线性变换练习题

线性变换练习题
线性变换练习题

线性变换习题

一、填空题

1. 设σ是3

P 的线性变换,(,,)(2,4,3)a b c b c a b a σ=+-,,,a b c P ?∈,1(1,0,0),ε=

2(0,1,0),ε=3(0,0,1)ε=是3P 的一组基,则σ在基123,,εεε下的矩阵为

_______________,又3123,P αεεε=-+∈则()σα=_________。

2. 设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n

P 的线性变换σ:()A σξξ=,

n P ξ∈,则()1dim (0)σ-= ,()dim ()n P σ= 。

3. 设P 上三维列向量空间V 的线性变换σ在基123,,ααα下的矩阵是11220

1121-??

?

? ?-??

,则σ在基213,,ααα下的矩阵是 。

4. 如果矩阵A 的特征值等于1,则行列式||A E -= 。

5. 设A =????

?

???

??21

1

12

1112

,()X AX σ=是P 3上的线性变换,那么σ的零度= 。

6. 若n n

A P

?∈,且2

A E =,则A 的特征值为 。

7. 在[]n P x 中,线性变换D (()f x )'()f x =,则D 在基211,,,

,n x x x -下的矩阵

为 。 8. 在22

P

?中,线性变换10:20A A σ??→

???在基121001,,0000E E ????

== ? ?????

300,10E ??= ??? 40001E ??

= ???下的矩阵是 。

9. 设321502114A ?? ?

= ? ???

的三个特征值为1λ,2λ,3λ,则1λ+2λ+3λ= ,

1λ2λ3λ= 。

10. 数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为 维线性空间,

它与 同构。

11. 已知n 阶方阵A 满足2

A A =,则A 的特征值为 。 12. 已知3阶矩阵A 的特征值为1,2,3,则=||A 。

13. 设σ为数域P 上的线性空间V 的线性变换,若σ是单射,则1(0)σ-= 。

14. 设三阶方阵A 的特征值为1,2,-2,则|2|A = 。

15. 在[]n P x 中,线性变换D (()f x )'()f x =,则D 在基211,2,3,

,n x x nx -下的矩阵

为 。

16. 已知线性变换σ在基123,,εεε下的矩阵为11121321

222331

32

33a a a a a a a a a ??

?

? ???

,则σ在基231,,εεε下的矩阵为 。

17. 设P 上三维列向量空间V 的线性变换σ在基123,,ααα下的矩阵是11220

1121-??

?

? ?-??

,则σ 在基213,,ααα下的矩阵是 。

18. 设线性变换σ在基21,εε的矩阵为???

?

??1011,线性变换τ在基12,εε下的矩阵为???

?

??-1101,那么στ+在基21,εε下的矩阵为 . 19. 已知n 阶方阵A 满足2

A A =,则A 的特征值为 。

20. 已知线性变换σ在基123,,εεε下的矩阵为11

121321

222331

32

33a a a a a a a a a ??

?

? ???

,则σ在基321,,εεε下的 矩阵为 。

21. 在3

R 中,若向量组1(1,1,0)t α=+,2(1,2,0)α=,23(0,0,1)t α=+线性相关,则

t = 。

22. 若线性变换σ在基123,,εεε下的矩阵为211011121-?? ?

? ???

,则σ在基321,,εεε下的矩阵为

矩阵为 。 23. 若n n

A P

?∈,且2

A E =,则A 的特征值为 。

二、选择题

1. 下列哪种变换一定是向量空间[]n F x 的线性变换( )。

A .()()()x x f x f +=δ

B .()()()dx x f x f ?=

δ

C .()()()x f x f '=δ

D .()()()()x f x f x f +=2

δ

2. 当n 阶矩阵A 适合条件( )时,它必相似于对角阵。

A .A 有n 个不同的特征向量

B .A 是三角矩阵

C .A 有n 个不同的特征值

D .A 是可逆矩阵 3. 设δ是向量空间V 上的线性变换,且

δδ22=,则δ的所有特征值为( )。

A .2

B .0,2

C .0

D .0,2,1 4. 设σ是3维向量空间上的变换,下列σ中是线性变换的是( )。

A .σ()321,,x x x =()

333

123,,x x x B .σ()321,,x x x =()33221,,2x x x x x --

C .σ()321,,x x x =()0,sin ,cos 21x x

D .()123,,x x x σ=()

2

1,0,0x

5. 设12,,

,r ααα是向量空间V 的线性相关的向量组,σ是V 的一个线性变换,

则向量组12,,

,r ααα在σ下的像12(),(),,()r σασασα( )

。 A .线性无关 B .线性相关 C .线性相关性不确定 D .全是零向量 6. n 阶方阵A 有 n 个不同的特征值是A 可以对角化的( )。

A .充要条件

B . 充分而非必要条件

C .必要而非充分条件

D . 既非充分也非必要条件 7.

σ是向量空间V 的线性变换且

2σσ=,则σ的特征值( )。

A .只有1

B .只有1-

C .有1和1-

D .有0和1

8. 如果方阵A 与对角阵111D ??

?= ? ?-??

