超细粉体文章

超细粉体文章
超细粉体文章

超微细粉体填料发展要求与展望

刘涛(上海汇精亚纳米新材料有限公司/凤阳汇精纳米新材料科技有限公司)

高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。

超微细粉体填料具有超常的效果。当将超微细无机粉体材料或颜料加到油墨或油漆中时,会使色彩艳丽而发光。加到涂料中可使粘合度大大加强。纳米级白炭黑能赋予橡胶极高的抗张强度、抗撕裂性和耐磨性。超微细γ-Fe2O3磁粉用在录音带或录像带中,信息储存量比普通磁粉高10倍。在海湾战争中,美国的隐身战斗攻击机F-117A号,由于在其表面涂敷了钨钴-铁氧体制成的吸附层,使其在执行1200多次空袭中无一损伤。另外,超微细粉体材料随着粒径的减小,比表面积增大,这种表面效应导致材料机械性能、热传导性能比一般材料优异。超微细粉体材料可使光学性质和电学性质改变,如TiO3、ZnO、PbO等金属氧化物纳米微粒加入到化妆品或某些材料中,具有防止紫外线的效果。铜是良导体,但纳米级铜不导电,而绝缘的二氧化硅在20nm时则开始具有导电性。

超微细粉体材料有着广泛的用途。可在造纸、油漆、塑料、轻工、冶金等工业中作填料和功能材料;在涂料、颜料中作阻燃剂;在电子、航空工业尖端领域中还可作电容器材料、敏感元件材料、超硬材料、超导材料及光、电、磁、波的吸收材料(防红外、防雷达隐蔽材料)等。由于超微细粉体材料用途广泛及其特殊的性能,其价值大幅度提升。一般而言。超微细粉体材料的价格比普通粉体材料高3-5倍,有的甚至达到几十倍。因此,有针对性的开发超微细粉体材料已是大势所趋。

总体上看,超微细粉体材料今后的发展具有以下四大趋势:

1.微细化在十多年前超微细粉体材料的研究对象是1μm以上的粉体,而近年来超微细粉体材料的研究已进展到纳米级。随着颗粒度的变小,使其本身的性能增强,并可使光、电、磁特性兼于一身。

2.高纯化高纯化是为实现物质本身的特性,防止外来杂质的干扰,如精细陶瓷的光、电、磁材料及超导材料等均需高纯度。高纯度产品可产生巨大增值,99.998%的ZrO2价格为普通耐火材料用ZrO2的300多倍,是电子材料用ZrO2的50多倍。

3.功能化和复合化功能化和复合化是人们对材料性能追求的结果,也是高新技术发展的需求。如新型毛细管状苯乙烯-二乙烯基本离子交换树脂中γ-Fe2O3构成的磁粉材料,不仅是一种超顺磁材料,在室温下具有极强的磁性,而且有良好的光透明性。由于具有这种特殊功能,使其在彩色成像和印刷中显示出非常好的效果。功能是材料的核心,科技的发展需要各种功能的材料;而复合的目的是人为地赋予材料新功能改进老功能。比如在氧化锆中添加少量的稳定剂,强度和韧性会大大提高,可使过去只能做耐火材料的ZrO2陶瓷,一跃成为结构陶瓷中的佼佼者,抗断裂强度大大提高。再如,含有氧化锑的亚微米级氧化锡,不但导电而且透明。

4.精细化材料的精细化是指粉体性能的精细化,如对其颗粒度、粒度分布、颗粒形状、比表面、孔容、孔径、晶相、导电、磁性、光吸收、光导等一系列性能,不同粉体有不同的要求。如对不同类型的纸张要求不同晶相的碳酸钙;封装SiO2不同的形状,会产生不同的效果。

目前,我国无机超微细粉体材料的研究开发刚刚起步,无论天然非金属矿物加工,还是人工合成超微细粉体的研究开发都起步较晚。近年来在磁性记录介质、电子陶瓷、高档油漆、油墨、涂料等行业,引进了十多套以超微细粉末为原料的涂装成型加工生产线,其中许多具有国际先进水平。但至今与之匹配的超细粉体产业仍无法满足他们的需求。超微细粉体材料仍主要靠进口。

另外,我国目前从事超微细粉体材料的研究开发单位很多,研究开发的品种也不少,但由于技术难度大,应用领域和产品市场的开发较缓慢等多种原因,只有少部分产品已经工业化,大部分产品处于研究开发、推广阶段。因此必须加快发展超微细粉体材料,来满足日益发展的社会需求。

为满足市场发展需要,上海汇精亚纳米新材料有限公司、凤阳汇精亚纳米新材料有限公司2004年涉入超细粉体材料深加工业领域,主要研究开发超细并经过表面活性处理的粉体材料,并将其推广应用于工程塑料、涂料、环保、橡胶等领域,并取得实效。

