线性代数模拟试题及答案

线性代数模拟试题及答案
线性代数模拟试题及答案

线性代数模拟试题

模拟试题一

一、填空题(每题2分,共20分)

1.行列式

5

002304324321

= 。

2.若齐次线性方程组??

???=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12

≠k ,则k 的值为 。

3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*

A = 。

4.A 为n n ?阶矩阵,且ο=+-E A A 232

,则1

-A 。

5. 321,,ξξξ和321,,ηηη是3

R 的两组基,且

32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基

321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A=

6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。

7.设=???

?

?

?????---=????????

??=)(,11

1

012111

,32

1

212

113AB tr AB B A 之迹则 。 8.若的特征值分别为

则的特征值分别为阶矩阵1

,3,2,133--?A A 。

9.二次型x

x x

x x x f 23

2

221

3212

3),,(--=

的正惯性指数为 。

10.矩阵???

?

?

???

??10

4

2

024

λ

λA 为正定矩阵,则λ的取值范围是 。 二、单项选择(每小题2分,共12分)

1.矩阵

()=

=≠≠??

???

?

??????=)(,4,3,2,1,0,0,443

42

41

4433323134

23222124131211

1A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i

i 则其中。

A 、1

B 、2

C 、3

D 、4

2. 齐次线性方程组?

??=--=++-020

23214321x x x x x x x 的基础解系中含有解向量的个数是( )

A 、1

B 、2

C 、3

D 、4

3.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( )

A 、-1

B 、-2

C 、0

D 、1 4. A 、B 则必有且阶矩阵均为,))((,2

2

B A

B A B A n -=-+( )

A 、B=E

B 、A=E

C 、A=B

D 、AB=BA

5.已知=???

?

?

?????==k A k a T

则的特征向量是矩阵,21

1

121

112

)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或2

6.下列矩阵中与矩阵合同的是???

?

????

??-50

0210

002

( ) A 、??????????---200020

001 B 、?????

??

???-50

0020003

C 、????

??????--10

010

001 D ????

???

???10

0020002

三、计算题(每小题9分,共63分)

1.计算行列式),2,1,0(0

000

022

11

210n i a a c a c a c b b b a i n

n

n

=≠其中 2.当???

??

?

?=+++=-++=+++=+++a x x x x x x x x x x x x x x x x a 43214321

432143217105351053

631

32,线性方程组

取何值时有解?在方程组有解时,用其导出组的基础解系表示方程组的通解。

3.给定向量组),7,0,3(),0,2,1,1(),6,5,1,2(),4,0,1,1(4321k a a a a =--==-=。当k 为何值时,

向量组4321,,,a a a a 线性相关?当线性组线性相关时,求出极大线性无关组,并将他们向量用极大线性无关组线性表示。

4.设矩阵????????

??-=41

110

003A ,X B X AX B 求矩阵且满足,2,321163

+=???

?

?

??

???-=。 5.已知n A 为阶正交矩阵,且|A|<0。

(1)求行列式|A|的值;(2)求行列式|A+E|的值。

6.已知实对称矩阵 ????

?

???

??=10

1

020

101

A (1)求正交矩阵Q ,使Q -1AQ 为对角矩阵;(2)求A 10。

7.将二次型3231212

32

22

13214222),,(x x x x x x x x x x x x f +++++=化为标准形,并写出相应的可逆线性变换。

四、证明题(5分)

A 、

B 均为n 阶矩阵,且A 、B 、A+B 均可逆,证明:

(A -1+B -1)-1=B (A+B )-1A

线性代数模拟试题参考答案

模拟试题一

一、填空题(每小题2分,共20分)

1.160

2.-2

3.27

4.

A E 2

123- 5. ???

?

?

?????21

1

122213

6.-9

7.7

8.1, 2

1-

,

3

1 9.1 10. 33<<-λ

二、单项选择(每小题2分,共12分) 1.A 2.B 3.C 4.D 5.C 6.B 三、计算题(每小题9分,共63分)

1.将第2列的)(1

1a c -

倍,第3列的列的第倍)1(,,)(2

2+-

n a c )(n

n a c -

倍统统加到第1 列上去,得

n

n n

n n a a a b b b a c b a c b a c b a

00000021212221

110-

-

-

=

原式

)(1

021∑

=-

=n

i i

i i n a c b a a a a

2.先对方程组的增广矩阵进行初等行变换

??

