生物质振动炉排锅炉高温腐蚀的情况介绍

生物质振动炉排锅炉高温腐蚀的情况介绍
生物质振动炉排锅炉高温腐蚀的情况介绍

生物质振动炉排锅炉高温腐蚀的情况介绍

生物质锅炉发生高温腐蚀的主要部位为三、四级过热器和炉膛水冷壁(前、后拱的拱头部位)。三、四级过热器管子材质为TP347H,对应国内牌号1Cr19Ni11Nb;炉膛水冷壁的管子材质为15CrMoG。

图1:发生高温腐蚀的三级过热器

图2:发生高温腐蚀的炉膛后拱水冷壁

一、三、四级过热器腐蚀机理

经现场观察和分析多台锅炉机组三、四级过热器的腐蚀现

象,可确定判别为碱金属氯化物的熔融腐蚀,腐蚀现象的发生和发展速率与管壁温度有直接关系。应该指出,烟气中的氯化氢(HCl )也导致了高温过热器管子的腐蚀,但不是主要原因。碱金属氯化物的熔融腐蚀过程具体如下。

1、腐蚀过程

(1)碱金属氯化物的生成

在生物质燃烧过程中,大量的氯、硫元素与挥发性的碱金属元素(如:主要是钾和钠)以蒸气形态进入到烟气中,会通过均相反应形成微米级颗粒的碱金属氯化物(氯化钠和氯化钾),凝结和沉积在温度较低的高温过热器管壁上。

(2)碱金属氯化物的硫酸盐化

凝结和沉积在管子外表面的碱金属氯化物(氯化钠和氯化钾),将与烟气中的二氧化硫发生硫酸盐化反应,通过反应方程式(1)和(2)生成氯气。

242222Cl SO Na O SO NaCl +=++ (1)

24222Cl SO K SO KCl +=+ (2)

(3)氯气扩散,与铁反应生成氯化铁

碱金属硫酸盐化反应中会产生氯气的过程发生在积灰层,在靠近金属表面会聚集浓度非常高的氯气,其浓度远高于烟气中的氯气。由于部分氯气是游离态,能够穿过多孔状垢层进行扩散,通过反应方程式(3)与铁反应生成氯化铁。因管壁金属

与腐蚀垢层的分界面上的氧气分压力几乎为零,即在还原性气氛下,氯气能够与金属反应生成氯化铁,且氯化铁是稳定的。

22FeCl Cl Fe =+ (3)

(4)氯化铁氧化生成氯气

由于氯化铁熔点约为280℃左右,所以在管壁温度高于300℃时,氯化铁发生气化,并通过垢层向烟气方向扩散。由于氧气分压力较高,即在氧化性气氛条件下,氯化铁将与氧气发生反应,生成氧化铁和氯气。氯气为游离态,能够(扩散到金属与腐蚀层的交界面上)与金属再次发生反应。

243223O 23Cl O Fe FeCl +=+ (4)

232222O 5.12Cl O Fe FeCl +=+ (5)

23243222O Cl O Fe O Fe FeCl +=++ (6)

在整个腐蚀过程中,氯元素起到了催化剂的作用,将铁元素从金属管壁上置换出来,最终导致了严重的腐蚀。

此外,以上仅以铁(Fe )元素为例进行了说明,合金钢中的铬(Cr )元素的化学反应机理与铁(Fe )元素相同。

2、腐蚀特点

(1)具有典型的温度区间

通过分析多台高温高压生物质水冷振动炉排锅炉三、四过热器实际腐蚀发生和发展情况,发现当蒸汽温度控制在490℃以下运行时,三、四过热器腐蚀速度较慢,一旦蒸汽温度高于550℃

时,腐蚀速度加快,实际测量的腐蚀速度高达1.5~2.0mm/a。同时,现场发现处于三、四过热器后段蒸汽流程(温度较高)的管子腐蚀问题较前段蒸汽流程(温度较低)的严重,而且同处于一个烟温区的水冷壁管子未发现腐蚀。这与国外文献的研究结论相一致。即当过热器的蒸汽温度小于450℃时,管壁腐蚀基本可以忽略;当蒸汽温度在490~520℃时,管壁腐蚀速度加快;当蒸汽温度大于520℃时,管壁腐蚀速度将急剧加快。现场监测,三、四过热器管壁温度与蒸汽温度大致相差50~100℃,也就是说,当三、四过热器管壁温度大于620℃时,腐蚀速度加剧。对比所做的碱金属氯化物的熔融试验,可见,三、四过热器腐蚀的典型温度腐蚀区间与碱金属氯化物的熔融温度区间相吻合,熔融态的碱金属氯化物对高温过热器腐蚀发生和发展起了决定性作用。

(2)普遍存在性和持续性

通过对腐蚀机理研究发现,在整个腐蚀过程中,氯元素起到了催化剂的作用,将铁或铬元素从金属管壁上持续不断地置换出来,造成了管壁腐蚀。显然,只有入炉燃料中含有碱金属和氯元素,且当管壁温度达到腐蚀温度区间时,将必然发生腐蚀。碱金属和氯元素含量多少只会影响腐蚀速度。同时,只要腐蚀一旦发,则将持续进行,不会停止。

二、炉膛水冷题的腐蚀机理

生物燃料锅炉水冷壁高温腐蚀类似于燃煤锅炉水冷壁的高温腐蚀,所不同的是燃料不同,腐蚀介质不同。生物燃料中含有大量的碱金属的氯化物和少量的硫化物,这些碱金属的氯化物和硫化物在高温(约550℃~900℃)缺氧条件下变为黏稠和熔化状态附着在水冷壁外表面,破坏氧化膜,当与氧气接触时,氯被部分置换出来,强氧化性的氯再次腐蚀管材。被置换后氧化物形成了最终的氧化皮。