追求超细、高纯、高精及功能化,引进过内一流生产设备,凭借十多年的市场经验,努力生产出适合市场发展需求的新型功能性材料、纳米材料及超细粉体材料。

纳米粉体材料

纳米粉体材料 简介 纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。纳米粉体材料是纳米材料中最基本的一类。纳米固体是由分体材料聚集,组合而成。而纳米组装体系则是纳米粉体材料的变形。 纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。它的尺度大于原子簇而又小于一般的微粒。按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。它小于一般生物细胞,和病毒的尺寸相当。 细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。 纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。 纳米粉体材料的基本性质 它的性质与以下几个效应有很大的关系: (1).小尺寸效应 随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。 (2).表面与界面效应 纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。 (3)量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。 具体从各方面说来有以下特性: (1)热学特性

超细磨粉机是超细粉体生产的主要设备

超细磨粉机是超细粉体生产的主要设备 超细粉体技术是20世纪70年代中期发展起来的新兴学科,超细粉体几乎应用于国民经济的所有行业。它是改造和促进油漆涂料、信息纪录介质、精细陶瓷、电子技术、新材料和生物技术等新兴产业发展的基础,是现代高新技术的起点。在造纸行业中,造纸施胶普遍要添加10%—20%的超细粉;在高档铜板纸中,高岭土(或碳酸钙)超细粉的添加量高达40%。又如塑料制品,改性超细粉的添加量,根据产品要求的不同可高达30%—50%。在一些PVC产品的添加量已高达70%。超细粉在塑料、橡胶、电子、电缆、油漆、涂料、磨料、药品、化妆品、陶瓷、建材、食品加工和家用电器方面用量极大,如美国的面粉生产就规定了一定的滑石粉添加量。6000目以上的超细粉添加到塑料制品里(如电视机壳),不仅可以改善制品外观尺寸、光洁度、颜色、手感等物理指标,还可改善制品的强度、弹性、悠韧性和抗老化能力。超细粉体需要优质的磨粉机做生产设备,三环中速超细磨粉机,主要适用于对中、低硬度,莫氏硬度≤6级的非易燃易爆的脆性物料的超细粉加工;与一般磨粉机相比,三环中速超细磨粉机的优势还在于:1.高效、节能、环保、清洁,集四大优势于一体在成品细度及电动机功率相同的情况下,比气流磨、搅拌磨、球磨机的产量高一倍以上;采用脉冲除尘器捕捉粉尘,采用消声器降低噪声,具有环保、清洁的特点。2.易损件使用寿命可达2-5年磨辊、磨环采用特殊材料锻制而成,从而使利用程度大大提高。在物料及成品细度相同的情况下,比冲击式破碎机与涡轮粉碎机的磨损件使用寿命长2-5倍,一般可达一年以上,加工碳酸钙、方解石时,使用寿命可达2-5年。3.产品细度高,安全可靠性高三环中速超细磨粉机产品细度一次性可达到D97≤5μm;因磨腔内无滚动轴承、无螺钉,所以不存在轴承及其密封件易损的问题,不存在螺钉易松动而毁坏机器的问题。工欲善其事,必先利其器。良好的超细粉体出自优质的超细磨粉机,素有“微粉专家”之称的上海机器有限公司生产的三环中速超细磨粉机,是用于超细粉体生产的首选设备。 不可否认当前我国超细磨粉机行业发展取得了不小的成绩,从长远来看我国超细磨粉机发展还要经历长期的过程,才能达到国际领先水平。就目前来说,我国内超细磨粉机生产行业还面临着核心技术、环保节能、人民币升值和成本上涨等种种难题。1、核心技术难题。核心技术决定了超细磨粉机

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

功能粉体材料作业

微纳粉末制备中的晶体结构控制 谌伟学号123511026 摘要:具有特殊形貌和尺寸的无机纳米/微米粉末的可控合成已成为现代材料合成和纳米器件制造过程中一个研究热点本,本文分析了研究晶体宏观形貌与内部结构关系的几种主要理论,分别从晶核的形成和长大,以及其影响因素与结晶模式,分析了粉末制备中控制晶体结构的机理。 关键词:微纳粉末;晶体结构;晶体习性;结晶控制 晶体形态的变化,受内部结构和外部生长环境的控制。晶体形态是其成份和内部结构的外在反映,一定成份和内部结构的晶体具有一定的形态特征,因而晶体外形在一定程度上反映了其内部结构特征。外部生长条件的变化通过内部结构影响晶体的形态,晶体形态随外界条件的变化而发生规律性的变化,因此可以通过晶体的外形特征来认识、掌握晶体的生长条件。在晶形分析过程中,内部结构对晶形的控制是基础,通过晶体结构特征对晶体形态作出比较准确的分析和推断,是进一步研究晶体形态与生长条件关系的前提。结晶学是研究晶体的生长、外部形貌、内部构造、化学组成、物理性质、人工制造和破坏以及它们之间关系的一门经典自然科学。结晶学是岩石学、矿物学、地质学和药物学等许多学科的基础,也是材料科学的重要基础科学之一。无论是材料制品的研究、生产制造还是实际应用,都离不开结晶学理论知识的指导。 1晶核的形成 任何晶体的生长都有晶核形成和晶核长大两个阶段,二者受不同因素控制。前一阶段热力学条件起着决定性作用,后一阶段主要受动力学条件控制。晶体的生长是一个相变过程,晶核的形成就是相变的开始。一个体系内能否形成晶核取决于相变进行的方向,而晶核的长大则取决于相变进行的限度。从热力学理论可知,只有在体系的相变驱动力足够大时,相变才能自发地进行,即自发进行的过程是在吉布斯自由能减小而相变驱动力增到足够大的过程。 (1)均匀成核作用:在均匀的没有相界面存在的体系内,自发地发生相变而形成晶核的作用,称为均匀成核作用。所谓均匀成核只是统计性的宏观看法。实际上体系内的某个局部在某瞬间总是存在着偏离平衡态的组成密度起伏或热起伏的。原始态的原子和分子有可能聚集在一起形成新相的质点集团,这种质点

