曲线和方程练习题

曲线和方程练习题
曲线和方程练习题

曲线和方程练习题

1.下列各点中,在曲线x2-xy+2y+1=0上的点是( ).

A.(2,-2) B.(4,-3) C.(3,10) D.(-2,5)

2.方程4x2-y2+4x+2y=0表示的曲线是( ) .

A一个点B两条互相平行的直线C两条互相垂直的直线D两条相交但不垂直的直线

3.已知关于x,y的方程x2-4xy+my2-x+(3m-10)y-2=0表示两条直线,则m= .4.方程(2x+y)(x+y-3)=0与(4x+2y+1)(2x-y+1)=0所表示的两曲线的公共点个数是( ) .

A.1个B.2个C.3个D.多于3个

5.方程|x|+|y|=1的曲线的周长及其所围成的区域的面积分别为( ) .A.22,1 B.42,2 C.62,4 D.8,4

6.方程x+y-4y

x++2m=0表示一条直线,则实数m满足( )

A.m=0 B.m=2 C.m=2或m<0 D.m≥2

【求轨迹方程的步骤】

7.已知A(-1,0),B(2,4),且△ABC的面积是10,则点C的轨迹方程是.8.与A(-1,0)和B(1,0)两点连线的斜率的乘积等于-1的动点P的轨迹方程是( ) .A.x2+y2=1 B.x2+y2=1(x≠±1) C.x2+y2=1(x≠0)D.y=2

1x

-

【求轨迹方程——直译法】

9.若点M到x轴的距离和它到直线y=8的距离相等,则点M的轨迹方程是( ) .A.x=-4 B.x=4 C.y=-4 D.y=4

10.到两平行线3x+2y-1=0和6x+4y-3=0的距离相等的点的轨迹方程为.11.点P到定点F(4,0)的距离比它到定直线x+5=0的距离小1,则动点P的轨迹方程是.

12.已知曲线C上的每一点到点A(0,-2)的距离与它到x轴的距离的差等于2,求这条曲线的方程,并画出这条曲线.

【求轨迹方程——相关点法】

13.已知点A(0,-1),点B是抛物线y=2x2+1上的一个动点,则线段AB的中点的轨迹是( ) .

A.抛物线y=2x2B.抛物线y=4x2C.抛物线y=6x2D.抛物线y=8x2 14.Rt△ABC的斜边AB的长度等于定值m,顶点A、B在x轴,y轴上滑动,则斜边AB的中点M的轨迹方程为.16.经过点P(3,2)的一条动直线分别交x轴、y轴于点A、B,M是线段AB的中点,连结OM并延长至点N,使|ON|=2|OM|,求点N的轨迹方程.

【思考题】

例8 如图所示,已知A、B是两个定点,且2

=

AB,动点M到定点A的距离是4,线段MB的垂直平分线l交线段MA于点P,求动点P的轨迹方程.

1.已知动点P到点(1,-2)的距离为3,则动点P的轨迹方程是( )

A.(x+1)2+(y-2)2=9

B.(x-1)2+(y+2)2=9

C.(x+1)2+(y-2)2=3

D.(x-1)2+(y+2)2=3

2.已知等腰三角形ABC底边两端点是A(-,0),B(,0),顶点C的轨迹是

( ) A.一条直线 B.一条直线去掉一点

C.一个点

D.两个点

3.(20142临沂高二检测)在△ABC中,若B,C的坐标分别是(-2,0),(2,0),中线AD的长度是3,则A点轨迹方程是( )

A.x2+y2=3

B.x2+y2=4

C.x2+y2=9(y≠0)

D.x2+y2=9(x≠0)

【变式训练】一动点到y轴的距离比到点(2,0)的距离小2,则此动点的轨迹方程为.

