曲线运动精讲精练:11.圆周运动的动力学问题

曲线运动精讲精练:11.圆周运动的动力学问题
曲线运动精讲精练:11.圆周运动的动力学问题

圆周运动的动力学问题

一、向心力

1.作用效果:产生向心加速度,只改变速度的方向,不改变速度的大小.

2.大小:F=m v2

r

=mω2r=m

4π2r

T2

=mωv=4π2mf2r

3.方向:总是沿半径方向指向圆心,时刻在改变,即向心力是一个变力.4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.

二、圆周运动、向心运动和离心运动

1.匀速圆周运动与非匀速圆周运动

两种运动具体比较见下表:

2.

(1)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.

(2)受力特点(如图所示)

①当F=mrω2时,物体做匀速圆周运动;

②当F=0时,物体沿切线方向飞出;

③当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力.

④当F>mrω2时,物体逐渐向圆心靠近,做向心运动.

三、圆周运动动力学分析思路

1.向心力的来源

向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.

2.向心力的确定

(1)先确定圆周运动的轨道所在的平面,确定圆心的位置.

(2)再分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.

3.解决动力学问题要注意三个方面的分析

(1)几何关系的分析,目的是确定圆周运动的圆心、半径等.

(2)运动分析,目的是表示出物体做圆周运动所需要的向心力.

(3)受力分析,目的是利用力的合成与分解知识,表示出物体做圆周运动时,外界所提供的向心力.

4.几种常见的向心力来源

(1)飞机在水平面内的圆周运动,如图1所示;

(2)火车转弯,如图2所示;

(3)圆锥摆,如图3所示;

高考物理曲线运动试题汇编

高考物理曲线运动试题汇编 平抛运动: (xx 年全国理综)19.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为1v ,摩托艇在静水中的航速为2v ,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 A .21222 v v dv B .0 C .21v dv D .1 2v dv (xx 年天津理综)16.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则 A .垒球落地时瞬时速度的大小仅由初速度决定 B .垒球落地时瞬时速度的方向仅击球点离地面的高度决定 C .垒球在空中运动的水平位移仅由初速度决定 D .垒球在空中运动的时间仅由击球点离地面的高度决定 (xx 年上海物理)16.(4分)右图为用频闪摄影方法拍 摄的研究物体作平抛运动规律的照片,图中A 、B 、C 为 三个同时由同一点出发的小球,AA /为A 球在光滑水平 面上以速度运动的轨迹;BB /为B 球以速度v 被水平抛 出后的运动轨迹;CC /为C 球自由下落的运动轨迹,通 过分析上述三条轨迹可得出结论: 。 答案:作平抛运动的物体在水平方向作匀速直线运动,在竖直方向作自由落体运动(或平抛运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合成)。

(xx 年春季物理)13.质量为10.0=m kg 的小钢球以 100=v m/s 的水平速度抛出,下落0.5=h m 时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角 =θ_____________.刚要撞击钢板时小球动量的大小为 _________________.(取2/10s m g =) (xx 年全国物理)10.图为一空间探测器的示 意图, P 1、P 2、P 3、P 4是四个喷气发动机, P 1、P 3的连线与空间一固定坐标系的x轴平 行,P 2、P 4的连线与y 轴平行,每台发动机 开动时,都能向探测器提供推力,但不会使 探测器转动,开始时,探测器以恒定的速率 v 0向正x 方向平动,要使探测器改为向正x 偏负y 60o的方向以原来的速率v 0平动,则 可 A .先开动P 1适当时间,再开动P 4 B .先开动P 3适当时间,再开动P 2 C .先开动P 4适当时间,再开动P 2 D .先开动P 3适当时间,再开动P 4 (xx 年上海物理)20.(10分)如图所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2).某同学对此题的解法为: 小球沿斜面运动,则 t g t v h ?+=θθsin 21sin 0,由此可求得落地时间t . 问:你同意上述解法吗?若同意,求出所需时间; 若不同意则说明理由并求出你认为正确的结果. 答案:不同意。小球应在A 点离开平面做平抛运动,而不是沿斜面下滑。正确做法为:落地点与A 点的水平距离 )(110 2.025200m g h v t v s =??=== ① A h v 0 θ