超细粉体概念与特性

超细粉体的概念 世界化工网_https://www.360docs.net/doc/029646244.html, 任何固态物质都占有相应的空间,并且具有一定的形状和大小,即具有一定的体积.通常我们所说的粉末或细颗粒,一般是指大小为1mm一下的固态物质.当固态颗粒的粒径在0.1~10μm之间时,可称为微细颗粒,或称为亚超细颗粒/而当粒径达到0.1μm以下时,则称为超细颗粒.因此,超细粉体材料即指粒径在1~100nm范围内介于院子,分子与宏观物体之间的粉体材料. 超细颗粒按其大小可以分为三个档次: 大超细颗粒:粒径在0.1~0.01μm之间; 中超细颗粒:粒径在0.01~0.002μm之间; 小超细颗粒:粒径在0.002μm以下; 超细粉体的特性 超细粉体是介于大块物质和院子或分子之间的中间物质,是处于原子簇和宏观物体交接的区域.从微观和宏观的观点看.它即不是典型的微观系统,也不是典型的宏观系统,是介于二者之间的介观系统.它具有一些列新异的物理化学特征.这里涉及到体相材料中所忽略的活根本不具有的基本物理化学问题.由于超细粉体保持了原有物质的化学性质,而在热力学上又是不稳定的,所以对它

们的研究与开发,是了解微观世界如何过渡到宏观世界的关键.随着研究手段,特别是电子显微镜的迅速发展,使得可以清楚的看到超细颗粒的大小和形状,对超细粉体的研究更加深入了. 超细颗粒具有熔点低,化学活跃性高,磁性强,热传导性,对电磁波一场吸收等特性,使它具有广阔的应用前景。 超细颗粒的直径越小,其熔点的降低越显著。例如,块状银的熔点是900℃,而银的超细颗粒的熔点可降至100℃以下,能溶于热水;块状金的熔点为1064℃,而粒径为0.002μm的超细金粉其熔点仅为327℃.超细粉体的熔点低使得在较低的温度下可以对金属,合金或化合物的粉末进行烧结,制造各种机械部件.这样不仅能节省能耗,降低制造工艺的难度,更重要的是可以得到性能优异的部件.如高熔点材料WC,SiC,BN,Si3N4 等作为结构材料,其制造工艺需要高温烧结,当使用超细颗粒时,就可以再很低的温度下进行,并且不需要添加剂就可以获得高密度烧结体.这对高性能无机结构材料的广泛应用提供了更具现实意义的制造工艺. 超细颗粒具有很高的化学活性.这是由于它的直径越小,其总表面积就越大,表面能相应增加,使其化学活性增大.据此特性可作为高校催化剂,用于火箭固体燃料的助燃添加剂.研究表明,以