温度是腐蚀产生的条件之一,只有在高温条件下,碱金属的氯化物和硫化物发生熔化时才会造成严重腐蚀。由于烟气温度很高(1000℃以上),水冷壁内水温度较低(低于350℃)因此在水冷壁管的壁厚方向形成较大的温度梯度。对于水冷壁后拱的位置,烟气流速大,换热剧烈,温度梯度很大,前、后拱位置的管外壁温度达到了腐蚀温度条件,导致腐蚀的发生。

前、后拱位置的高温高速烟气带走了附着不牢固的氧化产物,并且导致外壁温度的剧烈波动,较厚的氧化皮会发生脱落,使得前、后拱位置的水冷壁管外壁保持较高的温度,腐蚀得以持续发生,直到管壁因强度不足发生爆管。

锅炉管道腐蚀的原因分析和建议

锅炉管道腐蚀的原因、分析及建议 ×××(××××××××××发电有限责任公司×××××× 044602) 摘要:四管爆漏是火力发电厂中常见、多发性故障,而管道的腐蚀常常中四管泄漏的重要原因。大部分管道腐蚀的初始阶段,其泄漏量和范围都不大,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,发展成为破坏性泄漏或爆管,严重威胁着火力发电厂的安全稳定运行,故本文对锅炉四管腐蚀的原因进行了分析并根据相应的原因提出了一些建议。 关键词:腐蚀、硫化物、氯化物 0 前言 腐蚀是火力发电厂中常见的故障。腐蚀的初始阶段,没有明显的现象或其泄漏量和范围都小,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,同时局部的泄漏会冲刷周围邻近的管壁,造成连锁性破坏,危及到整个锅炉运行的安全。1.腐蚀的原因 广义的腐蚀指材料与环境间发生的化学或电化学相互作用而导致材料功能受到损伤的现象。 狭义的腐蚀是指金属与环境间的物理-化学相互作用,使金属性能发生变化,导致金属,环境及其构成系功能受到损伤的现象。 1.1管内壁腐蚀:也称水汽侧腐蚀。 1.1.1溶解氧腐蚀。 1.1.2垢下腐蚀。 1.1.3碱腐蚀 1.1.4氢损伤。 1.1.5铜氨化合物腐蚀。 1.2烟气侧腐蚀。 1.2.1高温腐蚀。

1.2.2低温腐蚀。 1.3应力腐蚀,也称冲蚀。指管道受到腐蚀和拉(压)应力的综合效应。 3.设备发生腐蚀的理论原因分析 3.1管内壁腐蚀 3.1.1溶解氧腐蚀 由于Fe与O2、CO2之间存在电位差,形成无数个微小的腐蚀电池,Fe是电池中的阳极,溶解氧起阴极去极化作用,Fe比O2等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH值介于4~13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随着给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内壁结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓缩有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓缩的炉水(沉积着高浓度的OH-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含Cl-的天然水,水中的MgCl2、CaCl2将进入锅炉、产生强酸HCl,这样沉积物下浓缩的炉水(很高浓度的H+)pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表面局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe3O4。 保护膜Fe3O4阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe2O3和FeO。 Fe2O3、FeO比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下晶界强度低,H2与钢中的碳和FeC反应生成CH4。

生物质锅炉过热器高温腐蚀、磨损的原因及解决办法

生物质锅炉过热器高温腐蚀、磨损的原因及解决办法 原文首发豫鑫锅炉:https://www.360docs.net/doc/0717918178.html,/article/6191.html 1.高温腐蚀的原因分析 生物质锅炉过热器的高温腐蚀因为是生物燃料中含有大量的碱金属的氯化物和少量的硫化物,这些碱金属的氯化物和硫化物在高温(约550~900℃)缺氧条件下变为黏稠和熔化状态附着在水冷壁外表面,破坏氧化膜,当与氧气接触时,氯被部分置换出来,强氧化性的氯再次腐蚀管材。被置换后氧化物形成了最终的氧化皮。氧化皮层层剥离,蒸汽管子不能承受内在压力时,就产生了爆管现象。 温度是腐蚀产生的条件之一,只有在高温条件下,碱金属的氯化物和硫化物发生熔化时才会造成严重腐蚀。 2.解决的方法 (1)降低火焰中心,控制炉膛出口温度,不能超过600℃。 (2)利用吹灰减少浮灰在过热器管的积聚,降低碱性腐蚀。 (3)保证锅炉连排、定排质量,保障汽水品质合格,防止管内结垢、流速受阻,造成受热面循环不畅,管壁过热。 (4)防止锅炉过负荷运行,尤其是不能产生二次燃烧。 (5)减少燃料中的灰分,减少烟气中的携灰量。 3.降低受热面磨损 (1)尽量降低燃料中的灰分含量。 (2)尽量降低烟气流速。 (3)受热面管道布置要均匀,避免烟气涡流、斜流、集束流形成的强烈冲刷。 (4)在冲刷强烈区域的管道加装防磨护板。 (5)检查吹灰器角度,不能长期对着一个部位。吹灰前疏水要彻底。 建议及优化措施 生物质锅炉汽压达不到额定值,长期的低汽压,汽耗增加,降低了锅炉效率。 (1)给水温度、主蒸汽温度都需要接近额定值。 (2)在炉水和蒸汽品质合格时,减少锅炉排污量。 (3)检查生物质锅炉漏风要形成常规化、制度化。 (4)严格执行设备保养制度,比如转动机械加油,不能使设备带伤运行。 (5)有机会时做一次锅炉的优化调整,以使生物质锅炉各项参数都达到最佳。