圆周运动中的动力学问题

圆周运动中的动力学问题 1、一细绳穿过一光滑的、不动的细管,两端分别拴着质量为m 和M 的小球A 、B 。当小 球A 绕管子的中心轴转动时,A 球摆开某一角度,此时A 球到上管口的绳长为L ,如图 4-3-5所示。细管的半径可以忽略。试求: (1)小球A 的速度和它所受的向心力; (2)小球A 转动的周期。 2、(2012·黄山模拟)用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图4-3 -6所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为FT ,则FT 随ω2变化的图像是图4-3-7中的( ) 图4-3-7 3.如图4-3-8所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动, 有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动, 则( ) A .球A 的线速度必定等于球 B 的线速度 B .球A 的角速度必定小于球B 的角速度 C .球A 的运动周期必定小于球B 的运动周期 D .球A 对筒壁的压力必定大于球B 对筒壁的压力 4(2012·重庆模拟)如图4-3-9所示, 半径为R 、内径很小的光滑半圆管竖直放 置,两个质量均为m 的小球A 、B 以不同的 速度进入管内。A 通过最高点C 时,对管壁 上部压力为3mg ,B 通过最高点C 时,对管壁 下部压力为0.75mg ,求A 、B 两球落地点间的距离。 5、如图4-3-10所示,半径为R 的光滑圆形轨道竖直固定放置,小球m 在圆形轨道内侧做 圆周运动,对于半径R 不同的圆形轨道,小球m 通过轨道最高点时都恰好与轨道间没有 相互作用力。下列说法中正确的是 ( ) ①半径R 越大,小球通过轨道最高点时的速度越大 ②半径R 越大,小球通过轨道最高点时的速度越小 ③半径R 越大,小球通过轨道最低点时的角速度越大 ④半径R 越大,小球通过轨道最低点时的角速度越小 A.①③ B.②④ C.①④ D.②③

高考物理曲线运动试题(有答案和解析)含解析

高考物理曲线运动试题(有答案和解析)含解析 一、高中物理精讲专题测试曲线运动 1.如图所示,倾角为45α=?的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为 b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的 c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小; (3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号) 【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】 (1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:2 12 r gt = 解得:a v gr = 小滑块在a 点飞出的动能211 22 k a E mv mgr = = (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得: 2211 222 m a mv mv mg r =+? 在最低点由牛顿第二定律:2 m mv F mg r -= 由牛顿第三定律得:F ′=F 解得:F ′=6mg (3)bd 之间长度为L ,由几何关系得:() 221L r =

从d 到最低点e 过程中,由动能定理21 cos 2 m mgH mg L mv μα-?= 解得42 14 μ-= 2.如图所示,一箱子高为H .底边长为L ,一小球从一壁上沿口A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。 (1)若小球与箱壁一次碰撞后落到箱底处离C 点距离为,求小球抛出时的初速度v 0; (2)若小球正好落在箱子的B 点,求初速度的可能值。 【答案】(1) (2) 【解析】 【分析】 (1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B 点,则水平位移应该是2L 的整数倍,通过平抛运动公式列式求解初速度可能值。 【详解】 (1)此题可以看成是无反弹的完整平抛运动, 则水平位移为:x = =v 0t 竖直位移为:H =gt 2 解得:v 0= ; (2)若小球正好落在箱子的B 点,则小球的水平位移为:x′=2nL (n =1.2.3……) 同理:x′=2nL =v′0t ,H =gt′2 解得: (n =1.2.3……) 3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为

高考物理专题力学知识点之曲线运动易错题汇编及解析

高考物理专题力学知识点之曲线运动易错题汇编及解析 一、选择题 1.长为L的轻绳的一端固定在O点,另一端栓一个质量为m的小球,先令小球以O为圆心,L为半径的竖直平面内做圆周运动,小球能通过最高点,如图所示,g为重力加速度,则() A.小球通过最高点时速度可能为零 B.小球通过最高点时所受轻绳的拉力可能为零 C.小球通过最低点时的速度大小可能等于2gl D.小球通过最低点时所受轻绳的拉力可能等于5mg 2.如图所示的皮带传动装置中,轮A和B固定在同一轴上,A、B、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A∶a B∶a C等于() A.1∶2∶4B.2∶1∶2 C.4∶2∶1D.4∶1∶4 3.如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A,人以速度v0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为,与水平面的夹角为,此时物块A的速度v1为 A. B. C. D. 4.如图所示为一皮带传动装置,右轮的半径为,a是它边缘上的一点。左侧是一轮轴,大轮的半径为,小轮的半径为。b点在大的边缘轮上,c点位于小轮上。若在传动过程中,皮带不打滑。则()

A.a点与c点的角速度大小相等B.b点与c点的角速度大小相等 C.b点与c点的线速度大小相等D.a点与c点的向心加速度大小相等 5.一条小河宽100m,水流速度为8m/s,一艘快艇在静水中的速度为6m/s,用该快艇将人员送往对岸.关于该快艇的说法中正确的是() A.渡河的最短时间为10s B.渡河时间随河水流速加大而增长 C.以最短位移渡河,位移大小为100m D.以最短时间渡河,沿水流方向位移大小为400 m 3 6.如图所示,歼-15沿曲线MN向上爬升,速度逐渐增大,图中画出表示歼-15在P点受到合力的四种方向,其中可能的是 A.①B.②C.③D.④ 7.如图所示,一质量为m的汽车保持恒定的速率运动,若通过凸形路面最高处时对路面的压力为F1 ,通过凹形路面最低处时对路面的压力为F2,则() A.F1= mg B.F1>mg C.F2= mg D.F2>mg 8.如图所示,从某高处水平抛出一小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是() A.小球水平抛出时的初速度大小为tan gtθ B.小球在t时间内的位移方向与水平方向的夹角为 2 θ