???

????

???--→????????????--→??????

???

???----→?????????

???-=00

500001*********

00

500002242013

211324204484022420132117105

35110513163113211

a a a a A

所以,当,5时=a 方程组有解,特解T

),

0,0,1,0(0

其导出的基础解系为

,)1,0,1,4()0,1,2,0(1T

T -=-=η原方程组的全部解为2122110,,k k k k X ηηγ++=为任 意

常数。

3.由向量组4321,,,a a a a 为列向量组作矩阵

??

???

?

???

???--→?????????

???--→????????????--→??

???

?

???

???---→?????????

???----→?????????

???---=140

11001

010

2

001

140

011001010

4

021140

110010103

12110400

22001

010

3

121

124

20

725030303121064725001113121k k k k k k A

当14=k 时,向量组

4321,,,a a a a 线性相关。向量组的极大线性无关组是,,,321a a a 且

,23214a a a a -+=

4.由AX=2X+B 得,(A-2E )X=B

所以有X=1

)2(--E A B=????

?

?????-????

?

?????---321163

21

110

001

1

=????

?

?????--=??????????-??????????--131463

321163

11

120001

5.由于,12

=A

则,1±=A 因为,0

,)(E A A

E A A E A T

T

+-=+=+所以,0=+E A

6.

2

)2(-=-λλλA E ,所以A 的4特征值为2,0321===λλλ。对应与特征于

01=λ的特征向量T

)10,1(-,标准正交化T

a )21,0,21(

1-

=;对应于特征值232==λλ的特

征向量T )01,1(,T

)0,1,0(,标准正交化,T

a )2

1,

0,2

1(

2=,T

a )0,1,0(3=。

由此可得正交矩阵??????

?????

??

?-=

=02

12

110002121),,(321a a a Q , 使得为对角矩阵A AQ Q AQ Q T

=???

?

??????==-20

020

000

1。

????

?????

?==-9910

9

9

1

1010

20

202

0202Q

QA A

四、证明题(4分) 证明:A B A B B

A B A B A A B A B B

A

1

1

1

11

1

1

)

()

()

()(-------+++=++

A B A A A A B A B A 1

1

1

1

)

()(----+++=

E A B A A B A

=++=---1

1

1

)()

(

或[

]

1

1

1

11

11

11

11

)()

(-----------+=+=+=+A B

BB

A AB

A B

B A A A

B A B

11

--+=B A

模拟试题二

一、填充题(每小题2分,共20分)

1.=-0

00100

200

1000

n

n 。 2. n

??

????0011= (n 为正整数)。 3.设A=??

??

??-1101,则1

)2(-A = 。 4.非齐次线性方程组11???=m n n m b X A 有唯一解的充分必要条件是 。 5.向量下的坐标为在基T

T

T

a )1,2(,)2,1()1,3(21===ηη 。

6.阶矩阵若n A 、B 、C 有ABC=E,E 为=-1

C n 阶单位矩阵则

7.若n 阶矩阵A 有一特征值为2,则=-E A 2 。

8.若A 、B 为同阶方阵,则2

2

))((B A B A B A -=-+的充分必要充分条件是 。 9.正交矩阵A 如果有实特征值,则其特征值等于λ 。 10.二次型的取则是正定的t x x x x t

x x x f x

x x

,2232),,(312123

2

221

321++++=

值范围是 。

二、单项选择(每小题2分,共10分)

1.若

的值为则1

2

020

2,62122

1112

22

21

1211--=a a a a a a a a ( ) A 、12 B 、-12 C 、18 D 、0

2.设A 、B 都是则下列一定成立的是阶矩阵且,O AB n =( )

A 、A=0或B=0

B 、A 、B 都不可逆

C 、A 、B 中至少有一个不可逆

D 、A+B=O

3. 向量组件是

线性相关的充分必要条s a a a ,,21 ( )

A 、中含有零向量

s a a a ,,21

B 、s a a a ,,21 中有两个向量的对应分量成比例

C 、s a a a ,,21 中每一个向量都可用其余1-s 个向量线性表示

D 、s a a a ,,21 中至少有一个向量可由其余1-s 个向量线性表示

4.由的过渡矩阵为

到基的基321332232113

,,,,32a a a a a a a a R ==++=βββ( )

A 、??