论锅炉受热面高温腐蚀

论锅炉受热面高温腐蚀 论锅炉受热面的高温腐蚀 【摘要】主要介绍了电站锅炉受热面的高温腐蚀机理、危害、类型、影响高温腐蚀的因素,并提出了防止或减轻受热面高温腐蚀的措施。 【关键词】受热面高温腐蚀机理影响因素防止措施 目前在高参数、大容量火电机组中,锅炉受热面的高温腐蚀问题已很普遍且迫切需要解决。因发生高温腐蚀导致受热面管件损坏严重而被迫停机的事故屡见不鲜。受热面的高温腐蚀已经成为燃煤锅炉机组安全稳定运行的一大隐患。在锅炉的设计及运行调整中如稍有不慎则高温腐蚀便很容易发生,腐蚀使得受热面承压部件的管壁变薄,严重时会使受热面管子在短时间内爆管,导致锅炉漏泄而被迫停机或事故跳机。可见其迫害程度非常之大,在运行中必须避免受热面的高温腐蚀。 1 高温腐蚀的形成机理 所谓高温腐蚀是指在煤粉锅炉高温火焰及高温烟气区,过热器和再热器管子及其悬挂件产生的外部腐蚀。锅炉受热面的高温腐蚀是一个复杂的物理化学过程。与其他有关煤的反应机理一样,由于煤自身的复杂性以及迄今对它的认识有限,这类机理都是粗糙的和带有推理性的,在结论的定量上也都具有相当宽的范围。高温腐蚀多发生在燃烧器区域的水冷壁、高温过热器、高温再热器,亦即受热面管壁金属温度超越一定界限的部位。从对高温腐蚀的现象及调查研究结果表明,这种腐蚀都是因壁面与积灰层间的一层液相物反应 而产生的。污染后的受热面会受到灰渣和烟气的复杂的化学反应。高温过热器与高温再热器多布置于烟温高于700-800?的烟道内,管子的外表面积灰由内层、外层两部分组成,内层灰密实,与管子黏结牢固,不易清除;外层灰松散,容易清除。

低熔灰在炉膛内高温烟气区已成为气态,随着烟气流向烟道。由于高温过热器及高温再热器区域的烟温较高,低熔灰若不接触温度较低的受热面则不会凝固,若接到温度较低的受热面就会凝固在受热面上,形成黏结灰层。灰层形成后,表面温度随灰层厚度的增加而增加。此后,一些中、高熔灰粒也被黏附在黏性灰层中。这种积灰在高温烟气中的氧化硫气体的长期作用下,形成白色的硫酸盐密实灰层,这个过程称为烧结。随着灰层厚度的增加,其外表面温度继续升高,低熔灰的黏结结束。但是中熔灰和高熔灰在密实灰层表面还进行着动态沉积,形成松散而且多孔的外层灰。内层灰的坚实程度随着时间的增长而增大,时间越长,灰层越坚实。 对于黏结灰层固形物进行化学分析和x衍射分析,结果都表明其主要构成是碱-三硫酸铁的络合物。它在538-704?温度范围内呈熔融状态。从关于碱-三硫酸铁络合物与铁的反应特性资料可知,在与碱-三硫酸铁络合物紧密黏结的奥氏体钢或铁素体钢之间都会产生对铁的腐蚀反应。与铁素体钢的这种反应,其速度是随着温度的升高而增大的;奥氏体钢的腐蚀速度与温度关系则成半铃形。从实验室的腐蚀失重试验结果也表明在相当于炉内条件下,合成硫酸盐具有相同的铃形腐蚀速度曲线,也表明这个硫酸盐络合物是受热面 高温腐蚀的根本原因。由此可以得出产生高温腐蚀的机理是:因煤灰的选择性沉积,使碱与氧化铁在积灰层中的浓度远比在煤灰中高。碱-三硫酸铁是这些选择性沉积物中与烟气中的so3反应生成的。碱与氧化铁在沉积之初很可能是粉末状的物料,随着温度的升高而呈熔融或半熔融状态。碱在管壁表面的聚积也可能是出于外层熔融物料的迁移。图示也表明了,积灰层中钾、钠含量比的重要性。钠络合物在图示的温度范围内都是干的;而钾络合物从625?开始就产生黏结;1:1钾络合物在约550?时就开始呈熔融状态,非但开始呈熔融状态的温度低,其温度范围也宽(如图1)。 煤灰在受热面上的沉积并致腐蚀的大致步骤如下:

防止锅炉高温腐蚀的措施

大唐三门峡发电有限责任公司 三门峡华阳发电有限责任公司 运行管理措施 [2007] 04 号 执行部门:燃料管理部、设备管理部、中电维护部、发电部 主题:防止锅炉高温腐蚀的措施 编写:周江涛 审核:郭迪华 批准:陈春林 2007年03月 19日发布2006年03月19日实施运行管理措施内容: 防止锅炉高温腐蚀的措施 由于煤炭市场原因,目前公司入厂煤煤质较差,煤中含硫量远超设计值,为了避免水冷壁、过热器、再热器发生高温腐蚀,特制定本措施。 1由于煤中含硫量越高,越易发生高温腐蚀,因此燃料管理部应加强进煤管理,杜绝高硫煤入厂,发电部燃料专业应加强混配煤管理,使入炉煤硫份小于1.5%。2炉膛内缺氧或局部缺氧会使水冷壁壁面附近有还原性气氛和产生H S气体, 2 而还原性气氛是水冷壁高温腐蚀的必要条件,还原性气氛还会使灰熔点降低,加 S气体含量与水冷壁高温腐蚀速度成正比,剧炉膛结焦,高温腐蚀速度加快,H 2 因此正常运行时氧量应控制在3%~5%,最低不得小于2.5%,投运燃烧器二次风门应及时开启,防止局部缺氧。 3合理调整一次风风速。#1、2炉直流燃烧器,适当增加一次风风速有利于防止气流偏转;但对#3、4炉旋流燃烧器,若一次风风速过大,会导致燃烧推迟,并在炉膛中间激烈燃烧、碰撞,导致气流在中部区域范围产生较大的回流,使煤粉火焰刷墙,并产生高温,形成良好的高温腐蚀条件。 4每月对煤粉细度测量一次,#1、2炉煤粉细度应在20%~22%,#3、4炉煤粉