圆周运动中的动力学问题(学案)

圆周运动中的动力学问题 例:一只小狗拉雪橇沿位于水平面内的圆弧形道路匀速率行驶,下图为四个关于雪橇受到牵引力F 及滑动摩擦力f 的示意图(O 为圆心),其中正确的是 【知识点回顾】 1.向心力:向心力是做匀速圆周运动的物体所受到的始终指向________的合外力。向心力作用效果只能改变物体速度的________,不能改变速度的________。向心力的表达式为 F =________,或F =________,或F =________ 2.向心力是根据效果命名的一种力,是做圆周运动的物体沿半径指向圆心方向的合力的一个称呼。向心力可以是物体受到的合外力,也可以由其中的一个力充当,也可以由某个力的分力充当。 3.圆周运动性质的判断:物体做圆周运动时,沿半径指向圆心方向的分力只改变线速度的________;沿圆周切线方向的分力只改变线速度的________。当合外力指向圆心时,切线方向的分力为零,物体做_________运动;当合外力与半径成一定角度,切线方向的分力不为零时,物体做_______运动。 【新课学习】 一、水平面内的圆周运动 1.绳系小球模型 (1)如图,细绳一端拴一个质量为M 的小球在桌面上做半径为L 的匀速圆周运动,另一端吊着质量为m 的钩码,不计一切摩擦,求小球运动的角速度大小。 解题步骤:i.确定研究对象并进行受力分析; ii.根据受力情况判断向心力来源; iii.列出相应的向心力方程并求解。 (2)如图,绳子一端固定于天花板,另一端牵引着小球,使小球在水平面内做 匀速圆周运动。已知绳长L ,绳子与竖直方向的夹角为θ,求小球线速度的大小。 2.汽车转弯模型 (1)汽车在水平公路上匀速率转弯,已知汽车所在弯道的半径为R ,轮胎与 路面的最大摩擦力为汽车重力的μ倍,求汽车行驶中不侧滑的最大速率。 (2)为避免火车高速过弯时对铁轨形成很强的压力,将过弯处设计成外 轨道高于内轨道的斜面。已知斜面倾角为θ,轨道所在半径为R ,求火车 对内外轨道均无压力的行驶速度。

知识讲解曲线运动运动的合成和分解提高

物理总复习:曲线运动、运动的合成和分解 编稿:李传安审稿:张金虎 【考纲要求】 1、知道物体做曲线运动的条件,并会判断物体是否做曲线运动; 2、掌握运动的合成、运动的分解基本方法; 3、掌握“小船靠岸”、“小船过河”两种基本模型,会解决类似实际问题。 【知识络】 【考点梳理】 考点一、曲线运动 1、曲线运动 物体运动轨迹是曲线的运动叫做曲线运动。 2、曲线运动的速度方向 曲线运动中速度的方向是时刻改变的,质点在某一点(或某一时刻)的速度方向是曲线上该点的切线方向。 3、曲线运动的性质 做曲线运动的物体,速度方向时刻在改变,所以曲线运动一定是变速运动,但变速运动不一定是曲线运动。 4、物体做曲线运动的条件 从运动学角度说,物体的加速度方向跟速度方向不在一条直线上,物体就做曲线运动;从动力学角度来说,如果物体所受合外力的方向跟物体的速度方向不在一条直线上时,物体就做曲线运动。 要点诠释:如图所示,物体受到的合力F跟速度0v方向成?角(0,180??? ?)。 将力F沿切线方向和垂直切线方向分解为1F和2F,可以看出分力1F使物体速度大小发生改变,分力2F使物体的速度方向发生改变。即在F的作用下,物体速度的大小和