4.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C 满足

=

α+

β,其中α,β∈R,且α+β=1,则点C的轨迹方程为( )

A.3x+2y-11=0

B.(x-1)2+(y-2)2=5

C.2x-y=0

D.x+2y-5=0

5.已知点A(1,0),直线l:y=2x-4,点R是直线l上的一点,若=,则点P 的轨迹方程为( )

A.y=-2x

B.y=2x

C.y=2x-8

D.y=2x+4

6.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若=2,且2=1,则P点的轨迹方程是(

) A.3x2+y2=1(x>0,y>0)

B.3x2-y2=1(x>0,y>0)

C.x2-3y2=1(x>0,y>0)

D.x2+3y2=1(x>0,y>0)

二、填空题(每小题4分,共12分)

7.(20142温州高二检测)已知点M到定点F(1,0)的距离和它到定直线l:x=4

的距离的比是常数,设点M的轨迹为曲线C,则曲线C的轨迹方程是.

8.(20142珠海高二检测)动点P与平面上两定点A(-,0),B(,0)连线的斜率的积为定值-,则动点P的轨迹方程为.

9.由动点P向圆x2+y2=1引两条切线PA,PB,切点分别为A,B,∠APB=60°,则动点P的轨迹方程为.

三、解答题(每小题10分,共20分)

10.(20142唐山高二检测)设点P是圆x2+y2=4上任意一点,由点P向x轴作垂线PP0,垂足为P0,且=,求点M的轨迹C的方程.

则由=(x0-x,-y),=(0,-y0),且=,得(x0-x,-y)=(0,-y0), 【变式训练】若长为3的线段AB的端点A,B分别在x轴、y轴上移动,动

点C(x,y)满足=2,求动点C 的轨迹方程.

11.(20132陕西高考改编)已知动圆过定点A(4,0),且在y 轴上截得的弦MN 的长为8.求动圆圆心的轨迹C 的方程

.

(30分钟 50分)

一、选择题(每小题4分,共16分)

1.(20142长沙高二检测)已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|

|2|

|+

2=0,则动点P(x,y)的轨迹方程为 ( ) A.y 2=8x B.y 2=-8x C.y 2=4x D.y 2=-4x

2.曲线f(x,y)=0关于直线x-y-3=0对称的曲线方程为 ( ) A.f(x-3,y)=0 B.f(y+3,x)=0 C.f(y-3,x+3)=0 D.f(y+3,x-3)=0

3.已知点P 是直线2x-y+3=0上的一个动点,定点M(-1,2),Q 是线段PM 延长线上的一点,且|PM|=|MQ|,则Q 点的轨迹方程是 ( ) A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0

【举一反三】若题中直线方程和点的坐标不变,其他条件改为“Q 是PM 的中点”,则结论如何? 【解析】设Q(x,y),P(x 0,y 0),

则x=,y=,

所以x 0=2x+1,y 0=2y-2. 因为点P 在直线2x-y+3=0上, 所以2(2x+1)-(2y-2)+3=0.

整理得4x-2y+7=0,即点Q 的轨迹方程为4x-2y+7=0.

4.(20142哈尔滨高二检测)在平面直角坐标系xOy 中,点B 与点A(-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于,则动点P 的轨

迹方程为

( )

A.x 2-3y 2=-2

B.x 2-3y 2=-2(x ≠±1)

C.x 2-3y 2=2

D.x 2-3y 2=2(x ≠±1)

【变式训练】定长为6的线段,其端点分别在x 轴,y 轴上移动,则AB 中点M 的轨迹方程是 ( )

A.x 2+y 2=9

B.x+y=6

C.2x 2+y 2=12

D.x 2+2y 2=12 二、填空题(每小题5分,共10分)

5.(20142成都高二检测)如图,动点M 和两定点A(-1,0),B(2,0)构成△MAB, 且∠MBA=2∠MAB,设动点M 的轨迹为C,则轨迹C 的方程为 .

6.已知sinθ,cosθ是方程x2-ax+b=0的两根,则点P(a,b)的轨迹方程为.

三、解答题(每小题12分,共24分)

7.(20142南京高二检测)△ABC的顶点B,C的坐标分别为(0,0),(4,0),AB 边上的中线的长为3,求顶点A的轨迹方程.

8.(20142大庆高二检测)已知点P(-3,0),点Q在x轴上,点A在y轴上,且

2=0,=2.当点A在y轴上移动时,求动点M的轨迹方程.