?

???????300020

321 B 、???

??

?????--103012

001

C 、??????????--10

010

321 D 、????

???

???10

3

012001

5.若则相似与阶矩阵,B A n ( )

A 、它们的特征矩阵相似

B 、它们具有相同的特征向量

C 、它们具有相同的特征矩阵

D 、存在可逆矩阵B AC C C T

=使,

三、计算题(每小题9分,共63分)

1.计算行列式

n

n n n n n ------11

020000022000011

1321

2.???

??

?

?=++-=+-+=++-=+-+b x x x x a x x x x x x x x x x x x 43214321432143215742272

1

2线性方程组

当a 、b 为何值时有解,在有解的情况下,求其全部解(用其导出组的基础解系线性表示)。

3.求向量组)11,9,5,8(),2,1,1,3(),10,7,1,1(),1,1,1,2(4321=--=-==a a a a 的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示。

4.设X B A X B AX 求其中,350211

,10

1111

010,???

?

?

??

???--=????????

??---==+ 5.已知矩阵相似与???

?

???

???=????????

??=,0

030000

30

011

011

x B A (1)求B AP P P x =-1

,)2(;使求可逆矩阵

6.给定T

T

T

a a a R )3,2,1(,)1,0,1(,)1,1,1(3213

-=--==的基,将其化为的一组标准3

R 正准

交基,并求向量下的坐标在所求的标准正交基之T

a )1,2,3(=。

7.化二次型312123

2

221

321245),,(x x x x x x x f x

x x

++-

+=

为标准形,写出相对应的非奇异线

性变换。并指出二次型的秩、正惯性指数及符号差。

四、证明题(7分)

如果A 是1)(,1)(),2(=-=≥*

A r n A r n n 试证且阶矩阵

模拟试题二答案

一、填空题

1. !)1(2)

1(n n n -- 2. ???? ??0011 3. ?

???

?

????

?210

2121

4. n Ab r A r ==)()(

5. )35

,31(- 6.AB 7.0 8.AB=BA 9.1或-1 10. 5

3>t

二、单项选择题

1. A

2.C

3.D

4. B

5. A 三、计算题

1.原式=

n

n n n n n n ------+11

020000

022000010

1322)1(

n

n n n n -----+=11

020*********

2

)1(

2

)!1()1()!1(2

)

1()

1(1

1

+?

-=-?+?

-=--n n n n n n

2. ???????

????

????

?

-----→?????

????

???----------→80

050000131110132001

142

6

6

1439903

1330

21111b a b a A

当85==b a 且时线性方程组有解

T

T T r )3,0,1,2(,)0,1,1,0(,)0,0,1,1(21-==-=ηη

全部解为2211ηηc c r X ++= 21,c c 为任意常数。

3. ???????

????????

?

-→?????

????

???----→????????????---=00

00000323110313340163

9

42602

1305111112

10

1

917151118312

A 的一个极大线性无关组

是向量组432121,,,,a a a a a a

且2142133

23

13,3

13

4a a a a a a +

=

-

=

4.由AX+B=X ,得(E-A )X=B ,即X=1

)(--A E B

???????????????

?

--=--3131031321313

20)

(1

A E ????

?

?????--=??????????--???????

????????

?

--=-=-110213

350211313

1031321

31320)(1

B A E X

5.由于A 与B 相似,则

2,=-=-x B E A E 可得λλ

所以,A 的特征值为2,3,0321===λλλ 对于,01=λA 对应的特征向量为T

a )0,1,1(1-= 对于,32=λA 对应的特征向量为T

a )1,0,0(2= 对于,23=λA 对应的特征向量为T

a )0,1,1(3=

B AP P a a a P =????

?

???

??-==-1

321,01

101

101)(使 6.先正交化得,???

?