相似,则10

A =( )。 A . E

B . A

C . E -

D . 10E

9. 设A 、B 为n 阶矩阵,且A 与B 相似,E 为n

阶单位矩阵,则( )。

A .E A E

B λλ-=- B .A 与B 有相同的特征向量和特征值

C .A 与B 相似于同一个对角矩阵

D .B A =

10. 设4级矩阵A 与B 相似,B 的特征值是1,2,3,4,则A 的行列式是( )。

A .-24

B .10

C .24

D .不能确定

11. 设σ是n 维线性空间V 的线性变换,那么下列说法错误的是( )。

A.σ是单射}0{)(=?σKer

B.σ是满射V =?)Im(

σ C.σ是双射}0{)(=?σKer D.σ是双射?σ是单位映射

12. 设A 为3阶矩阵,且E A E A E A 2,,-+-均不可逆,则错误的是( )。

A.A 不相似于对角阵

B. A 可逆

C. 0||=+E A

D. 0||=-E A 13. 设A 为3阶矩阵,且其特征多项式为)2)(1)(1()(-+-=λλλλf ,则错误的是

( )。

A.A 相似于对角阵

B. A 不可逆

C. 0||=+E A

D. 0||=-E A 14. n 维线性空间V 的线性变换可以对角化的充要条件是( )。

A .σ有n 个互不相同的特征向量

B .σ有n 个互不相同的特征根

C .σ有n 个线性无关的特征向量 D. σ不存在n 个互不相同的特征根 15. 设σ是3维向量空间上的变换,下列σ中是线性变换的是( )。

A .σ()321,,x x x =()

333

123,,x x x B .σ()321,,x x x =()122332,5,6x x x x x ++

C .σ()321,,x x x =()12cos ,,0x x

D .()123,,x x x σ=()

22

13,0,x x

16.

设δ是向量空间V 上的线性变换,且2

E δ=,

则δ的所有特征值为( )。

A .2

B .-1,1

C .0

D .0,2,1 17. n 维线性空间V 的线性变换σ可以对角化的充要条件是( )。

A .

σ有n 个互不相同的特征向量 B . σ有n 个互不相同的特征根

C . σ有n 个线性无关的特征向量

D .σ是可逆线性变换

18. 2. 设矩阵A 的每行元素之和均为1,则(

)一定是E A A 232

+-的特征值。

A . 0

B . 1

C . 2

D . 3

19. 设σ是3维向量空间上的变换,下列σ中是线性变换的是( )。

A .σ()321,,x x x =()

23

123,,x x x B .σ()321,,x x x =()123322,,x x x x x --

C .σ()321,,x x x =()123cos ,sin ,sin x x x

D .()123,,x x x σ=()

2

12,,0x x

20. 设()L V σ∈,则下列各式成立的是( )。

A . dim Im dim Ker n σσ+=

B .Im Ker V σσ+=

C . Im Ker V σσ⊕=

D .Im {0}Ker σ

σ=

三、计算题

1. 设3[]R x 表示实数域上的次数小于3的多项式,再添上零多项式构成的线性空间,而

1()1f x x =-,22()1f x x =+,23()2f x x x =+是3[]R x 的一组基,线性变换σ满足

21()2f x x σ=+,2()f x x σ=,23()1f x x x σ=++

(1)求σ 在已知基下的矩阵;

(2)设2()123f x x x =++,求()f x σ。

2. 设σ是二维列向量空间2

P 的线性变换:设12

2x x P x ??=∈ ???,定义σ1111x x -??= ?-??

(1) 求值域()

2

P σ的基与维数;(2)求核1(0)σ-的基与维数。

3. 设线性变换σ在基123,,ααα下的矩阵是111222111A -??

?

=- ? ?--??

(1) 求矩阵A 以及线性变换σ的特征值与特征向量;

(2)

判断σ是否可以对角化(即线性变换σ是否在某组基下的矩阵为对角形),若不能对角化,说明理由;若可以对角化,求可逆阵T ,使1

T AT -为对角形。

4. 令3

R 表示实数域R 上的三元列向量空间,令111111222A ??

?= ? ???

,若3R β?∈,作变换

()A σββ=。

(1) 证明σ为3

R 上的线性变换;(2)求ker()σ及其维数;(3)求Im()σ及其维数。

5. 设矩阵???

?

?

??-=000000121A ,

(1) 求A 的特征值和特征向量;

(2)

求可逆矩阵P ,使AP P 1

-为对角矩阵。

6. 令3

R 表示实数域R 上的三元列向量空间,110011121A ?? ?= ? ???,1100ε?? ?= ? ???,2010ε??

?= ? ???

3100ε?? ?= ? ???

(1) 若112223331,,αεεαεεαεε=-=-=+,证明123,,ααα为3

R 的一组基; (2) 求123,,εεε到123,,ααα的过渡矩阵;

(3) 若3R β?∈,作变换()A σββ=,证明σ为3

R 上的线性变换; (4) 求ker()σ及其维数; (5)

求Im()σ及其维数。

7. 设σ是3

R 的线性变换,12312323123(,,)(2,,2)x x x x x x x x x x x σ=+-++-。 (1)

求ker()σ及其维数;(2)求Im()σ及其维数。

8. 设线性变换σ在基123,,ααα下的矩阵是111222111A -??

?

=- ? ?--??

(1) 求矩阵A 以及线性变换σ的特征值与特征向量;

(2)

判断σ是否可以对角化(即线性变换σ是否

在某组基下的矩阵为对角形),若不能对角化,说明理由;若可以对角化,求可逆阵T ,使1

T AT -为对角形矩阵。

9. 令3

R 表示实数域R 上的三元列向量空间,令111012123A ??

?= ? ???

,若3R β?∈,作变换

()A σββ=。

(1)证明σ为3

R 上的线性变换;(2)求ker()σ及其维数;(3)求Im()σ及其维数。

10. 设123,,εεε为V 的基,且线性变换σ在此基下的矩阵为100350361A ??

?

=-- ? ?--??

(1)求σ的特征值与特征向量; (2)求可逆矩阵T ,使AT T

1

-是对角矩阵。

11. 设三维线性空间V 的线性变换σ在基321,,εεε下的矩阵为???

?