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

曲线与方程练习题

曲线与方程 命题人:褚晓清 审核人:王焕功 一、选择题 1、方程(x 2+y 2-4) x +y +1=0的曲线形状是( ) 2、已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 3、已知命题“曲线C 上的点的坐标是方程(,)0f x y =的解”是正确的,则下列命题中正确的是 A .满足方程(,)0f x y =的点都在曲线C 上 B .方程(,)0f x y =是曲线 C 的方程 C .方程(,)0f x y =所表示的曲线不一定是C D .以上说法都正确 4、方程2(326)[log (2)3]0x y x y --+-=表示的图形经过点(0,1)A -,(2,3)B ,(2,0)C ,57(,)34 D -中的 A .0个 B .1个 C .2个 D .3个 52(2)0y +=表示的图形是 A .圆 B .两条直线 C .一个点 D .两个点 6、方程y =- A B C D

7、一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上 且4AM MB =,则点M 的轨迹方程是 A .221664x y += B . 221664x y += C .22168x y += D .22168x y += 8、“点M 在曲线||y x =上”是“点M 到两坐标轴距离相等”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 9、已知(2,0)M -,(2,0)N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 A . 222x y += B .224x y += C .222(2)x y x +=≠± D .224(2)x y x +=≠± 10、一动点C 在曲线221x y +=上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是 A .22(3)4x y ++= B .22(3)1x y -+= C .22(23)41x y -+= D .223()12 x y ++= 11、已知F 1,F 2分别为椭圆C :x 24+y 23 =1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( ) A.x 236+y 227=1(y ≠0) B.4x 29 +y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0) 12、设圆C 与圆x 2+(y -3)2 =1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆 二、填空题 13、已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________. 14、曲线y =||0()y ax a +=∈R 的交点有______个. 15、已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的 轨迹所包围的图形的面积为__________.

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

曲线和方程时

课题:求曲线的方程(第一课时) 教学目标: (1)了解坐标法和解析几何的意义,了解解析几何的基本问题. (2)进一步理解曲线的方程和方程的曲线. (3)初步掌握求曲线方程的方法. (4)通过本节内容的教学,培养学生分析问题和转化的能力. 教学重点、难点:求曲线的方程. 教学用具:计算机. 教学方法:启发引导法,讨论法. 教学过程: 【引入】 1?提问:什么是曲线的方程和方程的曲线. 学生思考并回答?教师强调. 2?坐标法和解析几何的意义、基本问题. 对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方 程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何?解析几何的两大基本问题就是: (1)根据已知条件,求岀表示平面曲线的方程. (2)通过方程,研究平面曲线的性质. 事实上,在前边所学的直线方程的理论中也有这样两个基本问题. 而且要先研究如何求岀曲线方程,再研究如何用方程研究曲线?本节课就初步研究曲线方程的求法. 【问题】 如何根据已知条件,求岀曲线的方程. 【实例分析】

例1:设「、亦两点的坐标是、(3,7),求线段工三的垂直平分线-的方程.

由斜率关系可求得l 的斜率为 于是有 y~ 沪奶7 即丨的方程为 -0 ① 分析、引导:上述问题是我们早就学过的,用点斜式就可解决?可是,你们是否想过①恰好 就是所求的吗?或者说①就是直线 '的方程?根据是什么,有证明吗? (通过教师引导,是学生意识到这是以前没有解决的问题, 应该证明,证明的依据就是定义 中的两条). 证明:(1)曲线上的点的坐标都是这个方程的解. 设是线段」:王的垂直平分线上任意一点,贝9 呦?|阙 即 J (呵十if 十S 十if = J (仓_ 十也 将上式两边平方,整理得 首先由学生分析:根据直线方程的知识,运用点斜式即可解决. 解法一:易求线段 二占的中点坐标为(1, 3),