方向均改变,物体必定做曲线运动。①当0??或180°时,20F?,v方向不变,物体做直线运动。②当90??时,1F=0,v大小不变;20F?,v方向改变,物体 做速度大小不变、方向改变的曲线运动,即匀速圆周运动。 ③当090???时,1F使物体速度增加,此时物体做加速运动;当90180???时,分力1F使物体速度减小,此时物体做减速运 动。 例、下列说法正确的是:() A.曲线运动的速度大小可以不变,但速度方向一定改变 B.曲线运动的速度方向可以不变,但速度大小一定改变 C.曲线运动的物体的速度方向不是物体的运动方向 D.曲线运动的物体在某点的速度方向即为该点的切线方向 【答案】AD 【解析】在曲线运动中,物体在任何一点的速度方向,就是通过这一点的曲线的切线方向,所以曲线运动的速度方向一定变化。但曲线运动的速度大小可以不变,也可以变化。曲线运动的物体的速度方向就是物体的运动方向。 考点二、运动的合成和分解 1、运动的合成与分解 已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解。 分运动与合运动是一种等效替代关系,运动的合成与分解是研究曲线运动的一种基本方法。 要点诠释:合运动与分运动的关系 (1)等时性:各分运动经历的时间与合运动经历的时间相等。例如:平抛运动水平方向与竖直方向的时间相等。 (2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他分运动的影响。 (3)等效性:各分运动的叠加与合运动有完全相同的效果。 2、合运动的性质和轨迹的判定 合运动的性质和轨迹:由合初速度和合加速度共同决定。 要点诠释:(1)两个匀速直线运动的合运动为一匀速直线运动。因为0a?。 (2)一个匀速直线运动与一个匀变速直线运动的合运动为一匀变速运动。因为a?合恒量。若二者共线,则为匀变速直线运动,如竖直上抛运动;若二者不共线,则为匀变速曲线运动,如平抛运动。(3)两个匀变速直线运动的合运动为一匀变速运动。因为a?合恒量。若合初速度与合加速度共线,则为匀变速直线运动;若合初速度与合加速度不 共线,则为匀变速曲线运动。 根据力与运动的关系的判断:物体运动的形式,按速度分类有匀速和变速;按轨迹分类有直线和曲线。运动的形式决定于物体的初速度0v和合外力F,具体分类如下: (1)F=0:静止或匀速运动;(2)F≠0:变速运动;(3)F为恒量时:匀变速运动;

高三物理曲线运动知识点总结

高三物理曲线运动知识点总结 高三物理曲线运动知识点 1.曲线运动:物体的轨迹是一条曲线,物体所作的运动就是曲线运动。 作曲线运动物体的速度方向就是曲线那一点的切线方向,而曲线上各点的切线方向不同,也就是运动物体的速度在不断地改变,所以作曲线运动的物体速度是变化的,物体作变速运动。 运动物体的轨迹是它在平面坐标系中的运动图像,与作直线运动物体的位移与时间图像是有着本质的不同,前者是运动的轨迹,后者是其位移随时间变化的规律;前者各点的切线方向是运动物体的速度方向,切线的斜率是运动物体的速度方向与某一方向的夹角的正切,后者各点的切线的斜率是运动物体的速度大小,但它只反映作直线运动物体的速度情况,而不能反映作曲线运动的速度情况。 物体作曲线运动的条件:物体所受的合外力与物体的速度不在一条直线上(也就是合外力沿与速度垂直的方向上有分量,该分量时刻在改变着运动物体的速度方向) 2.运动的合成与分解:运动的合成与分解就是矢量的合成与分解,它涉及运动学中的位移、速度、加速度三个矢量的合成与分解。 两个互相垂直方向上的直线运动合成后可能是直线运

动,也可能是曲线运动,反过来,两个方向的直线运动合成后可能是曲线,这就提供了研究曲线运动的途径——将曲线运动转化为直线运动进行研究。 运动的独立作用原理:如同力的独立作用原理一样,运动的合成与分解也是建立在各个方向分运动独立的基础上。 3.研究曲线运动的方法:利用速度、位移、加速度和力这些物理量的矢量性,进行合成与分解。 (1)在恒力的作用下的曲线运动:这种运动是匀速运动。一般将运动物体的初速度沿着力的方向和与力垂直的方向 上分解,在沿力的方向上物体作匀变速直线运动,在与力垂直的方向上物体作匀速直线运动。 若所求方向与速度和力均不在一条直线上,将速度和力均沿求解问题的方向和与求解问题垂直的方向进行分解。 (2)在变力作用下的曲线运动:这种运动是非匀变速运动。一般将物体受到的力沿运动方向和与运动垂直的方向分解。与运动方向一致的力改变速度的大小,与运动方向垂直的力改变运动的方向。 生活中的曲线运动举例 子弹射出枪膛,离弦的箭,抛铅球,投篮,过河的船等等都属于曲线运动。 高三物理平抛运动 1.平抛运动的特点:

圆周运动(1)

圆周运动 教学目标: 1.掌握描述圆周运动的物理量及相关计算公式; 2.学会应用牛顿第二定律解决圆周运动问题 3.掌握分析、解决圆周运动动力学问题的基本方法和基本技能 教学重点:匀速圆周运动 教学难点:应用牛顿第二定律解决圆周运动的动力学问题 教学方法:讲练结合,计算机辅助教学 教学过程: 一、描述圆周运动物理量: 1、线速度 (1)大小:v = t s (s 是t 时间内通过的弧长) (2)方向:沿圆周的切线方向,时刻变化 (3)物理意义:描述质点沿圆周运动的快慢 2、角速度: (1)大小:ω= t φ (φ是t 时间内半径转过的圆心角) (2)方向:沿圆周的切线方向,时刻变化 (3)物理意义:描述质点绕圆心转动的快慢 3、周期T 、频率f : 作圆周运动的物体运动一周所用的时间,叫周期;单位时间内沿圆周绕圆心转过的圈数,叫频率。即周期的倒数。 4、v 、ω、T 、 f 的关系