细度按200目筛通过量为70%,不合格应及时调整,防止煤粉颗粒太粗导致火焰拖长,使大量煤粉颗粒集中在水冷壁表面附近,进一步燃烧和燃尽时形成缺氧区,冲刷和腐蚀水冷壁。 5运行中应加强受热面的吹灰,保持受热面的清洁。对长期低负荷运行的工况,在受热面积灰严重时,应申请值长,投油吹灰。 6管壁温度越高, 越易发生高温腐蚀, 过热器、再热器管在650~700℃最为严重,因此运行人员要加强汽温和受热面壁温监督,机组运行中,必须有专人监视和调整汽温、壁温,汽温和受热面管壁温度应控制在正常范围内,超限时要及时调整,并分析原因。 7停炉后应对水冷壁、过热器、再热器进行检查,发现受热面有高温腐蚀造成管壁减薄严重,应及时进行更换,同时进行分析,采取相应措施: 7.1如是管材不合格或不适应高硫煤种,应更换耐腐蚀管材或刷涂耐磨耐腐蚀涂料进行防腐处理。 7.2如是燃烧切圆过大,一次风贴墙,造成火焰冲刷水冷壁引起高温腐蚀,应做空气动力场试验,调整燃烧切圆。 7.3如是燃烧器结构不合理或二次风门故障导致局部缺氧,应根据具体情况检修处理。

生物质振动炉排锅炉高温腐蚀的情况介绍

生物质振动炉排锅炉高温腐蚀的情况介绍 生物质锅炉发生高温腐蚀的主要部位为三、四级过热器和炉膛水冷壁(前、后拱的拱头部位)。三、四级过热器管子材质为TP347H,对应国内牌号1Cr19Ni11Nb;炉膛水冷壁的管子材质为15CrMoG。 图1:发生高温腐蚀的三级过热器 图2:发生高温腐蚀的炉膛后拱水冷壁 一、三、四级过热器腐蚀机理 经现场观察和分析多台锅炉机组三、四级过热器的腐蚀现

象,可确定判别为碱金属氯化物的熔融腐蚀,腐蚀现象的发生和发展速率与管壁温度有直接关系。应该指出,烟气中的氯化氢(HCl )也导致了高温过热器管子的腐蚀,但不是主要原因。碱金属氯化物的熔融腐蚀过程具体如下。 1、腐蚀过程 (1)碱金属氯化物的生成 在生物质燃烧过程中,大量的氯、硫元素与挥发性的碱金属元素(如:主要是钾和钠)以蒸气形态进入到烟气中,会通过均相反应形成微米级颗粒的碱金属氯化物(氯化钠和氯化钾),凝结和沉积在温度较低的高温过热器管壁上。 (2)碱金属氯化物的硫酸盐化 凝结和沉积在管子外表面的碱金属氯化物(氯化钠和氯化钾),将与烟气中的二氧化硫发生硫酸盐化反应,通过反应方程式(1)和(2)生成氯气。 242222Cl SO Na O SO NaCl +=++ (1) 24222Cl SO K SO KCl +=+ (2) (3)氯气扩散,与铁反应生成氯化铁 碱金属硫酸盐化反应中会产生氯气的过程发生在积灰层,在靠近金属表面会聚集浓度非常高的氯气,其浓度远高于烟气中的氯气。由于部分氯气是游离态,能够穿过多孔状垢层进行扩散,通过反应方程式(3)与铁反应生成氯化铁。因管壁金属

与腐蚀垢层的分界面上的氧气分压力几乎为零,即在还原性气氛下,氯气能够与金属反应生成氯化铁,且氯化铁是稳定的。 22FeCl Cl Fe =+ (3) (4)氯化铁氧化生成氯气 由于氯化铁熔点约为280℃左右,所以在管壁温度高于300℃时,氯化铁发生气化,并通过垢层向烟气方向扩散。由于氧气分压力较高,即在氧化性气氛条件下,氯化铁将与氧气发生反应,生成氧化铁和氯气。氯气为游离态,能够(扩散到金属与腐蚀层的交界面上)与金属再次发生反应。 243223O 23Cl O Fe FeCl +=+ (4) 232222O 5.12Cl O Fe FeCl +=+ (5) 23243222O Cl O Fe O Fe FeCl +=++ (6) 在整个腐蚀过程中,氯元素起到了催化剂的作用,将铁元素从金属管壁上置换出来,最终导致了严重的腐蚀。 此外,以上仅以铁(Fe )元素为例进行了说明,合金钢中的铬(Cr )元素的化学反应机理与铁(Fe )元素相同。 2、腐蚀特点 (1)具有典型的温度区间 通过分析多台高温高压生物质水冷振动炉排锅炉三、四过热器实际腐蚀发生和发展情况,发现当蒸汽温度控制在490℃以下运行时,三、四过热器腐蚀速度较慢,一旦蒸汽温度高于550℃

锅炉高温腐蚀及防止措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.锅炉高温腐蚀及防止措施 正式版

锅炉高温腐蚀及防止措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 锅炉的高温腐蚀主要发生在燃用高硫煤的锅炉水冷壁管和过热器管束上。锅炉运行时在烟温大于700℃的区域内,在高温高压条件下受热面与含有高硫的腐蚀性燃料和高温烟气接触,极易发生高温腐蚀。高压锅炉水冷壁管的硫腐蚀主要是由于煤粉中的黄铁矿(FeS2)燃烧受热,分解出自由的硫原子,产生腐蚀。通常高压锅炉水冷壁管向火侧的正面腐蚀最快,减薄得最多,若发生爆管都在管子的正面爆开,管子的侧面减薄得较少,而管子背火侧几乎不减薄,这种腐蚀给锅炉水冷壁管造成很大威胁,严重