??????-=??????????--=

??????????=202,12131,111321βββ 再单位化得,???

?

??????-=??????????--=??????????=

10121,12161,11131321ξξξ )2,

0,32(的坐标为在这组标准正交基之下

a

7.

x

x

x

x

x x x x x x x x x x x x f 23

2

322

3213

12123

22

21

3216

)2()(245

),,(--+++=++-

+=

令?????=-=++=33322321122x y x x y x x x y ,即作线性变换??

?

??=+=--=333223

211252y x y y x y y y x

可将二次型化为标准形y

y

y

f 23

22

21

6

-+

=

二次型的秩是3,正惯性指数是2,符号差是1。 四、证明题

证明:由于O E A AA A n A r ===-=*

,0,1)(则

1)()(,=-≤=*

*

A r n A r O AX A 所以的解的每一列向量均为

另一方面,中至少有一个即阶子式不等于中至少有一个则A n A n A r ,01,1)(--=元素

的代数余子式不等于0,故1)(,0≥≠*

*

A r A 由此可得,1)(=*

A r

线性代数模拟试题及答案1

一、判断题(本题共5小题,每小题3分, 共15分.下列叙述中正确的打√,错误的打×.) 1. 图解法与单纯形法,虽然求解的形式不同,但从几何上理解,两者是一致的. ( ) 2. 若线性规划的原问题有多重最优解,则其对偶问题也一定具有多重最优解. ( ) 3. 如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方 案将不会发生变化. ( ) 4. 对于极大化问题max Z = ij n i n j ij x c ∑∑==11 ,令 {}ij ij ij c c b c c -==,max 转化为极小化问题 ij n i n j ij x b W ∑∑===11m in ,则利用匈牙利法求解时,极大化问题的最优解就是极小化问题 的最优解,但目标函数相差: n+c. ( ) 5. 影子价格是对偶最优解,其经济意义为约束资源的供应限制. ( ) 二、填空题(本题共8小题, 每空3分, 共36分.把答案填在题中横线上.) 1、在线性规划问题的约束方程,0m n A X b X ?=≥中,对于选定的基B ,令非基变量X N =0,得到的解X= ;若 ,则称此基本解为基本可行解. 2、线性规划试题中,如果在约束条件中出现等式约束,我们通常用增加 的方法来产生初始可行基。 3、用单纯形法求解线性规划问题的迭代步骤中,根据k λ= 确定k x 为进基变量;根据最小比值法则θ= ,确定r x 为出基变量。 4、原问题有可行解且无界时,其对偶问题 ,反之,当对偶问题无可行解时,原问题 。 5、对于Max 型整数规划问题,若其松弛问题的最优单纯形表中有一行数据为:

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

线性代数模拟试卷及答案

线性代数(文)模拟试题库及参考答案 一.填空题(每小题3分,共12分) 1.设????? ??=333222111c b a c b a c b a A ,????? ??=33 3222111d b a d b a d b a B ,2=A ,3=B ,则B A -2=1. 解 B A -2=3 332221 113332221113333222211112222d b a d b a d b a c b a c b a c b a d c b a d c b a d c b a -=--- =12=-B A . 2.已知向量)3,2,1(=α,)3 1,21,1(=β,设βαT A =,其中T α是α的转置,则n A =A n 13-. 解 注意到3321)31,21,1(=???? ? ??=T βα,故 n A = β αβαβαβαT n T T T 个)())(( =ββαβαβααβα T n T T T T 个)1()())((- =A n T n 1133--=βα. 注 若先写出A ,再求2A ,…,n A 将花比前更多的时间. 3.若向量组T )1,0,1(1-=α,T k )0,3,(2=α,T k ),4,1(3-=α线性相关,则k =3-. 解 由1α,2α,3α线性相关,则有 321,,ααα=k k 0143011--=1 043011--k k k =04)1(3143=--=-k k k k . 由此解得3-=k . 4.若4阶矩阵A 与B 相似,矩阵A 的特征值为 21,31,41,5 1,则行列式E B --1 =24. 解 因为A 与B 相似,所以A ,B 有相似的特征值,从而E B --1有特征值1,2,3,4.故2443211=???=--E B .