v = T r π2=ω r =2πrf 点评:ω、T 、f ,若一个量确定,其余两个量也就确定了,而v 还和r 有关。 5、向心加速度a : (1)大小:a =ππω44222 2===r T r r v 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。 【例1】如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、加速度之比。 解析:v a = v c ,而v b ∶v c ∶v d =1∶2∶4,所以v a ∶ v b ∶v c ∶v d =2∶1∶2∶4;ωa ∶ωb =2∶1,而ωb =ωc =ωd ,所以ωa ∶ωb ∶ωc ∶ωd =2∶1∶1∶1;再利用a =v ω,可得a a ∶a b ∶a c ∶a d =4∶1∶2∶4 点评:凡是直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,两轮边缘上各点的线速度大小相等;凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。 【例2】如图所示,一种向自行车车灯供电的小发电机的上端有一半径r 0=1.0cm 的摩擦小轮,小轮与自行车车轮的边缘接触。当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力。自行车车轮的半径R 1=35cm ,小齿轮的半径R 2=4.0cm ,大齿轮的半径R 3=10.0cm 。求大齿轮的转速n 1和摩擦小轮的转速n 2之比。(假定摩擦小轮与自行车轮之间无相对滑动) 解析:大小齿轮间、摩擦小轮和车轮之间和皮带传动原理相同,两轮边缘各点的线速度大小相等,由v =2πnr 可知转速n 和半径r 成反比;小齿轮和车轮同轴转动,两轮上各点的转速

2018高考物理真题曲线运动分类汇编

2018年全真高考+名校模拟物理试题分项解析 真题再现 1.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的() A. 时刻相同,地点相同 B. 时刻相同,地点不同 C. 时刻不同,地点相同 D. 时刻不同,地点不同 【来源】2018年全国普通高等学校招生统一考试物理(江苏卷) 【答案】 B 点睛:本题以平抛运动为背景考查合运动与分运动的关系及时刻和位置的概念,解题时要注意弹射管沿光滑竖直轨道向下做自由落体运动,小球弹出时在竖直方向始终具有跟弹射管相同的速度。 2.根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。但实际上,赤道上方200m处无初速下落的小球将落在正下方位置偏东约6cm处,这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比,现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球 A. 到最高点时,水平方向的加速度和速度均为零 B. 到最高点时,水平方向的加速度和速度均不为零 C. 落地点在抛出点东侧 D. 落地点在抛出点西侧 【来源】2018年全国普通高等学校招生统一考试物理(北京卷) 【答案】 D 【解析】AB、上升过程水平方向向西加速,在最高点竖直方向上速度为零,水平方向上有向西的水平速度,且有竖直向下的加速度,故AB错; CD、下降过程向西减速,按照对称性落至地面时水平速度为0,整个过程都在向西运动,所以落点在抛出点的西

侧,故C错,D正确; 故选D 点睛:本题的运动可以分解为竖直方向上的匀变速和水平方向上的变加速运动,利用运动的合成与分解来求解。3.滑雪运动深受人民群众的喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中 A. 所受合外力始终为零 B. 所受摩擦力大小不变 C. 合外力做功一定为零 D. 机械能始终保持不变 【来源】2018年全国普通高等学校招生同一考试理科综合物理试题(天津卷) 【答案】 C 【点睛】考查了曲线运动、圆周运动、动能定理等;知道曲线运动过程中速度时刻变化,合力不为零;在分析物体做圆周运动时,首先要弄清楚合力充当向心力,然后根据牛顿第二定律列式,基础题,难以程度适中.

高考物理力学知识点之曲线运动易错题汇编及解析

高考物理力学知识点之曲线运动易错题汇编及解析 一、选择题 1.如图所示,B和C 是一组塔轮,固定在同一转动轴上,其半径之比为R B∶R C=3∶2,A 轮的半径与C轮相同,且A轮与B轮紧靠在一起,当A 轮绕其中心的竖直轴转动时,由于摩擦的作用,B 轮也随之无滑动地转动起来.a、b、c 分别为三轮边缘上的三个点,则a、b、c 三点在运动过程中的() A.线速度大小之比为 3∶2∶2 B.角速度之比为 3∶3∶2 C.向心加速度大小之比为 9∶6∶4 D.转速之比为 2∶3∶2 2.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则() A.A球受绳的拉力较大 B.它们做圆周运动的角速度不相等 C.它们所需的向心力跟轨道半径成反比 D.它们做圆周运动的线速度大小相等 平面内运动,在x方向的速度图像和y方向的位移图3.有一个质量为4kg的物体在x y 像分别如图甲、乙所示,下列说法正确的是() A.物体做匀变速直线运动B.物体所受的合外力为22 N C.2 s时物体的速度为6 m/s D.0时刻物体的速度为5 m/s 4.如图所示,质量为m的物体,以水平速度v0离开桌面,若以桌面为零势能面,不计空气阻力,则当它经过离地高度为h的A点时,所具有的机械能是( )