时,往往几个月就得更换部分管段,给锅炉的安全经济运行带来很大危害。而锅炉过热器管的高温腐蚀主要是由于液态的灰黏结在过热器管壁上而引起腐蚀。 1 高温腐蚀的主要原因 1.1 燃烧不良和火焰冲刷 持续燃烧不良和脉动火焰冲击炉墙时,导致燃烧不完全,在燃烧器区域附近的火焰中心处,当未燃尽的焰流冲刷水冷壁管时,由于煤粉具有一定的棱角,煤粉对管壁有很大的磨损作用,这种磨损将加速水冷壁保护层的破坏,在管壁的外露区段,磨损破坏了由腐蚀产物形成的不太坚固的保护膜,烟气介质便急剧地与纯金属发生反应,这种腐蚀和磨损相结合的过程,大大加剧了金属管子

水冷壁管高温腐蚀的机理

1 高温腐蚀是炉内高温烟气与金属壁面相互作用的一个复杂的物理化学过程,按其机理通常可分为三大类:硫化物(FeS2、H2S)型腐蚀、焦硫酸盐型腐蚀和氯化物型腐蚀。多年研究表明,水冷壁管发生高温腐蚀的区域是有规律的:通常多在燃烧高温区,即局部热负荷较高,管壁温度也较高的区域,如燃烧器区附近,其余区域的高温腐蚀明显减弱或根本不发生高温腐蚀;发生高温腐蚀的管子向火侧正面的腐蚀速度最快,管壁减薄量最大,背火侧则不发生高温腐蚀。 2 影响高温腐蚀的主要原因 2.1火焰冲墙和还原性气氛的存在是造成水冷壁高温腐蚀的主要原因 对切圆燃烧锅炉,当燃烧切圆直径过大、火焰中心未形成切圆或燃烧切圆偏移时,炉内空气动力场倾斜,燃烧器区域出现火焰冲墙和还原性气氛,从而发生高温腐蚀。 2.1.1高温火焰直接冲刷水冷壁 当含有较大煤粉浓度的高温火焰直接冲刷水冷壁管时,将大大加剧高温腐蚀的发生。其一,高温辐射热可加速硫酸盐的分解,加快腐蚀速度;其二,火焰中含有未燃尽的煤粉,在水冷壁附近缺氧燃烧,产生还原性气体;其三,未燃尽的煤粉颗粒随烟气冲刷水冷壁管时,磨损将加速水冷壁管上保护膜的破坏,加快金属管壁高温腐蚀的过程。 2.1.2存在还原性气体 由于着火延迟,未燃尽的煤粉在水冷壁附近进一步燃烧时,发生化学不完全燃烧,形成缺氧区,使炉膛壁面附近处于含有还原性气体(CO、H2)和腐蚀性气体(H2S)的烟气成分之中,没有完全燃烧的游离硫和硫化物与金属管壁发生反应,引起管壁高温腐蚀。 研究表明,烟气中CO浓度越大,高温腐蚀就越严重;H2S的浓度大于0.01%时,就会对钢材产生强烈的腐蚀作用;而当含氧量大于2%时,基本上不会发生高温腐蚀[1]。 2.2燃煤品质差是水冷壁高温腐蚀的必要条件 燃煤中硫、碱金属及其氧化物含量越大,腐蚀性介质浓度越大,出现高温腐蚀的可能性就越大。高硫煤产生的大量H2S、SO2、SO3、原子硫[S]不仅破坏管壁的Fe2O3保护膜,还侵蚀管子表面,致使金属管壁不断减薄,最终导致爆管事故。 燃用不易引燃的无烟煤和贫煤时,因着火点温度相对较高,燃烧困难,容易产生不完全燃烧,并使火焰脱长,在金属壁面附近形成还原性气氛,增加对管壁的腐蚀性。 煤粉的颗粒越大,也就越不易燃尽,比较容易形成还原性气氛,产生高温腐蚀。同时,颗粒越大,对壁面的磨损也越严重,破坏了水冷壁管外氧化保护膜,使烟气中腐蚀介质直接与管壁金属发生反应,使腐蚀加剧。 2.3过高的水冷壁管壁温度促进了水冷壁高温腐蚀的发生 研究表明,H2S等腐蚀性介质的腐蚀性在300℃以上逐步增强,即温度每升高50℃,腐蚀程度将增加一倍。对于亚临界大型电站锅炉,燃烧器区域的水冷壁管内汽水温度约在350℃左右,烟气侧水冷壁管温度多在420℃左右,正处于金属发生强烈高温腐蚀的温度范围之内。同时,管子局部壁面温度过高,易使具有腐蚀性的低熔点化合物粘附在金属表面,促进了管壁高温腐蚀的发生。 2.4运行因素的影响 当锅炉负荷发生变化时,若运行不当(如火嘴投停不当),就容易引起燃烧不稳定,产生还原性气氛,或造成烟气冲墙,继而发生高温腐蚀。因此,运行不当也是引起高温腐蚀的一个主要因素。 3高温腐蚀的防护措施