粉体加工技术

第一讲绪论 粉体工程(粉体加工技术):是一门在掌握超细粉碎理论基础上,以超细粉碎设备结构及工作原理、超细粉碎工艺流程为主要学习内容的课程。 一非金属矿产及加工利用简介 1非金属矿产发展 非金属矿产:是指金属矿产和燃料矿产以外,自然产出的一切可以提取非金属元素或具有某种功能可供人们利用的、技术经济上有开发价值的矿产资源。 (因此类矿产大多不是以化学元素,而是以有用矿物为利用对象,所以亦称为工业矿物与岩石。)在人类发展过程中,非金属矿产起了决定性作用。 古代:石器(工具)陶器青铜器(金属)非金属矿产受挫 近代:技术的进步和材料结构的多元化,促使了非金属矿产地位不断上升。 从科学技术角度看:已进入信息时代 从矿产资源利用看:进入一个以非金属资源为中心的综合开发时代。 (50年代开始,世界非金属矿产产值已经超过金属矿产产值,发达国家非矿产值超过金属矿产2~3倍。) 我国非金属矿产发展情况 我国是世界上最早利用非金属矿产的国家之一。但是近代由于封建制度的闭关自守及帝国主义国家列强的侵略掠夺,我国的非金属矿产发展落后于西方发达国家。 我国已发现有经济价值的非金属矿产有100多种,是世界上品种齐全、储量丰富的少数国家之一。 储量居世界前列的非金属矿产有:石膏、石墨、滑石、膨润土、石棉、萤石、重晶石等 储量在世界上有重要地们的非金属矿产有:高岭土、硅藻土、沸石、珍珠岩、石灰石等。非常具有发展潜力的非金属矿产有:硅灰石、长石、凸凹棒石、海泡石等。 80年代开始我国非金属矿产日益受到关注(非金属在世界市场走俏)近十几年来我国非金属矿产出口增长,已成为出口创汇的一个重要方面。 但我国非金属矿产加工技术――比较落后 出口的非金属矿产产品种类――原矿和初级产品 (许多工业部门和人们日常生活所需的非金属矿深加工产品还需进口,有的甚至是我们出口的原矿或初级产品加工而成。) 2非金属矿产开发利用新趋势 从目前国内外非金属矿产开发利用的特点,可反映出如下几个趋势: (1)已开发的老品种,其利用范围和开发深度不断扩大。 体现形式――大部分矿种已不限于一两个工业部门的少数用途,老矿种的新特 性新功能不断被发现并得到利用(如高岭土)。 (2)新开发的新矿种不断出现,且许多新矿种在应用方面表现出独特性能。 (3)由直接利用非金属矿原料或粗加工产品(选矿精矿及粉料产品)向深加工及制成品方向扩展。

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

超细粉体材料的制备技术现状及应用形势

文章编号:1008-7524(2005)03-0034-03 超细粉体材料的制备技术现状及应用形势* 房永广1,梁志诚2,彭会清3 (1.江西理工大学环建学院,江西赣州341000;2.化工部连云港设计研究院, 江苏连云港222004;3.武汉理工大学资环学院,湖北武汉430070) 摘要:综述了国内超细粉体材料的制备工艺、设备现状及进展,并介绍了超细粉体材料在电子信息、医药、农药、模具、军事、化工等方面的应用。 关键词:超细粉体;制备;综述 中图分类号:TD921+.4文献标识码:A 0引言 从上世纪50年代日本首先进行超细材料的研究以后,到上世纪80~90年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪60年代就对非金属矿物超细粉体技术、装备进行了研究,对于超细粉体材料的系统的研究则开始于上世纪80年代后期。 超细粉体从广义上讲是从微米级到纳米级的一系列超细材料,在狭义上讲是从微米级、亚微米级到100纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是21世纪重要的基础材料。1超细粉体的制备设备 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 1.1气流粉碎机 自从1892年美国人戈麦斯第一次提出挡板式气流粉碎机的模型并申请专利以来,经过百余年的发展,目前气流磨已经发展成熟,成为国内外用于超细粉体加工的主要设备。我国研制气流粉碎机开始于上世纪80年代初。目前气流粉碎机可分为圆盘式、对喷式、靶式、循环式、流化床式等。 气流粉碎机又称流能磨或喷射磨,由高压气体通过喷射嘴产生的喷射气流产生的巨大动能,使颗粒相互碰撞、冲击、摩擦、剪切而实现超细粉碎。粉碎出的产品粒度细,且分布较集中;颗粒表面光滑,形状完整;纯度高,活性大,分散性好。目前超细粉碎机有很多的机型,其中流化床式气流粉碎机是其效率最高的。其工作原理为物料进入粉碎室,超音速喷射流在下部形成向心逆喷射流场,在压差作用下,使磨底物料流态化,被加速的物料在多喷嘴的交汇点汇合,产生剧烈的冲击碰撞,摩擦而粉碎,被粉碎的细粉随气流一起运动至上部的涡轮分级机处,在离心力作用下,将符合细度要求的微粉排出。其优点是粉碎效率高,能耗 # 34 # *收稿日期:2004-09-24