圆锥曲线与方程测试题及答案

2013-2014学年度第二学期3月月考 高二数学试卷 满分:150分,时间:120分钟 一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y2=-2px (p >0)的焦点为F ,准线为l ,则p表示 ( ) A 、F 到准线l 的距离 B、F到y 轴的距离 C 、F点的横坐标 D 、F到准线l 的距离的一半 2.抛物线 2 2x y =的焦点坐标是 ( ) A .)0,1( B.)0,4 1(?C.)8 1,0( D .)4 1,0( 3.离心率为 3 2,长轴长为6的椭圆的标准方程是 ( )A.22195x y + = B .22195x y +=或22 159 x y += C.2213620x y += D.2213620x y +=或22 12036 x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A.043=+y x B .043=-y x C .043=±y x D . 034=±y x 5、以椭圆15 82 2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A.15322=-y x B.13522=-y x C.181322=-y x D .15 132 2=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A .y x 292-=或x y 342= B .x y 2 9 2-=或y x 3 42= C .y x 3 4 2 = D.x y 2 92 - = 7.抛物线2 2y px =的焦点与椭圆22 162 x y + =的右焦点重合,则p = ( ) A.4 B.4-?C .2 D. 2-

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

曲线和方程练习题

曲线和方程练习题 一、选择题 1、(2014·安徽高考文科·T3)抛物线2 14 y x = 的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x 【解题提示】 将抛物线化为标准形式即可得出。 【解析】选A 。22 144 y x x y = ?,所以抛物线的准线方程是y=-1. 2. (2014·新课标全国卷Ⅱ高考文科数学·T10) (2014·新课标全国卷Ⅱ高考文科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,则 AB = ( ) A. B.6 C.12 D. 【解题提示】画出图形,利用抛物线的定义求解. 【解析】选C.设AF=2m,BF=2n,F 3,04?? ??? .则由抛物线的定义和直角三角形知识可得, 2m=2· 34·34n,解得m=32 ),n=3 2 所以m+n=6. AB=AF+BF=2m+2n=12.故选C. 3. (2014·新课标全国卷Ⅱ高考理科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 4 B. 8 C. 6332 D. 9 4 【解题提示】将三角形OAB 的面积通过焦点“一分为二”,设出AF,BF,利用抛物线的定义求得面积. 【解析】选D.设点A,B 分别在第一和第四象限,AF=2m,BF=2n,则由抛物线的定义和直角三角形知识可 得,2m=2· 34+m,2n=2·34-n,解得m=32 (2+),n=3 2 (2-),所以m+n=6.所以S △OAB =1324?·(m+n)=94 .故选D. 4. (2014·四川高考理科·T10)已知F 为抛物线x y =2 的焦点,点A ,B 在该抛物线上且位于x 轴的两 侧,2OA OB ?=u u u r u u u r (其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A. 2 B.3 C. 8 【解题提示】

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

曲线和方程典型例题

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而 在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例4 曲线4)1(2 2=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分

高二数学02-03曲线和方程练习

高二数学曲线和方程练习 【同步达纲练习】 A 级 一、选择题 1.曲线f(x,y)=0关于直线x-y-2=0时称曲线的方程为( ) A.f(y+2,x)=0 B.f(x-2,y)=0 C.f(y+2,x-2)=0 D.f(y-2,x+2)=0 2.若点M 到x 轴的距离和它到直线y=8的距离相等,则点M 的轨迹方程是( ) A.x=-4 B.x=4 C.y=-4 D.y=4 3.动点P 到x 轴,y 轴的距离之比等于非零常数k ,则动点P 的轨迹方程是( ) A.y= k x (x ≠0) B.y=kx(x ≠0) C.y=-k x (x ≠0) D.y=±kx(x ≠0) 4.方程4x 2-y 2+4x+2y=0表示的曲线是( ) A.一个点 B.两条互相平行的直线 C.两条互相垂直的直线 D.两条相交但不垂直的直线 5.已知点A(0,-1),点B 是抛物线y=2x 2+1上的一个动点,则线段AB 的中点的轨迹是 ( ) A.抛物线y=2x 2 B.抛物线y=4x 2 C.抛物线y=6x 2 D.抛物线y=8x 2 二、填空题 6.已知A(-1,0),B(2,4),且△ABC 的面积是10,则点C 的轨迹方程是 . 7.Rt △ABC 的斜边AB 的长度等于定值C ,顶点A 、B 在x 轴,y 轴上滑动,则斜边AB 的中点M 的轨迹方程为 8.到两平行线3x+2y-1=0和6x+4y-3=0的距离相等的点的轨迹方程为 . 三、解答题 9.已知直线l:4x + 3 y =1,M 是直线l 上的一个动点,过点M 作x 轴,y 轴的垂线,垂足分别为A 、B 求把有向线段AB 分成的比λ=2的动点P 的轨迹方程. 10.经过点P(3,2)的一条动直线分别交x 轴、y 轴于点A 、B ,M 是线段AB 的中点,连结OM 并延长至点N ,使|ON |=2|OM |,求点N 的轨迹方程. AA 级 一、选择题 1.下列各点中,在曲线x 2-xy+2y+1=0上的点是( ) A.(2,-2) B.(4,-3) C.(3,10) D.(-2,5) 2.已知坐标满足方程f(x,y)=0的点都在曲线C 上,则( ) A.曲线C 上的点的坐标都适合方程f(x,y)=0