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αα α α -=___________。 (3) 二阶行列式 2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 , C 1 , D 2 ,

(3)三阶行列式2 31 503 2012985 23 -=()。 A -70; B -63; C 70; D 82。 (4)行列式 000 000 a b a b b a b a =()。 A 4 4 a b -;B () 2 2 2a b -;C 4 4 b a -;D 44 a b 。 (5)n 阶行列式0100 0020 0001000 n n - =()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号:

网络提交:《线性代数与概率统计》模拟题二(2013.11,90分钟)

华南理工大学网络教育学院 《线性代数与概率统计》 模拟试题二 1. 2. ?单项选择题(每小题 行列式D A. 2. -1 -1 5分, 共8小题,总计40 分) ). B. C . D. 3. -2 -3 已知 ai2 a 13 a 21 a 22 a 23 a 22 a 23 =m ,则 2a 3^ -a 11 2a 32 — a 12 2a 32 — a 13 a 32 a 33 3a 11 + 2a 21 3^2 + 2a 22 3a 13 + 2a 23 a 11 =(A ). a 21 B. -6m C. 12m D. -12m ‘1 0 1) (2 -1 0、 设/ A = 3丿 B = i 1 .2 -1 13 2 5丿 a 31 A. 6m 3. 2 ) 3 A. ,求 2A — 3B =?( D ) D. — 8 —8 -8

= X 2 -5X +3,矩阵 A =『2 ,定义 f(A)=A 2 -5A +3E ,则 f(A)=?( B ) 1-3 3 丿 0 1 0丿 D. 5.向指定的目标连续射击四枪,用 A 表示“第i 次射中目标”,试用A 表示四枪中至少有一枪 7.市场供应的热水瓶中,甲厂的产品占 50%,乙厂的产品占30%,丙厂的产品占20%,甲 厂产品的合格 率为 90%,乙厂产品的合格率为 85%,丙厂产品的合格率为 80%,从市场上任意 击中目标(C ): A. A 1A 2A 3 A 4 B . 1 -A 1A 2A 3A 4 C . A+A 2 + A3+A 4 D. 1 6. 一批产品由8件正品和 (B ) A. 3 5 B . 8 15 C . 7 15 D. 2 5 2件次品组成,从中任取 3件,这三件产品中恰有一件次品的概率为 4.设 f(x)

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数模拟题(开卷)

《线性代数》模拟题(补) 一.单项选择题 1.设为阶矩阵,且,则(C)。 A. B. C. D.4 2.维向量组(3 s n)线性无关的充要条件是(C)。 A.中任意两个向量都线性无关 B.中存在一个向量不能用其余向量线性表示 C.中任一个向量都不能用其余向量线性表示 D.中不含零向量 3.下列命题中正确的是(D)。 A.任意个维向量线性相关 B.任意个维向量线性无关 C.个维向量线性无关 D.任意个维向量线性相关任意 4.n元非齐次线性方程组AX=B有唯一解的充要条件是(B)。A.r(A)=n B.r(A)=r(A,B)=n C.r(A)=r(A,B)

5.矩阵A的特征值分别为1, -1, 2, 则|A2+2I|= 24。6.写出二次型对应的对称矩阵 。 三.计算题 .问取何值时,下列向量组线性无关?。 解: 即时向量组线性无关. .求的全部特征值和特征向量。 解: 特征值。 对于,特征向量为; 对于,特征向量为。 .求行列式的值。 解: 4.已知矩阵,求。 解: 因为,, ,所以 5.求向量组的极大无关组,并用极大无关组表示其余向量。解: , 因此,极大无关组为且。 6.已知矩阵,求正交矩阵T使得为对角矩阵。 解: 1) 首先求其特征值:, 其特征根为:

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数复习题及答案

《 线性代数复习提纲及复习题 》 理解或掌握如下内容: 第一章 n 阶行列式 .行列式的定义,排列的逆系数,行列式性质,代数余子式, 行列式的计算,三角化法及降阶法,克莱姆法则。 第二章 矩阵及其运算 矩阵的线性运算,初等变换与初等矩阵的定义,方阵的逆矩阵定义及性质 方阵的逆矩阵存在的充要条件,用初等变换求逆矩阵,矩阵方程的解法,矩阵的秩的定义及求法;齐次线性方程组只有零解、有非零解的充要条件,;非齐次线性方程组有解的充要条件,解的判定。 第三章 线性方程组 n维向量的线性运算,向量组线性相关性的定义及证明,向量空间,向量组的极大线性无关组、秩; 齐次线性方程组的基础解系,解的结构,方程组求解;非齐次线性方程组解的结构,用初等变换解方程组,增广矩阵含有字母元素的方程组的求解。 复习题: 一、填空 (1)五阶行列式的项5441352213a a a a a 前的符号为 负 ; (2)设)3,3,2(2),3,3,1(-=+-=-βαβα,则α= (1,0,0) ; (3)设向量组γβα,,线性无关,则向量组γβαβα2,,+-线性 无关 ; (4)设* A 为四阶方阵A 的伴随矩阵,且*A =8,则12)(2-A = 4 ; (5)线性方程组054321=++++x x x x x 的解空间的维数是 4 ; (6)设???? ? ??=k k A 4702031,且0=T A 则k = 0或6 ; (7)n 元齐次线性方程组0=Ax 的系数矩阵A 的秩r(A)秩是r,则其解空间的维数是 n-r ; (8)的解的情况是:方程组b Ax b A R A R 2),,()3(== 有解 ; (9)方阵A 的行向量组线性无关是A 可逆的 充要 条件;

《线性代数》期末复习要点

《线性代数》期末复习要点 第一章行列式 1、行列式的计算(略) 2、Cramer法则:系数行列式D≠0,则方程租有唯一解。 齐次方程租有非零解,则D=0。 3、V andermonde行列式。(略) 第二章矩阵 1、矩阵的计算(略) 2、对称矩阵:A∧T=A。反称矩阵A∧T=-A。 3、矩阵可逆,则|A|≠0。 4、分块矩阵(略) 5、初等变换与初等矩阵(略) 6、m×n阶矩阵A,B等价,则当且仅当存在m阶可逆矩阵P和n阶可逆矩阵Q使PAQ=B。 7、(1)可逆矩阵一定满秩,即r=n。(2)若A的一个r阶子式不等于零,则r(A)≥r,若A的r+1阶子式都为零,则r(A)≤r。 8、矩阵秩的不等式:(1)r(AB)≤min{r(A),r(B)}。(2)A,B分别为m×n阶和n×k 阶矩阵,r(AB)≥r(A)+r(B)-n。特别的,当AB=0时,r(A)+r(B)≤n。(3)A,B 均为m×n阶矩阵,则r(A+B)≤r(A)+r(B)。 第三章n维向量空间 1、线性相关:(1)k1,k2,kn不全为0且能使kiα1+k2α2+……+knαn=0成立,则α1,α2,……,αn线性相关。(2)至少一个向量是其余向量的线性组合。(3)含零向量的向量组是线性相关的。(4)n维向量中的两个向量组T1={α1,α2,α3,……,αr},T2={β1,β2,β3,……βs},若T1可由T2线性表示,且r>s,则T1线性相关。若T1可由T2线性表示但T1线性无关,则r≤s。(5)n+1个n维向量一定线性相关。 2、(1)零向量自身线性相关。非零向量自身线性无关。(2)向量组中一部分线性相关,则整体线性相关,若向量组整体线性无关,则向量组的一部分线性无关。 3、向量组的任意极大线性无关组都与之等价,向量组的任意两个极大线性无关组都等价。 4、矩阵的秩等于其行(列)向量组的秩。 5、向量空间的基与维数,空间向量的坐标(略) 6、基变换和坐标变换:{α1,α2,α3,……,αr},{β1,β2,β3,……βs r}是向量空间V的两组基,若有r维方阵C,使[β1,β2,β3,……βs]=[α1,α2,α3,……,αr]C,则称C为从基{α1,α2,α3,……,αr}到基{β1,β2,β3,……βs}的过渡矩阵(基变换矩阵)。则坐标变换X=CY。 7、内积:(1)交换性(α,β)=(β,α)。(2)线性性:(α1+α2,β)=(α1,β)+(α2,β)。(kα,β)=k(α,β)。(3)非负性。(4)Cauchy-Schwarz不等式P99。 向量的长度,向量间夹角的余弦P99。 8、标准正交向量组,Gram-Schmidt正交化方法。P103,104。▲重点记忆。 第四章线性方程组 1、线性方程组及其表示(略) 2、m×n型线性方程AX=b。(1)有解的充要条件是系数矩阵的秩和增广矩阵的秩相同。(2)有唯一解的充要条件是系数矩阵的秩和增广矩阵的秩相同,都为n。 3、Gauss消元法。(略) 4、齐次线性方程和非齐次方程组解的结构。基础解系与通解。(略) 5、AX=b解空间的维数dimN(A)=n-r(A)。 m×n型线性方程AX=0有非零解的充要条件是r(A)<n。