超细粉体的应用及制备

应用与开发 超细粉体的应用及制备 刘宏英,李春俊,白华萍,李凤生 (南京理工大学超细粉体与表面科学技术研究所,江苏南京210094) 摘要:介绍了超细粉体在国民经济各领域的应用,研究了各种超细粉体的制备技术、分级技术及设备的性能特点,分析了国内外相关技术,对超细粉体技术今后的发展和研究方向提出了建议。 关键词:超细粉碎;制备;分级 中图分类号:T B44 文献标识码:A 文章编号:1002-1116(2001)01-0030-03 超细粉体技术是指制备与使用超细粉体及其相关的技术。其研究内容包括超细粉体的制备技术,分级技术,分离技术,干燥技术,输送、混合与均化技术,表面改性技术,粒子复合技术,检测及应用技术等。南京理工大学超细粉体与表面科学技术研究所在国内率先开展了易燃易爆材料、纤维材料、塑性材料和刚柔混合材料等特殊材料的超细粉碎、混合、乳化、分级与表面改性技术研究。经过多年的研究和实际应用,取得了一些成功的经验。目前该技术与设备已广泛用于军民各个领域,为国防现代化和国民经济的发展作出了一定的贡献。由于超细粉体技术是一门综合性很强的技术,涉及知识面很广,本文就超细粉体的应用、超细粉碎技术、分级技术作简要综述。 1 超细粉体应用的研究进展 超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开展展现了广阔的应用前景[1]。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多高新技术领域。 1.1 在材料领域的应用 超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料,可用其制造坦克和装甲车复合板,这种复合板较普通坦克钢板重量轻30%~50%,而抗冲击强度较之提高1~3倍,是一种极好的新型复合材料[2]。将固体氧化剂、炸药及催化剂超细化后,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高1~10倍[3],这对制造高性能火箭及导弹十分有利。1.2 在化工领域的应用 将催化剂超细化后可使石油的裂解速度提高1~5倍,赤磷超细化后不仅可制成高性能燃烧剂,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中,其固体填料如:重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。 1.3 在生物医药领域的应用 医药经超细化后,外用或内服时可提高吸收率、疗效及利用率,适当条件下可改变剂型,如微米、亚微米及纳米药粉可制成针剂使用[4]。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。 南京理工大学超细粉体与表面科学技术研究所已成功地为上海XX医药公司、常州XX公司及浙江XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药,产品性能提高,达到国际标准,因而大 第29卷第1期2001年2月 江苏化工 Jiangsu Chem ical Industry V ol.29N o.1  Feb.2001 收稿日期:2000-10-18 作者简介:刘宏英(1954年出生),女,江苏南京人,高级工程师,1980年毕业于华东工学院机械制造专业,长期从事超细粉体物料的制备、粉碎、分级等技术研究,已发表论文数篇。

超细粉体洗涤

超细粉体洗涤 超细粉体(纳米粉体)洗涤纯化 1、超细粉体(纳米粉体)洗涤纯化 ?纳米氧化钛、氧化锌、氧化铝等氧化物的洗涤 ?纳米钛酸钡、碳酸钡等无机盐的洗涤 ?纳米抗菌材料的洗涤 ?纳米金刚石、银粉等的洗涤 ?纳米高岭土、蒙矿石等矿石的洗涤 ?纳米药粉的洗涤 ?纳米钛硅分子筛的洗涤 ?纳米催化剂的洗涤、浓缩 1.1 超细粉体陶瓷膜处理技术 在化工等领域,经常面临粉体颗粒悬浮液的固液分离过程。随着科技的进步,粒子的尺度逐渐趋于超细化,超细粒子的固液分离,特

别是固液非均相高效分离极为困难。由于微粒的布朗运动,传统的重 力沉降几乎无法使用。 以滤布为过滤介质的各类过滤技术,一方面由于过滤介质的制约,对超细颗粒过滤的截留性能差,产品流失严重,另一方面它是靠滤饼层颗粒的架桥作用来实现颗粒的截留,如果颗粒越小,形成的滤饼层就越致密,随着滤饼层的不断增厚,过滤阻力大,过滤速度越来越小,滤饼的洗涤也十分困难,洗涤效果差,操作劳动强度大。离心分离难以实现大型化,一般的工业离心机只能分离粒径在微米级的颗粒,而且离心洗涤操作复杂,劳动强度大,效率低。水力旋留器也是依靠离心力的作用,使固体颗粒进行分离,但是主要用于液相湿法分级,而且其分离的临界粒径一般在 10 微米以上。 近年来发展的无机陶瓷膜在液体分离领域应用日益广泛,它独特的错流过滤方式优异的物理、化学性能和机械强度,为超细粉体的生 产提供了新型的分离与洗涤技术。 无机陶瓷膜具有耐腐蚀,机械强度高,孔径分布窄等突出优点,并且清洗方便,膜通量高,使用寿命长。处理粉体洗涤和浓缩时具有操作稳定,通量较高,出水水质好,占地面积小。 1.2 陶瓷膜回收硫酸法生产钛白粉中废酸和废水中的钛白颗粒实 例: 钛白粉是重要的化工产品,可广泛地用于涂料、塑料、造纸、化纤、橡胶、搪瓷等行业。硫酸法钛白粉生产工艺中最大的问题在于