? ??--=101110211A 。

(1)求σ的值域及其维数;(2)求σ的核及其维数。

12. 设3[]R x 表示实数域上的次数小于3的多项式,再添上零多项式构成的线性空间,而

1()1f x x =-,22()1f x x =+,23()2f x x x =+是3[]R x 的一组基,线性变换σ满足

21()2f x x σ=+,2()f x x σ=,23()1f x x x σ=++

(1) 求σ在已知基下的矩阵;

(2)

设2()123f x x x =++,求()f x σ。

13. 给定3

P

的两组基

123(1,0,1),(2,1,0),(1,1,1)εεε===;1(1,2,1),η=-

23(2,2,1),(2,11)ηη=-=--。定义线性变换σ:(),1,2,3i i i σεη==。

(1) 写出由基123,,εεε到基123,,ηηη的过渡矩阵; (2) 写出σ在基123,,εεε下的矩阵; (3)

写出σ在基123,,ηηη下的矩阵。

14. 设线性变换σ在基123,,εεε下的矩阵是321222361A -?? ?

=-- ? ?-??

,求可逆矩阵T ,使得

1T AT -为对角形矩阵。

15. 设????

?

?????=101020101A 。 (1)求A 的全部特征值; (2)求A 的属于每个特征值的特征向量; (3)求一个可逆矩阵X ,使1

X AX -为对角形。

16. 设()L V σ∈,且σ在V 的基ααα123,,下的矩阵A = 1222242

42----?? ?

??

??

。问

(1) σ是否可以对角化?

(2) 若σ能对角化,求出V 的一个基,使σ在此基下的矩阵为对角矩阵。

17. 设数域P 上三维线性空间V 的线性变换σ在基321,,εεε下的矩阵A ???

?

? ??----=163053064

(1)

求σ在基32122112,2εεεηεεη++-=+-=,3213εεεη++-=下的矩阵;

(2)

设3212εεεα+-=,求()σα在基

321,,ηηη下的坐标。

四、证明题

1. 设δ是数域F 上的n 维向量空间V 的线性变换,又n ααα,,,21 是V 的一个基,证明

()()()()()12,,n V L δδαδαδα=。

2. 设δ,τ都是向量空间V 的线性变换,S 是δ,τ的不变子空间,证明S 也是δτ的不

变子空间。

3. 设σ是数域P 上线性空间V 的线性变换且=2

σ

σ。证明:

(1)σ的特征值为1或0; (2)1(0){()|}V σασαα-=-?∈; (3)1(0)()V V σσ-=⊕。 4. 设12,W W 是向量空间V 的两个子空间,σ是V 的一个线性变换,

证明:若12,W W 都是σ的不变子空间,则12W W +也是σ的不变子空间。

5. 设σ是向量空间V 的一个线性变换,12,W W 都是σ的不变子空间。证明:12W W ?也是σ的不变子空间。

6. 证明:线性变换的属于不同特征值的特征向量线性无关。

7. 设σ是数域P 上的n 维线性空间V 的线性变换,且2

E σ=(恒等变换)。 (1) 证明:σ的特征值只能为1或-1; (2)

用11,-V V 分别表示σ的属于特征值1和1-的特征子空间,证

明:11-⊕=V V V 。

8. 设σ为数域P 上的n 维线性空间V 的线性变换。证明:n Ker =+σσdim Im dim 。

9. 设,([])L P x στ∈,且()

[]f x P x ?∈,(())(),(())()f x f x f x xf x στ'==.证明I σττσ-=.其中I 为恒等变换。

t检验习题及答案

例题7.5一家食品生产企业以生产袋装食品为主,每天的产量大约为8000袋左右。按规定每袋的重量应为100g。为对产品质量进行检测,企业质检部门经常要进行抽检,以分析 每袋重量是否符合要求。现从某天生产的一批食品中随机抽取25袋,测得每袋重量如表7—2所示。 表7—2 25袋食品的重量 112.5 101.0 103.0 102.0 110.5 102.6 107.5 95.0 108.8 115.6 100.0 123.5 102.0 101.6 102.2 116.6 95.4 97.8 108.6 105.0 136.8 102.8 101.5 98.4 93.3 已知产品重量的分布,且总体标准差为10g,试估计该天产品平均质量的置信区间,以为95%建立该种食品重量方差的置信区间。 解:已知δ=10,n=25,置信水平1-α=95%,Z x/2=1.96

案例处理摘要 案例 有效缺失合计 N 百分比N 百分比N 百分比 重量25 100.0% 0 .0% 25 100.0%

描述 统计量标准误 重量均值105.7600 1.93038 均值的95% 置信区间下限101.7759 上限109.7441 5% 修整均值104.8567 中值102.6000 方差93.159 标准差9.65190 极小值93.30 极大值136.80 范围43.50 四分位距9.15 偏度 1.627 .464 峰度 3.445 .902 重量 重量 Stem-and-Leaf Plot Frequency Stem & Leaf 1.00 9 . 3 4.00 9 . 5578 10.00 10 . 0111222223 4.00 10 . 5788 2.00 11 . 02

第7章 线性变换

第7章 线性变换 §1 线性变换的定义 线性空间V 到自身的映射,通常叫做V 的一个变换,现在讨论的线性变换是线性空间的最简单也是最重要的一种变换。 一、线性变换的定义 定义7.1 设V 为线性空间,若对于V 中的任一向量α,按照一定的对应规则T ,总有V 中的一个确定的向量β与之对应,则这个对应规则T 称为线性空间V 中的一个变换,记为 βα=)(T 或 )(,V T ∈=αβα, β称为α的象,α称为β的原象。象的全体所构成的集合称为象集,记作T (V ),即 T (V )={}V T ∈=ααβ|)(。 由此定义可见,变换类似于微积分中的函数,不过微积分中的函数是两个实数集合间的对应,而这里的变换则是线性空间中的向量与向量之间的对应。 定义7.2 线性空间V 中的变换T ,若满足条件 (1) 对任意V ∈βα,有 (2) )()()(βαβαT T T +=+; (3) 对任意V ∈α及数域P 中任意数k 有 )()(ααkT k T =,

则称变换T 为V 中的线性变换。 例7.1 线性空间V 中的恒等变换或称单位变换E ,即 E )()(V ∈=αα α 以及零变换?,即 ?)(0 )(V ∈=αα 都是线性变换. 例7.2 设V 是数域P 上的线性空间,k 是P 中的某个数,定义V 的变换如下: V k ∈→ααα,. 这是一个线性变换,称为由数k 决定的数乘变换,可用K 表示.显然当1=k 时, 便得恒等变换,当0=k 时,便得零变换. 例7.3 在线性空间][x P 或者n x P ][中,求微商是一个线性变换.这个变换通常用D 代表,即 D ()(x f )=)(x f '. 例7.4 定义在闭区间[]b a ,上的全体连续函数组成实数域上一线性空间,以),(b a C 代表.在这个空间中变换 ?()(x f )=?x a dt t f )( 是一线性变换.

