源代码都开放,因此受到大量研究人员的亲睐,也是目前网络研究领域应用最广泛的网络仿真软件之一。随着越来越多人的研究,其功能更加强大,支持的协议和功能模块也更加丰富。它对有线和无线网络上的TCP、路由和多播等协议的仿真

仲裁协议在仲裁制度中的基础作用

仲裁协议在仲裁制度中的基础作用 1262115 储怡欣 仲裁协议是指各方当事人自愿将他们之间已经发生的或可能发生的,依法可以仲裁解决的纠纷,以书面形式提交临时仲裁的共同意思表示(合意),或者提交仲裁机构进行裁决的共同意思表示(合意)1。是当事人之间仲裁合意的书面化、法律化的形式。简单来说,仲裁协议指当事人在合同中订明的仲裁条款,或以其他方式达成的提交仲裁的书面协议。 仲裁协议具有五个法律特征:它是当事人共同表达的采用仲裁方式解决纠纷意愿(仲裁合意)的法律文书;仲裁协议中当事人的权利义务具有同一性;仲裁协议的内容具有特定性,即当事人提交仲裁解决的事项具有法律规定的可仲裁性;仲裁协议具有广泛的约束力;仲裁协议具有可分性(独立性/自主性,即次要合同不因主合同的无效、被撤销、不存在而相应无效、失效或不存在)。 根据仲裁协议的特征,充分体现出仲裁协议的重要作用。仲裁协议是是现代民商事仲裁的基石,仲裁协议的作用可表现为以下四个方面: (一)仲裁协议用来证明当事人之间进行仲裁的合意 仲裁协议根本上是一种合同,当事人之间根据自愿的原则所达成的合意是仲裁协议的基础,仲裁庭或者法院在认定仲裁协议的效用过程之中应当遵从当事人自我的意愿,应当对当事人的合意做出考量。当事人意思自治原则是仲裁制度的首要原则,赋予当事人更为广泛的仲裁自主权,是当前各国仲裁法律制度发展的共同趋势。 当事人意思自治原则是指尊重当事人的私法权益,允许当事人在法律规定的范围内,依据自己的利益需要自主地做出各种仲裁安排和选择,仲裁机构和仲裁员应当尊重当事人对维护自身合法权益的追求,充分关注仲裁机制作用的正常发挥。当事人意思自治原则是仲裁制度赖以生存和发展的基石,贯穿于仲裁制度发展的全过程。 当事人在一个完整的仲裁过程中,需要同时满足四个仲裁合意,分别是:敌意,是否选择仲裁;第二,选择什么样的仲裁机构;第三,需要仲裁神噩梦;第四,选择谁作为仲裁员。其中,前三项是必须满足的,而且是在仲裁程序之前必 1https://www.360docs.net/doc/029275781.html,/link?url=1ypYU--‐KIjuyQ10MkZJspkmABoHM55HKpPoMDiqhtpEZt_5tJmtlUaKv9To wQEVgPJFTQGDXEdic7Rfkc8UlYba

相关文档
最新文档