曲线和方程教案

《课堂教学设计》 课题:曲线和方程(1) 一:教学目标 ?知识与技能目标 (1)了解曲线上的点与方程的解之间的一一对应关系; (2)初步领会“曲线的方程”与“方程的曲线”的概念; (3)学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。 ?过程与方法目标 (1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识; (2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点; (3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 ?情感与态度目标 (1)通过概念的复习引入,从特殊到一般,让学生感受事物的发展规律; (2)通过本节课的学习,学生能够体验几何问题可以转化成代数问题来研究,真正认识到数学是解决实际问题的重要工具; (3)学生通过观察、分析、推断可以获得数学猜想,体验到数学活动充满着探索性和创造性。 二:教材分析 1、教学分析:因为学生已有了用方程(有时用函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程。所以本节课采用了复习引入课题,从特殊到一般的方法让学生易于接受。在概念的探索过程中采用了举反例的方法来揭示概念的内涵。在概念的应用即例题的设计方面,着重巩固对概念的两个条件的认识。 2、教学重点 “曲线的方程”与“方程的曲线”的概念。

圆锥曲线与方程练习题

《圆锥曲线与方程》单元测试 姓名_____________ 学号__________ 成绩____________ 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( ) A.10 B.8 C.7 D.6 2.已知双曲线12222=-b y a x 的一条渐近线方程为x 43 y =,则双曲线的离心率为 ( ) A.35 B.34 C.45 D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( ) A. 1201622=-y x B.1201622=-x y C.1162022=-y x D.116 2022=-x y 4.方程 22 125-16x y m m +=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<< C.9252m << D.92 m > 5.过双曲线22149 x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( ) A.0个 B.1个 C.2个 D.3个 6.抛物线2y x =上的点到直线24x y -=的最短距离是( ) A.35 B.553 C.552 D.105 3 7.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A. 15 B.152 C. 2 15 D.15 8.设12,F F 是椭圆164942 2=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ?的面积为( ) A.4 B.6 C.22 D.24 9.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线

人教新课标版数学高二 选修2-1练习 2.1.2曲线与方程求曲线的方程

课时跟踪检测(六)曲线与方程求曲线的方程 层级一学业水平达标 1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)() A.在直线l上,但不在曲线C上 B.在直线l上,也在曲线C上 C.不在直线l上,也不在曲线C上 D.不在直线l上,但在曲线C上 解析:选B将点M(2,1)的坐标代入方程知M∈l,M∈C. 2.方程xy2-x2y=2x所表示的曲线() A.关于x轴对称B.关于y轴对称 C.关于原点对称D.关于x-y=0对称 解析:选C同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称. 3.方程x+|y-1|=0表示的曲线是() 解析:选B方程x+|y-1|=0可化为|y-1|=-x≥0,则x≤0,因此选B. 4.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足|MN|·|MP|+MN·NP =0,则动点P(x,y)的轨迹方程为() A.y2=8x B.y2=-8x C.y2=4x D.y2=-4x 解析:选B设点P的坐标为(x,y),则MN=(4,0),MP=(x+2,y),NP=(x-2,y), ∴|MN|=4,|MP|=(x+2)2+y2,MN·NP=4(x-2). 根据已知条件得4 (x+2)2+y2=4(2-x). 整理得y2=-8x.∴点P的轨迹方程为y2=-8x.