线性变换习题

第四章线性变换 习题精解 1.判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V中,A ,其中V是一固疋的向量; 2) 在线性空间V中,A 其中V是:一固疋的向量; (X i,X2,X3) (X;,X2 X3,X 鳥? 3) 在P3中,A 4) 在P3中,A(X i,X2, X3) (2x i X2,X2 X3, X i); 5) 在P[X]中, A f (X) f (X 1) 6)在P[X]中,A f(x) f(X o),其中X0 p是一固定的数; 7)把复数域上看作复数域上的线性空间, A 8)在P"中,AX=BXC其中B,C p n n是两个固定的矩阵. 解1)当0时,是;当0时,不是? 2)当0时,是;当0时,不是. 3)不是?例如当(1,0,0), k 2 时,k A( ) (2,0,0), A(k ) (4,0,0), A(k ) k A(). 4)是?因取(X i,x2,x3), (%,丫2,丫3),有 A( ) = A (x i y i,X2 y2,X3 y3) = (2x i 2y i X2 y2,X2 y2 X3 y3,X i yj = (2x i X2,X2 X3,X i) (2y i y?」?y3, y i) =A + A A(k ) A (kx i, kx2, kx3) (2kx1 kx2, kx2kx3, kx1) (2kx1 kx2, kx2kx3,kx1) k A() 故A是P3上的线性变换? 5)是.因任取f (X) P[x], g(x) P[x],并令 u(x) f(x) g(x)则 A(f(x) g(x)) = A u(x) =u(x 1) = f (x 1) g(x 1) =A f (x) + A(g(x)) 再令v(x) kf (x)则A(kf (x)) A(v(x)) v(x 1) kf (x 1) k A(f (x)) 故A为P[X]上的线性变换. 6)是?因任取f(x) P[x], g(x) P[x]则. A(f (X) g(x))= f (X0 ) g(X0 ) A(f (x)) A(g(x)) A(kf (x)) kf (X0) k A(f (x)) 7)不是.例如取a=1,k=l,则 A(ka)=-i , k( Aa)=i, A(ka) kA(a)

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

线性变换练习题

线性变换习题 一、填空题 1. 设σ是3 P 的线性变换,(,,)(2,4,3)a b c b c a b a σ=+-,,,a b c P ?∈,1(1,0,0),ε= 2(0,1,0),ε=3(0,0,1)ε=是3P 的一组基,则σ在基123,,εεε下的矩阵为 _______________,又3123,P αεεε=-+∈则()σα=_________。 2. 设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换σ:()A σξξ=, n P ξ∈,则()1dim (0)σ-= ,()dim ()n P σ= 。 3. 设P 上三维列向量空间V 的线性变换σ在基123,,ααα下的矩阵是11220 1121-?? ? ? ?-?? ,则σ在基213,,ααα下的矩阵是 。 4. 如果矩阵A 的特征值等于1,则行列式||A E -= 。 5. 设A =???? ? ??? ??21 1 12 1112 ,()X AX σ=是P 3上的线性变换,那么σ的零度= 。 6. 若n n A P ?∈,且2 A E =,则A 的特征值为 。 7. 在[]n P x 中,线性变换D (()f x )'()f x =,则D 在基211,,, ,n x x x -下的矩阵 为 。 8. 在22 P ?中,线性变换10:20A A σ??→ ???在基121001,,0000E E ???? == ? ????? 300,10E ??= ??? 40001E ?? = ???下的矩阵是 。 9. 设321502114A ?? ? = ? ??? 的三个特征值为1λ,2λ,3λ,则1λ+2λ+3λ= , 1λ2λ3λ= 。 10. 数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为 维线性空间,

T检验例题

T检验 习题1.按规定苗木平均高达1.60m以上可以出圃,今在苗圃中随机抽取10株苗木,测定的苗木高度如下: 1.75 1.58 1.71 1.64 1.55 1.72 1.62 1.83 1.63 1.65 假设苗高服从正态分布,试问苗木平均高是否达到出圃要求?(要求α=0.05) 解:1)根据题意,提出:无效假设为:苗木的平均苗高为H0=1.6m; 备择假设为:苗木的平均苗高H A>1.6m; 2)定义变量:在spss软件中的“变量视图”中定义苗木苗高, 之后在“数据视图”中输入苗高数据; 3)分析过程 在spss软件上操作分析过程如下:分析——比较均值——单样本T检验——将定义苗高导入检验变量——检验值定义为1.6——单击选项将置信区间设为95%——确定输出如下: 表1.1:单个样本统计量 表1.2:单个样本检验 4)输出结果分析 由表1.1数据分析可知,变量苗木苗高的平均值为1.6680m,标