A.mv02+mg h B.mv02-mg h C.mv02+mg (H-h) D.mv02 5.如图所示为一皮带传动装置,右轮的半径为,a是它边缘上的一点。左侧是一轮轴,大轮的半径为,小轮的半径为。b点在大的边缘轮上,c点位于小轮上。若在传动过程中,皮带不打滑。则() A.a点与c点的角速度大小相等B.b点与c点的角速度大小相等 C.b点与c点的线速度大小相等D.a点与c点的向心加速度大小相等 6.关于曲线运动,以下说法中正确的是() A.做匀速圆周运动的物体,所受合力是恒定的 B.物体在恒力作用下不可能做曲线运动 C.平抛运动是一种匀变速运动 D.物体只有受到方向时刻变化的力的作用才可能做曲线运动 7.一辆汽车在水平公路上转弯,沿曲线由N向M行驶速度逐渐减小。图A,B,C,D分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是() A. B. C.

教科版物理必修2 第二章 第3节 圆周运动的实例分析1 火车、汽车拐弯的动力学问题(同步练习)

(答题时间:30分钟) 1. 摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,如图所示。当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时,车厢又恢复原状,就像玩具“不倒翁”一样。假设有一超高速列车在水平面内行驶,以360 km/h 的速度拐弯,拐弯半径为1 km ,则质量为50 kg 的乘客在拐弯过程中所受到的火车给他的作用力为(g 取10 m/s 2)( ) A. 0 B. 500 N C. 1000 N D. 500 2 N 2. 铁路转弯处的弯道半径r 是由地形决定的,弯道处要求外轨比内轨高,其内、外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关。下列说法正确的是( ) A. 速率v 一定时,r 越大,要求h 越大 B. 速率v 一定时,r 越小,要求h 越大 C. 半径r 一定时,v 越小,要求h 越大 D. 半径r 一定时,v 越大,要求h 越大 3. 一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,下图为雪橇受到的牵引力F 及摩擦力F 1的示意图(O 为圆心),其中正确的是( ) 4. 火车转弯时,火车的车轮恰好与铁轨间没有侧压力。若将此时火车的速度适当增大一些,则该过程中( ) A. 外轨对轮缘的侧压力减小 B. 外轨对轮缘的侧压力增大 C. 铁轨对火车的支承力增大 D. 铁轨对火车的支承力不变 5. 冰面对溜冰运动员的最大静摩擦力为运动员重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,其安全速度的最大值是( ) A. gR k B . kgR C . k gR D. kgR 2 6. 如图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两个小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两个小孩刚好还未发生滑动时,某一时刻两个小孩突然松手,则两个小孩的运动情况是( ) A. 两小孩均沿切线方向滑出后落入水中 B. 两小孩均沿半径方向滑出后落入水中 C. 两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D. 甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 7. 火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时( ) A. 对外轨产生向外的挤压作用 B. 对内轨产生向外的挤压作用 C. 对外轨产生向内的挤压作用 D. 对内轨产生向内的挤压作用 8. 如图所示,是从一辆在水平公路上行驶着的汽车后方拍摄的汽车后轮照片。从照片来 看,汽车此时正在( ) A. 直线前进 B. 向右转弯 C. 向左转弯 D. 不能判断 9. 如图所示,半径为R 的光滑圆环上套有一质量为m 的小环,当圆环以角速度ω绕过环心的竖直轴旋转时,求小环稳定后偏离圆环最低点的高度h 。

2014-2018高考物理曲线运动真题

专题四曲线运动 (2017~2018年) 201701 15.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。速度较大的球越过球网,速度较小的球没有越过球网,其原因是A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大 C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍

(2016~2014年) 1.(2016·全国卷Ⅰ,18,6分)(难度★★)(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则() A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 2.(2016·全国卷Ⅱ,16,6分)(难度★★★)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点() A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度

3.(2016·江苏单科,2,3分)(难度★★)有A、B两小球,B的质量为A的两倍,现将它们以相同速率沿同一方向抛出,不计空气阻力,图中①为A的运动轨迹,则B的运动轨迹是() A.①B.②C.③D.④ 4.(2015·安徽理综,14,6分)图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是() A.M点B.N点C.P点D.Q点

圆周运动动力学典型例题

圆周运动动力学典型例题 一、 关于圆周运动中的比例关系 例1.如图所示皮带转动 轮,大轮直径是小轮直径的3倍,A 是大轮边缘 上一点,B 是小轮边缘上 一点,C 是大轮上一点, C 到圆心O 1的距离等于小轮半 径。转动时皮带不打滑,则A 、B 、C 三点的角速度之比ωA :ωB: ωC =____________,向心加速度大小之比a A :a B :a C =______________。 二、 圆周运动的半径 例1、 一个圆盘边缘系一根细绳,绳的下 端拴着一个质量为m 的小球,圆盘的半径是r ,绳长为l ,圆盘匀速转动时小球随着一起转动,并且细绳与竖直方向成θ角,如图所示,则圆盘的转速是______。