锅炉水冷壁高温腐蚀原因及预防措施

锅炉水冷壁高温腐蚀原因及预防措施 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

水冷壁高温腐蚀的原因分析及预防措施 我厂#2炉在本次B 级检修中发现水冷壁存在高温腐蚀现象,高温腐蚀区域大约在D 层燃烧器与 层燃烧器之间, 在这一区域水冷壁高温腐蚀后,壁厚明显减薄,最薄处仅有5mm, 因而强度降低,极易造成水冷壁爆管和泄漏,危及锅炉安全运行。 针对水冷壁高温腐蚀问题,生产部、调度部、运行分场进行了多次分析和探讨,认为我厂水冷壁高温腐蚀的原因大致有以下几个原因: 1、我厂燃煤为山西贫煤,该煤种含硫及硫化物较多,高含硫量使煤在燃烧中产生较多的腐蚀性物质,直接导致水冷壁的高温腐蚀。同时,由于近年来煤炭市场供求关系的转换,煤质难以得到保证,由于煤质较杂多变,运行中往往引起煤粉变相,着火点推迟,燃烧速度低等一系列问题。 2、我厂锅炉为亚临界锅炉,饱和水温约为360 ℃,水泠壁温度可达400℃,在该条件下管壁被氧化,使受热面外表形成一层Fe 2O 3和极细的灰粒污染 层,在高温火焰的作用下,灰分中的碱土金属氧化物(Na 2O 、K 2O )升华,靠扩散 作用到达管壁并冷凝在壁面上,与周围烟气中的SO 3化合生成硫酸盐。管壁上的硫 酸盐与飞灰中的Fe 2O 3及烟气中的SO 3作用,生成复合硫酸盐,复合硫酸盐在 550℃-710 ℃范围内呈液态,液态的复合硫酸盐对管壁有极强的腐蚀作用。 3、我厂入炉煤粉长期偏向,造成煤粉直接冲刷水冷壁,在水冷壁附近区域造成还原性气氧,导致高温腐蚀。 4、我厂为四角切圆燃烧锅炉。当一、二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁

130t振动炉排生物质锅炉设计分析说明

生物锅炉设计说明 一、锅炉简介 本锅炉是采用丹麦BWE公司先进的生物燃料燃烧技术的130t/h振动炉排高温高压蒸汽锅炉。锅炉为高温、高压参数自然循环炉,单锅筒、单炉膛、平衡通风、室内布置、固态排渣、全钢构架、底部支撑结构型锅炉。 本锅炉设计燃料为棉花秸秆,可掺烧碎木片、树枝等。这种生物质燃料含有包括氯化物在内的多种盐,燃烧产生的烟气具有很强的腐蚀性。另外它们燃烧产生的灰分熔点较低,容易粘结在受热面管子外表面,形成渣层,会降低受热而的传热系数。因此:在高温受热段的管系采用特殊的材料与结构,以及有效的除灰措施,防止腐蚀和大量渣层产生。 本锅炉采用振动炉排的燃烧方式。锅炉汽水系统采用自然循环,炉膛外集中下降管结构。该锅炉采用"M"型布置,炉膛和过热器通道采用全封闭的膜式壁结构,很好的保证了锅炉的密封性能。过热蒸汽采用四级加热,两级喷水减温方式,使过热蒸汽温度有很大的调节裕量,以保证锅炉蒸汽参数。尾部竖井内布置有两级省煤器、一级高压烟气冷却器和两级低压烟气冷却器。空气预热器布置在烟道以外,采用水冷加热的方式,有效的避免了尾部烟道的低温腐蚀。 锅炉采用轻柴油点火启动,在炉膛右侧墙装有启动燃烧器。 锅炉室内布置,购价全部为金属结构,按7级地震烈度设计。 二、设计规范及技术依据 —1996版《蒸汽锅炉安全技术监察规程》 —JB/T6696—1993《电站锅炉技术条件》 —DL/5047—1989《电力建设施工及验收规范》(锅炉机组篇) —GB12145—1989《火力发电机组及蒸汽动力设备水汽质量标准》 —GB10184—1988《电站锅炉性能试验规程》 —GB13223—1996《火电厂大气污染排放标准》 —GB12348—1999《工业企业厂界噪声标准》 等有关国家标准。 其中设计技术依据: —锅炉热力计算按《锅炉机组热力计算标准方法》 —强度计算按GB9222—2008《水管锅炉受压元件强度计算》 —烟风阻力计算按《锅炉设备空气动力计算标准方法》 等锅炉专业标准 三、供用户资料 根据《蒸汽锅炉安全技术监察规程》要求,并且保证用户进行锅炉安装、运行、维护和检 修有必要的技术依据和资料,锅炉随机提供详尽的技术资料,供用户资料详见: W1305100TM《供客户图纸清单》 W1305100JM《供客户技术文件清单》 四、锅炉主要技术经济指标和有个数据 1、锅炉参数 额定蒸发量:130t/h 额定蒸汽压力:9.2MPa 额定蒸汽温度:540℃ 额定给水温度:210℃