准差为0.0843,说明样本的离散程度较小,标准误为0.0267,说明抽样误差较小。 由表1.3数据分析可知,T检验值为2.55,样本自由度为9,t检验的双尾检验值为0.031<0.05,说明差异性显著,因此,否定无效假设H0,取备择假设H A。 根据题意,苗木的苗高服从正态分布,由以上分析知:在显著水平为0.05的水平上检验,苗木的平均苗高大于1.6m,符合出圃的要求。 习题2.从两个不同抚育措施育苗的苗圃中各以重复抽样的方式抽得样本如下: 样本1苗高(CM):52 58 71 48 57 62 73 68 65 56 样本2苗高(CM):56 75 69 82 74 63 58 64 78 77 66 73 设苗高服从正态分布且两个总体苗高方差相等(齐性),试以显著水平α=0.05检验两种抚育措施对苗高生长有无显著性影响。 解:1)根据题意提出:无效假设为H0:两种抚育措施对苗木生长没有显著的影响;备择假设H A:两种抚育措施对苗高生长影响显著; 2)在spss中的“变量视图”中定义变量“苗高1”,“抚育措施”,之后在“数据视图”中输入题中的苗高数据,及抚育措施,其中措施一定义为“1”措施二定义为“2”; 3)分析过程 在spss软件上操作分析过程如下:分析——比较变量——独立

线性变换习题课

七、线性变换习题课 1.复习线性变换的概念 例1 将C看成R上的线性空间,变换是线性的,看成C上的线性空间则不是。 证明:R上:有== 又 故A是R上线性空间C的线性变换。 C上:取及,有,而,故A不是C上线性空间C的线性变换。 由上例,变换A是否为线性变换与所讨论的数域有关。 2.利用运算的意义,运算律推证线性变换的等式,利用线性变换与n阶方阵代数同构解决有关问题。 例2设A,B是线性变换,如果证明: ,(k>0) 证明: 由已知,对k=1结论成立,故考虑用数学归纳法. 对k用归纳法.当k=1时结论成立. K=2时,由已知 =AB=(BA+E)A+A-BA2 =BA2+A+A-BA2=2A 结论成立. 设当k时结论成立,即,也即. 当k+1时, =ABA k+AkA k-1-BA k+1=(BA+E)A k+kA k-BA k+1 =BA k+1+A k+kA k-BA k+1=(k+1)A k 所以结论对k+1也成立,从而对一切k1成立. 例3设V是数域P上n维线性空间,证明:V的与全体线性变换交换的线性变换是数乘变换. 证明: 需要表达出线性变换,联系到某基下的矩阵. 设令A,B在某基下的矩阵分别为A,B. 因为,所以由得AB=BA.由的任意性,也是任意的,从而存在某个k使得A=kE为数量阵(P.204,ch.4.ex.7.3),于是为数量变换.

有了变换乘积,进一步可考虑可逆变换. 3. 系统小结可逆线性变换的的等价条件,并举例说明一些基本论证方法. A可逆10存在使=E. A是双射. A在基下的矩阵A可逆—有限维 例4 设是线性空间V的一组基,A是V上的线性变换,证明:可逆当且仅当线性无关. 证明:证法一: “”,,若=0,有B()=0,即=0,=0,即线性无关. “”线性无关, 因dimV=n,故使得 =A() 令使=() 易见,且,即 又任给设= 有()== 故,从A可逆. 证法二:利用双射 “” A是双射,则0==A() 得0=(0对应0) 故,线性无关. “”由dimV=n,V的任一向量可由唯一表示,即V中任一向量有唯一(要证明)原像(显然).故A是双射. 证法三:利用矩阵 A可逆A在下的矩阵A可逆 ()A也是一组基=n

第七章 线性变换.

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:σ+τ是V的线性变换. 二. 数乘运算 定义2(P311) 显然kσ也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换σ 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握ξ 与σ (ξ)关于同一个基的坐标 之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换σ关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. ξ与σ (ξ)关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

医药数理统计第六章习题(检验假设和t检验)

第四章抽样误差与假设检验 练习题 一、单项选择题 1. 样本均数的标准误越小说明 A. 观察个体的变异越小 B. 观察个体的变异越大 C. 抽样误差越大 D. 由样本均数估计总体均数的可靠性越小 E. 由样本均数估计总体均数的可靠性越大 2. 抽样误差产生的原因是 A. 样本不是随机抽取 B. 测量不准确 C. 资料不是正态分布 D. 个体差异 E. 统计指标选择不当 3. 对于正偏态分布的的总体, 当样本含量足够大时, 样本均数的分布近似为 A. 正偏态分布 B. 负偏态分布 C. 正态分布 D. t分布 E. 标准正态分布 4. 假设检验的目的是 A. 检验参数估计的准确度 B. 检验样本统计量是否不同 C. 检验样本统计量与总体参数是否不同 D. 检验总体参数是否不同 E. 检验样本的P值是否为小概率 5. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109/L~ 9.1×109/L,其含义是 A. 估计总体中有95%的观察值在此范围内 B. 总体均数在该区间的概率为95% C. 样本中有95%的观察值在此范围内 D. 该区间包含样本均数的可能性为95% E. 该区间包含总体均数的可能性为95%

答案:E D C D E 二、计算与分析 1.为了解某地区小学生血红蛋白含量的平均水平,现随机抽取该地小学生450人,算得其血红蛋白平均数为101.4g/L,标准差为1.5g/L,试计算该地小学生血红蛋白平均数的95%可信区间。 [参考答案] 样本含量为450,属于大样本,可采用正态近似的方法计算可信区间。 101.4 X=, 1.5 S=,450 n=,0.07 X S=== 95%可信区间为 下限: /2.101.4 1.960.07101.26 X X u S α=-?= -(g/L) 上限: /2.101.4 1.960.07101.54 X X u S α +=+?=(g/L) 即该地成年男子红细胞总体均数的95%可信区间为101.26g/L~101.54g/L。 2.研究高胆固醇是否有家庭聚集性,已知正常儿童的总胆固醇平均水平是175mg/dl,现测得100名曾患心脏病且胆固醇高的子代儿童的胆固醇平均水平为207.5mg/dl,标准差为30mg/dl。问题: ①如何衡量这100名儿童总胆固醇样本平均数的抽样误差? ②估计100名儿童的胆固醇平均水平的95%可信区间; ③根据可信区间判断高胆固醇是否有家庭聚集性,并说明理由。 [参考答案] ①均数的标准误可以用来衡量样本均数的抽样误差大小,即 30 S=mg/dl,100 n= 3.0 X S=== ②样本含量为100,属于大样本,可采用正态近似的方法计算可信区间。 207.5 X=,30 S=,100 n=,3 X S=,则95%可信区间为 下限: /2.207.5 1.963201.62 X X u S α=-?= -(mg/dl)