金属超细粉体制备的研究进展

金属超细粉体制备的研究进展 摘要:简要介绍了超细粉体的制备方法,并介绍了电爆炸法和电弧等离子法制备AI、Mg 粉体的工艺技术及其研究进展。这2种方法具有产品颗粒直径分布窄、粒度大小易于控制和调节、产品纯度高、便于收集、无污染等优点,且易于工业化。它们是目前生产金属细颗粒较环保和成本较低的方法。 关键词:水反应金属燃料;Al;M g;粉体;电爆炸法;电弧等离子法 1. 引言 俄罗斯“暴风雪”超高速鱼雷利用“超空泡”(supercavitation)原理突破了水下航行体的速度限制.达到了200节航速【1】。。其所用动力推进系统为水冲压发动机,该发动机使用的燃料是“水反应金属燃料”,该鱼雷具体使用的是“Mg基水反应金属燃料”【2】。“暴风雪”鱼雷的出现引起了美、德、日等国对水冲压发动机和水反应金属燃料的极大关注,并展开大规模的研究。水反应金属燃料的优点是不仅能量特性高,而且具有充分利用雷外海水作为能源的特点,能够显著提高燃料单位体积的能量密度,使鱼雷超高速、远航程航行成为可能【3】。 目前研究所采用的水反应金属燃料的主要原料有:活性金属如Al、Mg、B、Ti、Li、Na、K、zr、w等,金属氢化物如AlH 3、M gH 2、B 2H。、ZrH:及LiAIH。及一些活性较高的金属氧化物和金属碳化物等。考虑到成本、毒性、能量密度等各方面的问题,Mg和Al 是最佳选择14】。与Mg基金属水反应燃料相比,A1的成本更低,来源更广,稳定性更好,最主要的是Al基燃料的比冲要大于Mg基燃料的比冲【5】。 对于金属燃料能否用于水冲压发动机的要求,除了看其能量密度能否满足要求外,还要看其粒度、纯度能否满足点火要求等;而决定其点火温度的主要因素是金属粒子粒度的大小。若想降低或选择合适的金属粒子的点火温度,就必须制备出超细颗粒(包括微米级、亚微米级和纳米级粒子)的金属粒子。 超细粒子的制备方法 对于超细粒子的制备已经报道了许多方法,从这些报道来看,超细粉体的制备方法可根据反应体系的不同而分为气相法、液相法和固相法【6】。 气相法一般是指用气体原料或将原料蒸发成气体,然后通过化学反应或物理作用再生成超细颗粒的方法。这类方法中包括气相化学反应、激光合成法、电爆炸法、惰性气体冷凝法和电弧等离子体法。 气相法制备金属超细粒子的特点是产品纯度高、分散性良好、粒子粒径分布窄、粒径小。此外,通过控制气氛可以制备液相法难以制备的金属、碳化物、氮化物、硼化物等非氧化物超细粉体【7】o 液相法(也称溶液反应法)是当前实验室和工业上广泛采用的合成高纯超细粉体的方法。其主要优点是能精确控制化学组成,易于添加微量有效成分,超细粒子形状和尺寸也较容易

超细粉体在材料领域的应用

超细粉体在材料领域的应用 超细粉体在国民经济及社会生活各个领域中都具有举足轻重的作用,下面对超细粉体在材料领域的应用进行简单介绍。 超细颗粒表面能高,表面原子数多,这些表面原子近邻配位不全,活性大,因此超细颗粒熔化时所需的内能较小,这使其熔点急剧下降,一般为块状材料熔点的30%一50%,这种性质可使其烧结温度显著降低,又由于超细粉体具有流动性大、渗透力强、烧结收缩磁性大等烧结特性,可以作为烧结过程的活性剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度,例如普通钨粉需在3000℃高温时烧结,而当加入0.1%-0.5%的超细镍粉后,烧结成型温度可降低到1200-1311℃。 超细粉体可以显著改善陶瓷材料的显微组织,优化其性能。通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。超细颗粒压成块材后,由于颗粒之间界面的高能量,在较低温度下烧结就能达到致密化的目的,且性能优异,因此特别适用于电子陶瓷的制备,所制备的陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨等性能,而且还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这将成为超细材料开拓应用的一个崭新领域。 超细粉体可制成特种功能材料,例如,将超细三氧化二铝和超细二氧化错烧结制成的材料,具有高硬度、超耐磨等特性,广泛用于特种模具行业及轴瓦和耐磨件的内衬。装甲材料通常是采用各种合金来提高其抗冲击性能和韧性,以防御炮弹的攻击,将超细 金属材料采用新工艺烧结后,可制成新型高强度超硬材料,用于装甲防护。用超细材料制成的耐高温、散热、导电、防腐涂层可广泛用于宇航飞行器、机场、军用码头、军用油库、弹药库、舰船等特种场合的防护。 超细粉体具有高比表面积、高活性、特殊物理性质,致使它对外界环境(如温度、光、湿气等)十分敏感,外界环境的改变会迅速引起其表面或表面离子价态和电子运输的变化,即引起其阻值的显著变化,超细粉体的这种特有性能使之成为在传感器方面最有应用前途的材料,可研制出响应速度快、灵敏度高、选择性好的各种不同用途的传感器。仅需微量的超细颗粒就可分发挥很大的作用。利用铁、钴、镍等金属超细离子制备高密度磁带,记录密度可达107- 108位/in(in=25.4mm),降低噪音,提高信噪比。利用超细颗粒对光强烈的吸收能力,可做防紫外线、防雷达的隐身材料,电磁波、光波吸收材料等。 在特种材料领域,超细粉体也有十分重要的应用。如赤磷是强可燃物,但超细赤磷可以制成发火点低、灵敏度高的高性能燃烧剂和烟火剂。当赤磷超细化到l0um以下后可以和其他有关的有机物合成高性能阻燃材料。硫磺超细化后可以作为农药载体,提高农药在水中的悬浮性,制造高性能的农药;用在制糖工业作处理剂时,可以制得性能更好的白糖。炸药超细化后可使燃料或爆炸性能更敏感更好,当以炸药作为燃气发生器的气源时,颗粒越小,发火和起爆就越容易,这样可以确保汽车行驶过程发生事故时气囊能及时充气,确保驾乘人员安全。强氧化剂高氯酸氨是固体火箭推进剂的一种重要成分,当其颗粒直径在100--200 u m时,固体推进剂的燃烧速度达10-20 mm/s;而当其颗粒超细化到粒径小于2um 时,在相同条件下固体推进剂的燃速可达80-100 mm/s 。 超细粉体的特殊的光学性质和光学化学性质,在口常生活和高科技领域也具有广泛的应用前景。己有的研究表明,利用半导体超细粉体可以制备出光电转化效率更高的,即使在阴雨天也能正常工作的新型太阳能电池,这种新型的太