生物质锅炉防磨防腐技术规范

生物质CFB 锅炉防磨防腐技术规X 生物质燃料循环流化床锅炉,因其锅炉烟气比常规锅炉烟气含有更多的钾、钠等活泼金属,含有更多的氯离子,其腐蚀程度比常规锅炉更为严重了;同时受到含尘烟气的冲刷磨损,故而管壁极易因腐蚀磨损而快速减薄。为确保机组安全、稳定、长周期经济运行,采取防护措施是十分必要的。根据我公司多年来从事该行业的实际施工经验,并根据贵公司锅炉运行的具体情况、工艺参数、结构特点,经本公司工程技术人员认真分析,对上述设备进行防腐防磨技术设计采用本技术进行防护能获得良好的效果,可大大延长设备使用寿命。 一、失效分析 1、炉膛水冷壁 炉膛水冷壁等受热面部位失效的主要原因是含尘气流冲蚀和碱性介质的热腐蚀、高温氧化。磨损主要与烟气流速、烟气含尘量及含尘介质性质有关,据有关研究资料表明,磨损量与气流速度的3.6次方成正比。炉膛内烟速高、含尘量大,且存在对浇注料平台的涡流效应和切割效应,因而磨损严重。同时由于贵公司锅炉以稻壳、有机肥料为主要燃料,其灰分中含有钾、钠等金属氧化物,对锅炉管产生腐蚀,而且锅炉水冷壁具备了典型的热腐蚀条件,实践证明,在300~500℃X围,管外表温度每升高50℃,腐蚀速度增加1倍。锅炉在运行过程中管壁外表首先产生高温氧化生成Fe2O3,其次是灰份中的金属氧化物附于管外表,生成金属盐等复合物,此复合物呈疏松状,经燃烧中含尘气流的不断冲刷、脱落、再生成、再脱落,使水冷壁管逐渐变薄而腐蚀。受此双重破坏作用,水冷管壁逐渐变薄,以致爆漏失效。 2、过热器 2.1过热器部位工作烟温较高,管内工质为蒸汽,它是最易发生高温腐蚀的部件,垃圾炉过热器的腐蚀是一个连续进行的过程,致腐物源源不断的补充到腐蚀前沿进行化学反应。过热器投入运行后,被覆盖一层初始积灰层,属于化学作用的附着而非单纯的机械附着。锦润性附着内层除含金属氧化物外,主要由凝聚和沉积在管壁表面上的高浓度的碱、碱土类、重金属的氯化物和硫酸盐类组成的初始积灰层,沉积过程中形成各种类型的低熔点复合物以液相状态存在,成为熔池层。碱主要是KCl和K2SO4,由于碱的熔点低,KCl是768℃,NaCl是801℃,Na2SO4是884℃,当烟气中碱含量富集时,就会引起氯化碱和硫酸碱等化合物粉附在过热器管上。过热器在管壁温度较高时,会形成更多的低熔点物质,这使整个附面层中散步的熔池量提高,且其可以直接接触到管壁表面,促使该部位金属材料的腐蚀速度大大增加。

锅炉水冷壁高温腐蚀原因分析及预防措施

锅炉水冷壁高温腐蚀原因分析及预防措施 发表时间:2019-11-18T13:31:35.660Z 来源:《中国电业》2019年14期作者:侯启聪 [导读] 对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析。 摘要:对大唐鲁北电厂2×330MW机组锅炉水冷壁产生高温腐蚀的原因进行分析,认为其主要是主燃烧器区二次风和一次风配比不合理,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛所致。文章针对锅炉水冷壁高温腐蚀的原因及预防措施,进行简要的剖析研究。 关键词:锅炉;水冷壁;高温腐蚀;燃烧 鲁北电厂330MW锅炉是采用美国燃烧工程公司(CE)的引进技术设计和制造的。锅炉为亚临界参数、一次中间再热、自然循环汽包炉,采用平衡通风、四角切圆燃烧方式,。锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1020t/h;机组电负荷为330MW(即TRL工况)时,锅炉的额定蒸发量为969t/h。 锅炉设计燃料为烟煤,收到基硫0.41%,校核煤种收到基硫0.6%。 1高温腐蚀的现象及原理 机组停备水冷壁防磨防爆检查发现,腐蚀严重的区域大都位于燃烧器喷出后射流的中下游。腐蚀区域的水冷壁表面一般呈黑褐色,外层松软、内层坚硬,剥落坚硬层后,垢状物与水冷壁管结合面处层蓝色。腐蚀区域大多水冷壁表面不清洁,有较多的灰沾污。大唐鲁北电厂1、2号炉水冷壁发现腐蚀区域水冷壁表面有未燃尽的煤粉附着,再往里有较多的黄色硫化物。 通过收集资料汇总发现,近几年山东省相继有多台电厂锅炉发生严重的水冷壁高温腐蚀,如黄台电厂8号炉(1000t/h)、华能德州电厂1-4号炉(1000t/h)、南定电厂1、2号炉(410t/h)、潍坊电厂1、2号炉(1000t/h)、青岛电厂1、2号炉(1000t/h)等,腐蚀最严重的锅炉水冷壁最小壁厚仅1.3mm,腐蚀速度2mm/a。上述各台锅炉发生高温腐蚀的区域基本相近,都在燃烧器出口射流中下游区域,高度在燃烧器中心线附近,且管子向火侧的正面点腐蚀速度最快。水冷壁发生高温腐蚀后,壁厚减薄,强度降低,容易造成爆管泄漏,影响锅炉安全运行。有腐蚀物分析基本可确定,大唐鲁北1号炉水冷壁高温腐蚀属于硫化物型高温腐蚀。这种腐蚀主要是由煤中的黄铁矿硫造成的。 2水冷壁高温腐蚀原因分析 2.1煤种问题 煤种是造成高温腐蚀的主要原因之一。煤中的硫和硫化物是形成腐蚀物质的基础,而煤的燃烧特性则直接影响贴壁还原性气氛的生成。 对发生高温腐蚀的锅炉所燃用煤质统计分析表明,大部分锅炉燃煤的含硫量均在1.2%以上,有些甚至高达3%。高含硫量使煤在燃烧中产生更多的腐蚀性,加速水冷壁腐蚀。根据山东省锅炉高温腐蚀情况普查结果,发生严重高温腐蚀的多为1000t/h以上高参数、大容量锅炉,中小型锅炉较少出现高温腐蚀。南定电厂1、2号炉均为410t/h锅炉,但也出现严重高温腐蚀,这其中有燃烧器结构布置方面的原因,但更重要的是煤质。 2.2炉内燃烧风粉分离 这是四角切圆燃烧锅炉普遍存在的问题。目前四角切圆燃烧锅炉普遍采用集束射流着火方式,一二次风间隔布置并以同一角度平行射向炉内。理想的着火应是一次风喷出后不久即被动量较大的二次风所卷吸,射流轨迹变弯,形成转弯的扇形面,并卷吸周围高温烟气,形成着火区,着火后的一次风被卷入二次风射流中燃烧。由于一次风射流混入动量大的二次风中,使火炬射流刚性加强,不易受干扰,从而在整个燃烧器区域内形成一个燃料与空气强烈混合的、稳定燃烧的旋转火炬。 但炉内实际燃烧过程并非如此。为保证稳定燃烧,一次风出口风速通常控制比较低(20—25m/s),而二次风速一般在40—50m/s之间,从而一二风的射流刚性相差较大。一二次风射流喷出燃烧器后由于受到上游邻角气流的挤压作用及左右两侧不同补气条件的影响,使气流向背火侧水冷壁偏转,此时刚性较弱的一次风射流比二次风偏转更大角度,从而使一二次风分离。一二次风的刚性相差越大,这种分离现象越明显。由于部分一次风射流偏离二次风,煤粉在缺氧状态下燃烧,在射流中下游水冷壁附近形成还原性气氛,这是引发高温腐蚀的一个重要原因。 2.3运行调整方面 2.3.1配风状况差 锅炉二次风门普遍采用气动执行机构控制,由于种种原因风门控制大都较乱,加上锅炉一二次风配比不合理,炉内配风状况很差。这也是造成一二次风混合不完全,煤粉着火和燃尽差,煤粉贴壁燃烧的原因之一。 2.3.2燃烧配风状况差 部分锅炉设备由于辅机设备问题,造成满负荷工况供风不足。如潍坊电厂1、2号炉由于排烟温度低,空预器积灰严重,阻力增大,造成送、引风机出力不足,满负荷运行时炉膛出口氧量不足1%(设计值为4%),远远不能满足锅炉正常燃烧要求。由于总风量不足,使燃烧器区域的缺氧燃烧状况更加严重,对预防高温腐蚀非常不利。 通过以上分析,认为鲁北1号炉高温腐蚀的主要原因是:锅炉长期高负荷、大煤量运行工况下,主燃烧器区二次风和一次风配比不合理,一次风粉射流在炉内上升过程中,受到刚性较强的二次风射流的挤压和下游二次风射流的牵引,造成风粉脱离,含粉气流贴壁冲刷,在水冷壁区域形成局部还原性气氛。而给煤量大大偏离设计值造成的入炉煤粉浓度加大,以及含硫量的增高加剧了腐蚀的速度。 3预防高温腐蚀的措施方法 造成高温腐蚀的主要原因是煤质、设备、运行三个方面。从目前情况看,要改变煤种非常困难,依靠燃烧调整来预防高温腐蚀也有一定难度且效果不理想,因此,只有通过设备改造来预防高温腐蚀才是最根本有效的方法。 3.1侧边风技术 所谓侧边风就是在高温腐蚀区域的上游水冷壁或在高温腐蚀区域水冷壁上安装喷口,向炉膛内通入空气。采用侧边风的主要目的是改变水冷壁高温腐蚀区域的还原性气氛,增加局部含氧量。一般情况下以二次风作为侧边风的风源。根据侧边风结构及布置方式又分为贴壁型和射流型2种。贴壁型侧边风一般采用在水冷壁鳍片上开孔的方式,开孔位置在高温腐蚀区域内,依据腐蚀面积大小决定开孔数目的多少。二次风有小孔进入炉膛后,受炉内烟气运动影响,很快偏转附着于水冷壁管上,在高温腐蚀区域水冷壁表面形成一层空气保护膜。贴