三种常用的T检验

独立样本的T检验 (independent-samples T T est) 对于相互独立的两个来自正态总体的样本,利用独立样本的T 检验来检验这两个样本的均值和方差是否来源于同一总体。在SPSS 中,独立样本的T检验由“Independent-Sample T Test”过程来完成。 例:双语教师的英语水平有高低之分,他们(她们)所教的学生对双语教学的态度是否有显著差异? 例题分析: ——研究目的:寻找差异 ——自变量:双语教师的英语水平(ordinal data等级变量),有两个水平:;level1低水平,level2 高水平 ——因变量:学生的双语教学态度(interval data等距变量) SPSS操作步骤 ·Analyze→Compare Means→Independent Samples T Test ·Click the 双语教学态度to the column of “Test V ariable(s)” and the 教师英语水平分组to the column of “Grouping variable” ·Click the button of “Define Groups…” and put the group numbers “1” and “3” into Group 1 and Group 2, and “Continue” back, then “OK”.

结果在论文中的呈现方式 独立样本T检验结果显示,双语教师的英语水平不同,其所教学生对双语教学的态度有显著差异(t=-3,249, df=72, p<0.05)。双语教师英语水平较低所教的学生,他们对双语教学态度的得分也显著低于英语水平较高的双语教师所教的学生(MD=-0.65)。这可能是因为…… 练习:文科生和理科生对双语教学的态度是否有显著差异? 配对样本T检验(Paired-samples T Test) 配对样本T检验,用于检验两个相关的样本(配对资料)是否来自具有相同均值的总体。 例:本次调查中,学生对自己英语能力水平和英语知识水平的评价之间是否有显著差异? 例题分析: ——研究目的:寻找差异 ——自变量:学生的评价对象(norminal data定类数据),有两个水平:level1对自身英语能力水平的评价,level2对自身英语知识水平的评价。 ——因变量:学生自身英语能力和知识的评价分数

第一章 线性空间与线性变换概述

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

第七章线性变换习题答案

第七章线性变换3.在P[x]中,Af(x)f(x),Bf(x)xf(x),证明: ABBA=E. 『解题提示』直接根据变换的定义验证即可. 证明任取f(x)P[x],则有 =(A BBA)f(x)ABf(x)BAf(x)A(xf(x))B(f(x)) (xf(x))xf(x)f(x)Ef(x), 于是ABBA=E. 4.设A,B是线性变换,如果ABBA=E,证明: kkk k1,k1ABBAA. 『解题提示』利用数学归纳法进行证明. 证明当k2时,由于ABBA=E,可得 22()()2 ABBAAABBAA B BAAA, 因此结论成立. 假设当ks时结论成立,即ssss1 ABBAA.那么,当ks1时,有 s1s1(s s)()ssss(s1)s ABBAAABBAA B BAAAAA, 即对ks1结论也成立.从而,根据数学归纳法原理,对一切k1结论都成立. 『特别提醒』由 AE可知,结论对k1也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 1证明设A是线性空间V上的一个可逆变换.对于任意的,V,如果AA,那么,用 A 作用左右两边,得到A AAA,因此A是单射;另外,对于任意的V,存在1()1() 1()1() 1V A,使得 1 AA(A),即A是满射.于是A是双射.

-1-

『特别提醒』由此结论可知线性空间V上的可逆映射A是V到自身的同构. 6.设1,2,,n是线性空间V的一组基,A是V上的线性变换,证明A可逆当且仅当 A1,A2,,A n线性无关. 证法1若A是可逆的线性变换,设k AkAkA0 ,即 1122nn A(kkk nn)0. 1122 而根据上一题结论可知A是单射,故必有k kk0,又由于 1,2,,n是线性无关的, 1122nn 因此k 1k2k n0.从而A1,A2,,A n线性无关. 反之,若A 1,A2,,A n是线性无关的,那么A AA也是V的一组基.于是,根据 1,2,,n 教材中的定理1,存在唯一的线性变换B,使得B(A i)i,i1,2,,n.显然 BA(i)i,A B(A i)A i,i1,2,,n. 再根据教材中的定理1知,ABBAE.所以A是可逆的. 证法2设A在基 1,2,,n下的矩阵为A,即 A(,,,n)(A,A,,A n)(,,,n)A. 121212 由教材中的定理2可知,A可逆的充要条件是矩阵A可逆. 因此,如果A是可逆的,那么矩阵A可逆,从而A 1,A2,,A n也是V的一组基,即是线性无 关的.反之,如果A AA是线性无关,从而是V的一组基,且A是从基 1,2,,n到1,2,,n A1,A2,,A n的过渡矩阵,因此A是可逆的.所以A是可逆的线性变换. 『方法技巧』方法1利用了上一题的结论及教材中的定理1构造A的逆变换;方法2借助教材中的定理2,将线性变换A可逆转化成了矩阵A可逆. 9.设三维线性空间V上的线性变换A在基1,2,3下的矩阵为 aaa 111213 A aaa. 212223 aaa 313233 1)求A在基3,2,1下的矩阵;

第七章线性变换总结篇

第 7章 线性变换 7、1知识点归纳与要点解析 一.线性变换的概念与判别 1、线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。 2、线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3、线性变换的性质 设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈L 。 性质1、 ()()00,σσαα==-; 性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。 性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL 也线性无关。 注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L L L L L 记: ()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? L L L L M M M L 于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换, 12,,,m βββL 就是V 中任意一组向量,如果:

第七章 线性变换练习题参考答案

第七章 线性变换练习题参考答案 一、填空题 1.设123,,εεε是线性空间 V 的一组基,V 的一个线性变换σ在这组基下的矩阵是33112233(),,ij A a x x x V αεεε?==++∈则 σ在基321,,εεε下的矩阵B =1,T AT -而可逆矩阵T =001010100?? ? ? ??? 满足1,B T AT -=σα在基123,,εεε下的坐标为123x A x x ?? ? ? ??? . 2.设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换:(),n A P σσξξξ=∈,则1(0)σ-={}|0,n A P ξξξ=∈,()1dim (0)σ-=n r -,()dim ()n P σ=r . 3.复矩阵()ij n n A a ?=的全体特征值的和等于1n ii i a =∑ ,而全体特征值的积等于 ||A . 4.设σ是n 维线性空间V 的线性变换,且σ在任一基下的矩阵都相同,则σ为__数乘__变换 . 5.数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为2n 维线性空间,它与n n P ?同构. 6.设n 阶矩阵A 的全体特征值为12,,,n λλλ ,()f x 为任一多项式,则()f A 的全体特征值为12(),(),,()n f f f λλλ . 7.设???? ??=2231A ,则向量??? ? ??11是A 的属于特征值 4 的特征向量. 8.若????? ? ?--=100001011A 与1010101k B k ?? ?=-- ? ???相似,则k = -1/2 . 9.设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A 3 .

第七章 线性变换

MATLAB软件应用第七章线性变换 例1:求矩阵 122 212 221 A ?? ?? =?? ?? ?? 的特征值与特征向量,并将其对角化. 解1:建立m文件v1.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; E=eye(3); syms x f=det(x*E-A) %矩阵A的特征多项式 solve(f) %矩阵A的特征多项式的根,即A的特征值 %所以A的特征值为x1=5,x2=x3=-1. %(1)当x1=5时,求解(x1*E—A)X=0,得基础解系syms y y=5; B=y*E-A; b1=sym(null(B)) %b1为(x1*E—A)X=0基础解系 %(2)当x2=-1时,求解(x2*E—A)X=0,得基础解系y=-1; B=y*E-A; b2=sym(null(B)) %b2为(x2*E—A)X=0基础解系 T=[b1,b2] %所有特征向量在基下的坐标所组成的矩阵 D=T^-1*A*T %将矩阵A对角化,得对角矩阵D 运行结果如下: f = x^3-3*x^2-9*x-5 ans = 5 -1 -1 b1 = sqrt(1/3) sqrt(1/3) sqrt(1/3) b2 = [ sqrt(2/3), 0] [ -sqrt(1/6), -sqrt(1/2)] [ -sqrt(1/6), sqrt(1/2)] T =

[ sqrt(1/3), sqrt(2/3), 0] [ sqrt(1/3), -sqrt(1/6), -sqrt(1/2)] [ sqrt(1/3), -sqrt(1/6), sqrt(1/2)] D = [ 5, 0, 0] [ 0, -1, 0] [ 0, 0, -1] 解2:建立m文件v2.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; d=eig(A) %求全部特征值所组成的向量 [V,D]=eig(A) %求特征值及特征向量所组成的矩阵inv(V)*A*V %A可对角化,且对角矩阵为D 运行结果如下: d = -1 -1 5 V = 247/398 1145/2158 780/1351 279/1870 -1343/1673 780/1351 -1040/1351 1013/3722 780/1351 D = -1 0 0 0 -1 0 0 0 5 ans = -1 * * * -1 * * * 5 例2:求矩阵 110 430 102 A -?? ?? =-?? ?? ?? 的特征值与特征向量,并判别A 是否可以对角化. 解:建立m文件v3.m如下:clc a=[-1 1 0;-4 3 0;1 0 2]; [V,D]=eig(a)

第七章 线性变换 习题答案

第七章 线性变换 3.在[]P x 中,()()f x f x '=A ,()()f x xf x =B ,证明: -=A B BA =E . 『解题提示』直接根据变换的定义验证即可. 证明 任取()[]f x P x ∈,则有 ()()()()(())(())f x f x f x xf x f x '-=-=-=A B BA A B BA A B (())()()()xf x xf x f x f x ''=-==E , 于是-=A B BA =E . 4.设,A B 是线性变换,如果-=A B BA =E ,证明: 1 ,1k k k k k --=>A B BA A . 『解题提示』利用数学归纳法进行证明. 证明 当2k =时,由于-=A B BA =E ,可得 22()()2-=-+-=A B BA A A B BA A B BA A A , 因此结论成立. 假设当k s =时结论成立,即1 s s s s --=A B BA A .那么,当1k s =+时,有 1 1 ()()(1)s s s s s s s s s s ++-=-+-=+=+A B BA A A B BA A B BA A A A A , 即对1k s =+结论也成立.从而,根据数学归纳法原理,对一切1>k 结论都成立. 『特别提醒』由0 =A E 可知,结论对1k =也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 证明 设A 是线性空间V 上的一个可逆变换.对于任意的,V ∈αβ,如果=αβA A ,那么,用1 -A 作用左右两边,得到1 1 ()()--===ααββA A A A ,因此A 是单射;另外,对于任意的V ∈β,存在 1V -=∈αβA ,使得1()-==αββA A A ,即A 是满射.于是A 是双射. 『特别提醒』由此结论可知线性空间V 上的可逆映射A 是V 到自身的同构.