例2.质量为m 的物块,系在弹簧的一端,弹簧的另一端固定在转轴上如 右图所示,弹簧的自由长度为l 。劲度系数为K ,使物块在光滑水平支持 面上以角速度 作匀速圆周运动,则此时弹簧的长度为______________. 三、圆锥摆 四、倒漏斗类型 如图所示,一个内壁光滑的圆 锥筒的轴线是竖直的,圆锥被固定。质量相同的两个小球A 和B 贴着筒的内壁在水平面内做匀速率圆周运动,A 的运动半径较大。则下列说法正确的 是( ) A .A 球的角速度必小于 B 球的角速度 B .A 球的线速度必小于B 球的线速度 C .A 球运动的周期必大于B 球的周期 D .A 球对筒壁的压力等于B 球对筒壁的压力

五、随圆台一起转动的物体 例1、A、B、C三个物体放在旋转的圆台上,动摩擦因数均为μ。A的质量为2m,B、C 的质量均为m,A、B离轴R,C离轴2R,则圆台旋转时,(设A、B、C都没有滑动)( ) A.C物体的向心加速度最大 B.B物体的静摩擦力最小 滑动 D.当转台转速增加时,B比A先 滑动

专题10曲线运动的动力学解.doc

专题10 曲线运动的动力学解 专题7《曲线运动曲直谈》中,我们从运动学角度研究了曲线运动,在那里,我们熟悉了描述曲线运动的运动学方法,对圆周运动与抛体运动的运动学规律做了较深入的研究。在这个专题里,我们将从动力学角度研究曲线运动,即掌握各种曲线运动形成及运动状态变化的原因,这对于人们能动地掌控曲线运动是至为重要的。 牛顿第二定律阐述了力与加速度的普遍关系,通俗地说就是:什么样的力产生什么样的加速度。在曲线运动中,我们通常将物体所受外力沿切线方向分量的代数和t F ∑称为切向力,而外力沿法线 方向分量的代数和 n F ∑称为法向力。切向力产生切向加速度、决定曲线运动物体速率变化的快慢, 法向力产生法向加速度、决定物体运动方向变化的快慢。在曲线运动中,牛顿第二定律的切向与法向的分量式(动力学方程)为 t t v F ma m t ?==?∑;2 n n v F ma m ρ==∑。 当物体所受外力与运动速度方向不在同一直线时,物体一定做曲线运动,其中,若物体所受外力 为恒力,物体做匀变速曲线运动,例如抛体运动;若物体所受外力方向与运动方向总垂直,则切向加速度为零,物体做匀速率的曲线运动,例如做等距螺旋线运动的物体;再如物体所受总垂直于速度的方向的外力大小不变,则法向加速度大小不变,这就是匀速圆周运动。 动力学方法求解曲线运动的加速度,首先要作好两项分析,即物体的受力情况分析与运动情况分析,当外力与运动方向不在同一直线的情况下,通常将物体所受各力按运动速度的切向与法向作正交分解,通过建立两个方向上的牛顿第二定律的分量式求得。 【例1】如图所示,滑块A 的质量为M ,由于绳子的牵引而沿水平导轨滑动,绳子的另一端缠绕在半径为r 的鼓轮O 上,鼓轮以等角速度ω转动。不计导轨与滑块间的摩擦,求绳子的拉力T F 与距离x 之间的关系。 【分析与解】先分析滑块A 受力:重力Mg 、导轨支持力N F ,绳子拉力T F ;再分析滑块的运动:速度沿导轨的运动可视作沿绳向绳与轮切点B 的平动及以切点B 为中心的转动的合成,这两个方向的分运动速度分别为 n v r ω=,tan t v r ωθ=?, 其中θ为对应于x ,绳与导轨的夹角。以切点为中心转动的分运动的向心加速度由该方向的合力产生。如图所示,取AB 方向为x 轴正方向建立直角坐标系xOy ,并按坐标方向正交分解滑块所受各力,则由牛顿第二定律,在x (轴)方向有 2 sin sin cos t T N v F F Mg M x θθθ +-=。 又由于滑块实际运动方向沿水平导轨,故在竖直方向满足 sin T N Mg F F θ=+。 由以上两式可得 2 2 (tan )(1sin )cos T r F M x ωθθθ -=, 注意到 sin r x θ=,22 cos x r θ-= , 则 2223223 () (tan )cos () T Mr r x r F M x x r x x ωωθθ-==-?, 整理后即可得到T F 与x 的关系为 4225222 () T Mr x F x r ω= -。 竖直平面内的圆周运动有一些规律性的结论,我们略作些盘点。首先,在竖直平面内发生的圆周运动,是有重力参与提供向心力的,如果没有其他切向力,竖直面上的圆周运动肯定是非匀速率的,机械能是守恒的,在水平直径以上,各点均存在一速度的临界值。如图所示,小物体连接在轻杆一端,在竖直平面内绕杆的另一端做圆周运动,通过水平直径以上位置,杆与水平线间的夹角为θ并正沿圆周向上运动时。将重力沿切向与法向分解,可知,重力的切向分力cos mg θ,方向与速度方向相反,说明物体正做减速率地运动;重力的法向分力sin mg θ与杆的拉力的合力作为向心力,应有 2 sin T v F mg m R θ+=, 式中R 为圆轨道半径。从该式可知,线速度v 越大,沿轨道运动通过该点时的加速度越大,所需 向心力越大,这要靠杆的拉力来适调,因为杆的拉力是微小形变引起的弹力,是一种“适应性力”而重力则是恒力。若速度v 较小,向心加速度较小,致使只须重力的法向分量提供向心力即可,即 20 sin v mg m R θ=,0sin v Rg θ=, 这时杆上的弹力为零.若小物体速度小于0v ,杆上弹性拉力将转为支持力,此时有 2 sin T v mg F m R θ-=。 故0sin v Rg θ= 是杆牵引小物体在竖直平面内做圆周运动时,杆恰无形变,弹力为零。杆对小 物体的作用效果在“拉”与“推”之间转换的临界速度,而小物体能在竖直面内做完整的圆周运动的条件是到达最高点时的速度0v =。