线性代数模拟试题(4套)

模拟试题一 一、判断题:(正确:√,错误:×)(每小题2分,共10分) 1、若B A ,为n 阶方阵,则B A B A +=+.……………………() 2、可逆方阵A 的转置矩阵T A 必可逆.……………………………() 3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…() 4、A 为正交矩阵的充分必要条件1-=A A T .…………………………() 5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合1、23456. 7、(R 8、若9、设10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为. 三、计算:(每小题8分,共16分) 1、已知4阶行列式1 6 11221212 112401---= D ,求4131211132A A A A +-+.

2、设矩阵A 和B 满足B A E AB +=+2,其中??? ? ? ??=101020101A ,求矩阵B . 四、(10分)求齐次线性方程组???????=++-=-++=--+-=++-024********* 432143214 3214321x x x x x x x x x x x x x x x x 的基础解系和它的通解. 五、(10分)设三元非齐次线性方程组b Ax =的增广矩阵为 2六、(10(1(2(3(41. 2、(单 (1)做矩阵53?A 表示2011年工厂i a 产矿石j b 的数量)5,4,3,2,1;3,2,1(==j i ;

(2)通过矩阵运算计算三个工厂在2011年的生产总值. 模拟试题二 一、 判断题(正确的打√,不正确的打?)(每小题2分,共10分) ()1、设,A B 为n 阶方阵,则A B A B +=+; ()2、可逆矩阵A 总可以只经若干次初等行变换化为单位矩阵E ; ()3、设矩阵A 的秩为r ,则A 中所有1-r 阶子式必不是零; ()4、若12,x x ξξ==是非齐次线性方程组Ax b =的解,则12x ξξ=+也是该方程组的解. ()5、n 阶对称矩阵一定有n 个线性无关的特征向量。 123、设4、(33α5一; 67、设向量(1,2,1)T α=--,β=()T 2,,2λ-正交,则λ=; 8、设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为。 三、计算题(每小题8分,共16分) 1、设矩阵??? ? ??=???? ??--=1201,1141B A ,求矩阵AB 和BA 。

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

8线性代数练习题(带解题过程)

8线性代数练习题(带解题过程)

0 线性代数试题 一 填空题 ◆1. 设 A 为3阶方阵且 2 =A ,则 = -*-A A 231 ; 【分析】只要与* A 有关的题,首先要想到公式, E A A A AA ==**,从中推 你要的结论。这里1 1* 2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3 )1(- ◆2. 设1 33322211 ,,α+α=βα+α=βα+α=β, 如 3 21,,ααα线性相关,则3 21,,βββ线性 ______(相关) 如 3 21,,ααα线性无关,则 3 21,,βββ线性 ______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘

1 法的关系,然后用矩阵的秩加以判明。 ?? ?? ? ?????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定 是方阵!! ◆3. 设非齐次线性方程b x A m =?4 ,2)(=A r ,3 2 1 ,,ηη η是 它的三个解,且 T T T )5,4,3,2(,)4,3,2,1(,)7,6,4,3(133221=+=+=+ηηηηηη 求该方程组的通解。(答案: T T T k k x )2,2,1,1()1,1,1,1()6,5,3,2(2 1 21++= ,形式不 唯一) 【分析】对于此类题,首先要知道齐次方程组基础解系中向量的个数(也是解空间的维数) 是多少,通解是如何构造的。其次要知 道解得性质(齐次线性方程组的任意两解的线性