教育统计学t检验练习

教育统计学t检验练习内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

实验报告实验名称:t 检验成绩: 实验日期: 2011年10月31日实验报告日期:2011年11 月日 林虹 一、实验目的 (1)掌握单一样本t检验。 (2)掌握相关样本t检验 (3)掌握独立样本t检验 二、实验设备 (1)微机 (2)SPSS for Windows 统计软件包 三、实验内容: 1.某市统一考试的数学平均成绩为75分,某校一个班的成绩见表4-1。问该班的 成绩与全市平均成绩的差异显着吗 表4-1 学生的数学成绩 12345678910111213141516 编 号 成96977560926483769097829887568960 号 68747055858656716577566092548780 成 绩

2.某物理教师在教学中发现,在课堂物理教学中采用“先讲规则(物理的定理或 法则),再举例题讲解规则的具体应用”与采用“先讲例题,再概括出解题规则”这两种教学方法的教学效果似乎不同。为了验证他的这个经验性发现是否属实,他选择了两个近似相等的班级进行教学实验。进行教学实验时的教学内容、教学时间和教学地点等无关变量他都做了严格的控制,分别采用“例-规” 法与“规-例”法对两个班的学生进行物理教学,然后,两个班的被试都进行同样的物理知识测验。测验成绩按“5分制”进行评定。两组被试的测验成绩见数据文件data4-02。请用SPSS,通过适当的统计分析方法,检验这两种教学方法的教学效果是否存在实质性差别。 3.某幼儿园分别在儿童入园时和入园一年后对他们进行了“比奈智力测验”,测 验结果见数据文件data4-03。请问,儿童入园一年后的智商有明显的变化吗(例题) 4.某心理学工作者以大学生为被试,以“正性”和“负性”两种面部表情模式的 照片为实验材料,测量被试对“正性”和“负性”面部表情识别的时间,测验结果见数据文件data4-04。请用SPSS中适当的统计分析方法检验两种面部表情模式对大学生识别面部表情的时间是否存在明显的影响。 5.某小学教师分别采用“集中学习”与“分散学习”两种方式教两个小学二年级 班级的学生学习相同的汉字,两个班学生的学习成绩见data4-05。请问哪种学习方式效果更好 6.某省语文高考平均成绩为78分,某学校的成绩见data4-06。请问该校考生的 平均成绩与全省平均成绩之间的差异显着吗 **

高等代数与解析几何第七章(1-3习题) 线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题7、1 习题7、1、1判别下列变换就是否线性变换? (1)设就是线性空间中得一个固定向量, (Ⅰ),, 解:当时,显然就是得线性变换; 当时,有,,则,即此时不就是得线性变换。(Ⅱ),; 解:当时,显然就是得线性变换; 当时,有,,则,即此时不就是得线性变换。(2)在中, (Ⅰ), 解:不就是得线性变换。因对于,有,,所以。(Ⅱ); 解:就是得线性变换。设,其中,,则有 , 。 (3)在中, (Ⅰ), 解:就是得线性变换:设,则 , ,。

(Ⅱ),其中就是中得固定数; 解:就是得线性变换:设,则 , ,。 (4)把复数域瞧作复数域上得线性空间,,其中就是得共轭复数; 解:不就是线性变换。因为取,时,有,,即。 (5)在中,设与就是其中得两个固定得矩阵,,。 解:就是得线性变换。对,,有 , 。 习题7、1、2在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900得变换,以表示空间绕轴由轴向方向旋转900得变换,以表示空间绕轴由轴向方向旋转900得变换。证明(表示恒等变换), , ; 并说明就是否成立。

证明:在中任取一个向量,则根据,及得定义可知:,,;, ,;,,,即,故。 因为, ,所以。 因为, ,所以。 因为, ,所以。 习题7、1、3在中,,,证明。 证明:在中任取一多项式,有 。所以。 习题7、1、4设,就是上得线性变换。若,证明 。 证明:用数学归纳法证明。当时,有 命题成立。假设等式对成立,即。下面证明等式对也成立。因有

,即等式对也成立,从而对任意自然数都成立。 习题7、1、5证明(1)若就是上得可逆线性变换,则得逆变换唯一;(2)若,就是上得可逆线性变换,则也就是可逆线性变换,且 。 证明:(1)设都就是得逆变换,则有,。进而。即得逆变换唯一。 (2)因,都就是上得可逆线性变换,则有 ,同理有 由定义知就是可逆线性变换,为逆变换,有唯一性得。 习题7、1、6设就是上得线性变换,向量,且,,,都不就是零向量,但。证明,,,线性无关。 证明:设,依次用可得 ,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得。 有定义知,,,线性无关。 习题7、1、7设就是上得线性变换,证明就是可逆线性变换得充要条件为既就是单射线性变换又就是满射线性变换,即就是一一变换。

第七章线性变换.

第七章线性变换 计划课时:24 学时.(P 307—334) §7.1 线性变换的定义及性质( 2 学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1 (P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意: 1.定理7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1 ,2, 3. §7.2 线性变换的运算( 4 学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义 1 (P310) 注意:+ 是V的线性变换. 二. 数乘运算 定义 2 (P311) 显然k 也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义 3 (P311-312)

注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可能是零变换. (2). 线性变换的方幂 四. 可逆线性变换定义 4 ( P313) 线性变换可逆的充要条件例 2 ( P314) 线性变换的多项式的概念( 阅读 内容). 作业:P330 习题七4, 5. §7.3 线性变换的矩阵( 6 学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握与( ) 关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L(V)与M(F)的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L(V)与M(F)的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一.线性变换关于基的矩阵 定义 ( P316) 。 注意:取定n维向量空间V的一个基之后,对于V的每一个线性变换,有唯一确定的n阶矩阵与 它对应. 例 1 ( P316 ) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例 2 ( P317) 例 3 ( P317) 二.与( )关于同一个基的坐标之间的关系. 定理7.3.1 例 4 ( P318 ) 三? L(V)与M(F)的同构 定理7.3.2 (P320) 定理7.3.3 (P320) 注意:1.定理732 ( P320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2. 由于L(V) 同构于M n ( F ) ,所以就把研究一个很复杂的向量空间L(V) 的问题转化成研究一个很直观具体的向量空间M n(F) 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3 不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求 逆变换的方法。 四. 同一个线性变换在不同基下的矩阵之间的关系定理7.3.4 (P321). 作业:P331 习题七6,9,12,17.

相关文档
最新文档