常用无机粉体材料种类及作用

常用无机粉体材料种类及作用 目前,在中国每年至少有400万吨的无机粉体材料作为原料的一部分被用于塑料制品的生产。用无机粉体材料替代部分石油产品,一方面,每年可以节约数百万吨石油;另一方面,对于所生成的塑料制品而言,不但有利于降低原材料成本,而且可以使填充塑料材料的某些性能按照预定的方向得到改善,从而提高塑料制品的巿场竞争力。 常用无机粉体材料种类及作用 据统计,中国500余家碳酸钙厂家生产的约500万吨产品中,有一半就是销往塑料行业的。此外,滑石粉、煅烧高岭土、硅灰石粉等多种无机粉体材料也被广泛应用,有的甚至成为功能性塑料材料不可缺少的组成部分。 碳酸钙 碳酸钙就是塑料加工时用得最广、用量最大的无机粉体填料。据中国无机盐工业协会钙镁分会统计,每年用于塑料填充的碳酸钙总量在二百多万吨,就是各种用途中所占份额最大的,约50%左右。 根据加工方法不同,碳酸钙分为轻质与重质两种。轻质碳酸钙(简称轻钙)就是由石灰石经煅烧、消化、碳化而成的,其间经历了化学反应,而重质碳酸钙就是经研磨(干法或湿法)而成的,只有粒径大小的变化而无化学反应过程。目前在塑料薄膜中使用的碳酸钙都就是1250目的重质碳酸钙,已大量用于PE包装袋的生产,在农用地膜中因透光性受到影响,虽然可以使用,但添加量较小。 1) 重钙的细度对PE薄膜力学性能的影响十分明显,见表1。 表1 重质细度对PE薄膜力学性能的影响 2) 碳酸钙粒子的分散对PE薄膜的性能具有决定性作用 PE薄膜生产企业对重钙的添加量十分关心,希望添加量越多越好,但同时力学性能、耐老化性能、透光性都不要受到过大的影响。特别就是在农用地膜中到底能够使用多少碳酸钙就是非常值得努力探讨的问题。宝鸡云鹏塑料科技有限公司对此进行了有益的探索,并取得喜人的成果。表2列出纯LLDPE地膜及分别添加10%、15%、20%、33%云鹏公司生产的纳米改性塑料复合材料的LLDPE地膜的力学性能。