5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ) A .4x -3y -16=0或4x -3y +16=0 B .4x -3y -16=0或4x -3y +24=0 C .4x -3y +16=0或4x -3y +24=0 D .4x -3y +16=0或4x -3y -24=0 解析:选B 由两点式,得直线AB 的方程是 y -0 4-0=x +12+1 ,即4x -3y +4=0, 线段AB 的长度|AB |=(2+1)2+42=5. 设C 的坐标为(x ,y ), 则1 2×5×|4x -3y +4|5 =10, 即4x -3y -16=0或4x -3y +24=0. 6.方程x 2+2y 2-4x +8y +12=0表示的图形为________. 解析:对方程左边配方得(x -2)2+2(y +2)2=0. ∵(x -2)2≥0,2(y +2)2≥0, ∴????? (x -2)2=0,2(y +2)2 =0,解得????? x =2,y =-2. 从而方程表示的图形是一个点(2,-2). 答案:一个点(2,-2) 7.已知两点M (-2,0),N (2,0),点P 满足PM ·PN =12,则点P 的轨迹方程为________________. 解析:设P (x ,y ),则PM =(-2-x ,-y ),PN =(2-x ,-y ). 于是PM · PN =(-2-x )(2-x )+y 2=12, 化简得x 2+y 2=16,此即为所求点P 的轨迹方程. 答案:x 2+y 2=16 8.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________________. 解析:设M (x ,y ),B (x 0,y 0),则y 0=2x 20 +1.

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

曲线与方程知识点及题型归纳总结 (2)

曲线与方程知识点及题型归纳总结 知识点精讲 一、曲线的方程和方程的曲线 在直角坐标系中,如果是某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程 (),0f x y =的实数解建立了如下的关系: (1) 曲线上的点的坐标都是这个方程的解(完备性) (2) 以这个方程的解为坐标的点都是曲线上的点(纯粹性) 那么,这个方程叫做曲线的方程,这条曲线叫方程的曲线。事实上,曲线可以看作一个点集C ,以一个二元方程的解作为坐标的点也组成一个点集F ,上诉定义中C F ????=????条件(1)C F 条件(2)F C 二、直接法求动点的轨迹方程 利用直接法求动点的轨迹方程的步骤如下: (1) 建系-----建立适当的坐标系 (2) 设点-----设轨迹上的任一点(),P x y (3) 列式-----列出有限制关系的几何等式 (4) 代换-----将轨迹所满足的条件用含,x y 的代数式表示,如选用距离和斜率公式等将其转化为 ,x y 的方程式化简 (5) 证明(一般省略)-----证明所求方程即为符合条件的动点轨迹方程(对某些特殊值应另外补 充检验)。 简记为:建设现代化,补充说明。 注:若求动点的轨迹,则不但要求出动点的轨迹方程,还要说明轨迹是什么曲线。 题型归纳及思路提示 题型1 求动点的轨迹方程 思路提示: 动点的运动轨迹所给出的条件千差万别,因此求轨迹的方法也多种多样,但应理解,所求动点的轨迹方程其实质即为其上动点的横纵坐标,x y 所满足的等量关系式,通常的方法有直译法,定义法,相关点法(代入法),参数法。 一、直译法 如果动点满足的几何条件本身就是一些几何量的等量关系且这些几何简单明了且易于表达,那么只需把这些关系“翻译”成含,x y 的等式,就可得到曲线的轨迹方程,由于这种求轨迹方程的过程不需要其他步骤,也不需要特殊的技巧,所以被称为直译法。 例10.30 在平面直角坐标系xOy 中,点B 与点()1,1A -关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于1 3 -,求动点P 的轨迹方程。 分析 设点(),P x y ,将题设中直线AP 与BP 斜率之积等于1 3 - 翻译成含,x y 的等式。 解析:因为点B 与点()1,1A -关于原点O 对称,所以点B 的坐标为()1,1-,设点(),P x y ,由题意得 111 113 y y x x -+=-+-g ,化简得()22341x y x +=≠± ,故动点P 的轨迹方程为()22341x y x +=≠± 变式1 已知动圆过定点()4,0A ,且在y 轴上截得的弦的长为8,求动圆圆心的轨迹C 的方程