高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理曲线运动常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试曲线运动 1.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtG α π 【解析】 试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度. (1)小球做平抛运动,落在斜面上时有:tanα== = 所以星球表面的重力加速度为:g=. (2)在星球表面上,根据万有引力等于重力,得:mg=G 解得星球的质量为为:M= 星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ= 点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G 和ρ=求星球的密度. 2.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方 2 R 处的O '点由静止释放,小

球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求: (1)小球运动至B 点时的速度大小B v (2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大. 【答案】(1)4? /B v m s = (2)22?f W J = (3) 3.36L m = 【解析】 试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度. (1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2 B N v F mg m R -= 解得:4/B v m s = (2)从O '到B 的过程中重力和阻力做功,由动能定理可得: 21022f B R mg R W mv ? ?+-=- ??? 解得:22f W J = (3)由B 到C 的过程中,由动能定理得:221122 BC C B mgL mv mv μ-=- 解得:22 2B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g = = B 到P 的水平距离:2202B C C v v L v t g μ-= + 代入数据,联立并整理可得:214445 C C L v v =- + 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m

高考匀速圆周运动动力学问题归类及实例分析

匀速圆周运动动力学问题及实例分析 基础知识归纳 1.圆周运动的动力学问题 做匀速圆周运动的物体所受合外力提供向心力,即F 合=F 向,或F 合= 2 r v m = mω2r = π4 22 r T m . 2.竖直平面内的圆周运动中的临界问题 (1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周 运动)的条件是小球的重力恰好提供向心力,即mg =m r v 2 ,这时的速度是做圆周运动的最小 速度v min =gr . (2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 v ≥0 . ①当v =0时,杆对小球的支持力等于小球的重力; ②当0gr 时,杆对小球提供 拉 力. 重点难点突破 一、圆周运动的动力学问题 解决有关圆周运动的动力学问题,首先要正确对做圆周运动的物体进行受力分析,必要时建立坐标系,求出物体沿半径方向的合外力,即物体做圆周运动时所能提供的向心力,再根据牛顿第二定律等规律列方程求解. 二、圆周运动的临界问题 圆周运动中临界问题的分析,首先应考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点,结合圆周运动的知识,综合解决问题. 1.在竖直面内做圆周运动的物体 竖直面内圆周运动的最高点,当没有支撑面(点)时,物体速度的临界条件:v 临=Rg .绳与小球的情况即为此类临界问题,因为绳只能提供拉力不能提供支持力. 竖直面内圆周运动的最高点,当有支撑面(点)时,物体的临界速度:v 临=0.杆与球的情况为此类临界问题,因为杆既可以提供拉力,也可提供支持力或侧向力. 2.当静摩擦力提供物体做圆周运动的向心力时,常会出现临界值问题. 典例精析 1.圆周运动的动力学问题 【例1】质量为m 的物体沿着半径为r 的半球形金属球壳滑到最低点时的速度大小为v ,如图所示,若物体与球壳之间的动摩擦因数为μ,则 物体在最低点时( ) A.向心加速度为r v 2 B.向心力为m (g +r v 2 ) C.对球壳的压力为r mv 2 D.受到的摩擦力为μm (g +r v 2 ) 【解析】物体在最低点沿半径方向受重力、球壳对物体的支持力,两力的合力提供物体

相关文档
最新文档