(完整word版)粉体技术在药物制剂中如何提高制剂质量

粉体技术在药物制剂中如何提高制剂质量 多数固体制剂在制备过程中需要进行粒子加工以改善粉体性质,从而满足产 品质量和粉体操作的需求。粉体技术能为固体制剂的处方设计、生产过程以及质量控制等诸方面提供重要的理论依据和试验方法。因此,对粉体技术的了解对于制药工程技术人员具有重要的实际意义。本文从多角度阐述了粉体技术对固体 药物制剂的影响,并介绍了近年来两种粉体新技术的发展,内容翔实,有助于读者对粉体技术的进一步了解和在实际生产过程中好地应用。 ——编者按 粉体技术在药物制剂中的应用起步较晚,使制剂过程中的粉体操作带有一定的盲目性和经验化,随着现代科学的发展和GMP规范化的广泛实施,粉体的理论和处理方法不断地被引入固体物料的各种单元操作中,使固体药物制剂的研究、开发和生产从盲目性和经验模式走上量化控制的科学化、现代化轨道,引起了药学工作者的广泛兴趣和重视。 ■粉体性质与制剂质量关系密切 固体制剂的质量控制方面,重量差异、混合均匀度、片剂的强度等多与粉体操作有关,而崩解、溶出度和生物利用度则与药物处方中各种物料的粉体性质有关。 ★孔隙率增大促进崩解 固体制剂的最终命运是崩解、释药和被人体吸收,其中崩解是药物溶出及发挥疗效的首要条件,而崩解的前提则是药物制剂必须能被水溶液所润湿。因此水渗入片剂内部的速度与程度对崩解起到决定性作用,而又与片剂的孔隙径、孔 隙数目以及毛细管壁的润湿性等有关。片剂的孔隙率不但与物料性质有关,即易产生塑性变形的物质压片后孔隙率小难以崩解,弹性变形的物料压缩后孔隙率较大,易于崩解;还与压缩过程有关,在一定的压力范围内,压力越大,压缩时间越长,片剂的孔隙率越小,越难以崩解。物料的润湿性很差,将很难使水通过毛细管渗入到片剂内部,则片剂难以崩解。 常用于润滑剂的硬脂酸镁具有较强的疏水性,用量不当会严重影响片剂的崩解度,必要时可加入表面活性剂以改善片剂的润湿性,促进水的渗入而加快崩解速度和溶出度。如用阿拉伯胶作黏合剂,喷雾干燥,可提高水杨酸的溶出度;磺胺药物加泊洛沙姆可显著增加溶出度;脂溶性药物同乳糖混合,也可提高药物的溶出度。 ★降低粒径提高溶出度 药物的溶出度除与药物的溶解度有关外,还与物料的比表面积有关,一定温度下固体的溶解度和溶解速度与其比表面积成正比。而比表面积主要与药物粉末的粗细、粒子形态以及表面状态有关,对片剂和胶囊剂来说与崩解后的粒子状态有关。因此药物粒度大小可以直接影响药物溶解度、溶解速度,进而影响到临床疗效。例如,微粉化醋酸炔诺酮比未微粉化的溶出速率要快很多,在临床上微粉化的醋酸炔诺酮包衣片比未微粉化的包衣片活性几乎大5倍。 对难溶性药物或溶出速率很慢的药物来说,药物的溶出过程往往成为吸收的限速过程。药物的粒径降低时其比表面积增大,药物与介质的有效接触面积增加,

超细粉体存在的技术问题

超细粉体加工中的几个技术问题 摘要:介绍了超细粉体的应用、制备设备、发展趋势,以及超细粉体在加工发面的几个技术问题。 关键词:超细粉体;制备; 应用;分散 1.超细粉体概述 1.1定义 对于超细粉体的粒度界限,目前尚无完全一致的说法。各国、各行业由于超细粉体的用途、制备方法和技术水平的差别,对超细粉体的粒度有不同的划分,例如日本将超细粉体的粒度定为0.1μm以下。最近国外有些学者将100μm~1μm的粒级划分为超细粉体,并根据所用设备不同,分为一级至三级超细粉体。对于矿物加工来说,我国学者通常将粒径小于10μm的粉体物料称为“超细粉体”。 1.2超细粉体的特性 目前,对超细粉体的特性还没有完全了解,已经比较清楚的特性可归纳为以下几点:(1)比表面积大。由于超细粉体的粒度较小,所以其比表面积相应增大,表面能也增加。比表 面积大,使其具有较好的分散性和吸附性能。 (2)活性好。随着粒度的变小,粒子的表面原子数成倍增加,使其具有较强的表面活性和催化 性,可起补强作用,具有良好的化学反应性。 (3)熔点低。许多研究表明,物质的粒径越小,其熔点就越低。 (4)磁性强。超细粉体的体积比强磁性物质的磁畴还小,这种粒子即使不磁化也是一个永久磁 体,具有较大的矫顽力,是制造高密度记录磁带的优良原料。 (5) 光吸收性和热导性好。超细粉体特别是超细金属粉体,当粒度小于100nm以后,大部分 呈黑色,且粒度越细色越黑,这是光完全被金属粉体吸收的缘故。 1.3超细粉体的制备方法 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 2超细粉体的应用 超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开发展现了广阔的应用前景。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多技术领域。 2.1化工、轻工行业 超细粉体可用作填料填充PP和PVC等塑料,降低原料成本,改善制品性能。将石墨加工成GRT节能减磨添加剂,可改善机械润滑性,节约汽车燃油,减少大修次数;超细高岭土作纸张填料,能提高纸的白度,提高产品档次;另外还可将许多超细粉体制成高效催化剂,应用于石油工业的催化裂化。目前还结合低温、冷冻及脆化技术,将橡胶、塑料和合成树脂等有机高分子材料加工成有机物超细粉体。 2.1微电子工业 超细粉体在微电子行业中应用的典型代表有电子浆料(TiO2、BaTiO3、Cu)、磁记录材料(γ--Fe2O3)及电子陶瓷粉料(BaTiO3)。另外还有传感器(SnO2)和光、电波吸收材料及

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

相关文档
最新文档