圆锥曲线与方程测试题(带答案)

圆锥曲线与方程 单元测试 时间:90分钟 分数:120分 一、选择题(每小题5分,共60分) 1.椭圆12 2 =+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A . 41 B .2 1 C .2 D .4 2.过抛物线x y 42 =的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A .10 B .8 C .6 D .4 3.若直线y =kx +2与双曲线62 2 =-y x 的右支交于不同的两点,则k 的取值范围是( ) A .315(- ,)315 B .0(,)315 C .315(-,)0 D .3 15 (-,)1- 4.(理)已知抛物线x y 42 =上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( ) A .(2,5) B .(-2,5) C .(5,-2) D .(5,2) (文)过抛物线)0(22 >=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若 p x x 321=+,则||PQ 等于( ) A .4p B .5p C .6p D .8p 5.已知两点)4 5,4(),45 ,1(--N M ,给出下列曲线方程:①0124=-+y x ;②32 2=+y x ;③ 122 2=+y x ;④12 22=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线122 22=-b y a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图 象上,若△21F AF 的面积为1,且2 1 tan 21= ∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .1351222=-y x B .1312522=-y x C .1512322 =-y x D .112 5322=-y x 7.圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .04 1 22 2 =- --+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .04 122 2=+--+y x y x

曲线和方程知识要点

曲线和方程的概念 【知识要点】 定义 一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系:(1)曲线C 上的点的坐标都是方程0),(=y x F 的解;(2)以方程0),(=y x F 的解为坐标的点都在曲线C 上. 我们就把0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线. 注意:要建立曲线与方程间的对应关系,仅有条件“曲线C 上的点的坐标都是方程0),(=y x F 的解”是不够的,因为可能有满足方程0),(=y x F 的点不在曲线C 上;仅有条件“以方程0),(=y x F 的解为坐标的点都在曲线C 上”也是不够的,因为曲线C 上可能有不满足方程0),(=y x F 的点.只有同时具备这两个条件时,才能说方程0),(=y x F 是曲线C 的方程,曲线C 是方程0),(=y x F 的曲线. 求曲线的方程 【知识要点】 1 求曲线的方程的步骤: ①建立适当的直角坐标系(如果已给出,本步骤省略). ②设曲线上任意一点的坐标为),(y x ,写出已知点的坐标,设出相关点的坐标. ③根据曲线上点所适合的条件,写出等式. ④用坐标表示这个等式(方程),并化简. ⑤证明以化简后的方程的解为坐标的点都是曲线上的点(在本教材不作要求). (6)检验,该说明的要说明. 2 求曲线方程的常用方法:定义法、直接法、代入法、参数法等. (1)定义法:根据题意可以得出或推出动点的轨迹是直线或圆或椭圆或双曲线或抛物线.根据所学知识可以写出或求出轨迹方程.若方程形式知道,往往用待定系数法求. (2)直接法:根据题设条件直接写出动点的坐标),(y x 所满足的关系式,即方程0),(=y x F . (3)相关点法(代入法):是所求轨迹上的动点),(y x P 随着另一个已知曲线上的动点),(11y x M 的运动而运动时,一般用代入法求动点P 的轨迹方程.其方法是根据题设条件求得两动点坐标),(y x 与),(11y x 之间的关系式,从中解出),(),,(11y x g y y x f x ==,由于),(11y x M 在已知曲线上,故),(11y x M 满足已知曲线方程,将11,y x 的表达式代入已知曲线方程,从而求得动点P 的轨迹方程. (4)参数法:根据题意得出动点P 的坐标y x ,用其他点的坐标或长度、角、斜率、时间等参

相关文档
最新文档