线性代数期末考线代题

一、填空题(每空3分,共15分) (1).设三阶矩阵????? ??---=111111111A ,???? ? ??--=150421321B ,则=B A T . (2).设A 为3阶方阵, 且A 的行列式8 1= A ,*A 为A 的伴随矩阵, 则 *183A A --=___________ . (3).设A 为n 阶方阵,且0=AX 有非零解,则A 必有特征值 . (4).设R 3上的线性变换A 在标准基下的矩阵为???? ? ??=23020111k A ,而 )1,2,3(-=β,若A )4,5,0(-=β,则 k = . (5)设正交矩阵Q =?????? ? ? ?-22220001 22220,则=-1Q . 二、计算行列式(16分) (1). 设41213201 12134321 --=A ,求,44434241M M M M +++其中ij M 为A 中 的元素ij a 的余子式。

(2).n n a a a a a a a a a a a a a a a D +++=+ 0001211,其中 .021≠n a a a .

三、(10分)已知矩阵???? ? ??=111011001A ,????? ??=011101110B ,且矩阵X 满足 E BXA AXB BXB AXA ++=+,其中E 为三阶单位矩阵,求矩阵X. 四、(12分) 设B A B A +,, 为n 阶矩阵,且AB B A =+,证明:(1)E A -可逆,E 为n 阶单位矩阵;(2) BA AB =.

五、(12分)设T 1)0,1,1(=α, T 2)1,1,0(=α, T 3)1,0,1(=α为R 3的一组基, T 1)0,0,1(=β,T 2)0,1,1(=β,T 3)1,1,1(=β为R 3的另一组基,(1)求由基321,,βββ到基321,,ααα的过渡矩阵P ; (2)在3R 中是否有在基321,,ααα和基321,,βββ下坐标相同的向量?若有,试求出这样的向量. 六、(10分) 已知T 1)3,2,0,1(=α, T 2)5,3,1,1(=α, T 3)1,2,1,1(+-=a α, T 4)8,4,2,1(+=a α,T )5,3,1,1(+=b β.问b a ,为何值时向量β不能由向量组4321,,,αααα线性表示.

[考研类试卷]考研数学一(线性代数)模拟试卷4.doc

[考研类试卷]考研数学一(线性代数)模拟试卷4 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 设A,B为n阶可逆矩阵,则( ). (A)存在可逆矩阵P1,P2,使得P1-1AP1,P2-1BP2为对角矩阵 (B)存在正交矩阵Q1,Q1,使得Q1T AQ1,Q2T BQ2为对角矩阵 (C)存在可逆矩阵P,使得p-1(A+B)P为对角矩阵 (D)存在可逆矩阵P,Q,使得.PAQ=B 2 n阶实对称矩阵A正定的充分必要条件是( ). (A)A无负特征值 (B)A是满秩矩阵 (C)A的每个特征值都是单值 (D)A*是正定矩阵 3 下列说法正确的是( ). (A)任一个二次型的标准形是唯一的 (B)若两个二次型的标准形相同,则两个二次型对应的矩阵的特征值相同(C)若一个二次型的标准形系数中没有负数,则该二次型为正定二次型(D)二次型的标准形不唯一,但规范形是唯一的 4 设A为可逆的实对称矩阵,则二次型X T AX与X T A-1X( ).

(A)规范形与标准形都不一定相同 (B)规范形相同但标准形不一定相同 (C)标准形相同但规范形不一定相同 (D)规范形和标准形都相同 5 设n阶矩阵A与对角矩阵合同,则A是( ). (A)可逆矩阵 (B)实对称矩阵 (C)正定矩阵 (D)正交矩阵 6 设A,B都是n阶矩阵,且存在可逆矩阵P,使得AP=B,则( ).(A)A,B合同 (B)A,B相似 (C)方程组AX=0与BX=0同解 (D)r(A)=r(B) 7 设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是( ).(A)r(A)=r(B) (B)|A|=|B| (C)A~B

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

相关文档
最新文档