水冷振动炉排的安装及调试

水冷振动炉排的安装及调试 水冷振动炉排是专门为秸秆直燃锅炉而开发的燃烧设备。炉排是一种机械化的燃烧设备,适用于蒸发量为75t/h、燃料为破碎后的玉米秆、棉花杆、稻草、麦秆、油菜杆、果木枝条等生物质燃料的锅炉。 一、水冷振动炉排的结构和工作原理 振动炉排的结构由锅炉左右两副水冷膜式壁组成,独立支撑在锅炉4.5m层的钢支架上,由汽包引出的下降管供水。两片相对独立的膜式壁中间采用迷宫式密封,密封内部填充耐高温填充物。炉排两侧、前侧与锅炉左右侧墙和前墙间留有5~15mm的间隙,此间隙采用锅炉前墙及侧墙水冷壁热态膨胀时与炉排间的间隙缩小进行密封。所以,侧墙与前墙间的密封质量与炉排进行时的状态会对锅炉热态运行产生影响。 水冷振动炉排的工作原理:振动炉排的运行方式为间隔一定的周期,由布置在炉前的两套传动装置进行一次振动,以使炉排上的物料向炉排后部排渣口移动,一方面加强物料的扰动,使大块的物料充分燃烧,另一方面使燃烧后的炉渣排出振动炉排,保证炉排表面物料的厚度。 水冷振动炉排运行时两副炉排由一台电动机通过四根三角胶带驱动,从而使炉排上的燃料犹如农村筛糠子一样,从而达到充分燃烧的目的。而不造成未燃烧的燃料直接落入灰斗造成浪费。并且从炉排底部有一次风对燃料自下而上进行吹动,一次风是通过进风管道由炉排两侧引入,炉排面上的供风量通过调节风管内的风门开度进行调节。炉排面上的部分尘土及少量细灰会通过炉排面上的布风孔漏入炉排下风室内,再由风室下的放灰门定期将尘土和细灰排入除渣系统,炉排两侧及前部采用迷宫式密封,这种结构能有效地阻止燃料漏入风室,同时不影响炉排的振动。左右炉排中间采用接触式加耐火材料密封。 二、振动炉排的安装技术要求: 首先,确定安装振动炉排的基准点。考虑到振动炉排在热态时相对于锅炉炉膛来说是固定不动的,在锅炉水压试验前炉膛找正时考虑炉膛相对锅炉中心线的位置偏差,此偏差必须控制在5mm以内,炉膛找正后必须进行临时固定,进行汽水系统管道的安装,在全部汽水管道安装完毕后,进行水冷壁刚性梁的安装连接,之后切除临时加固,使炉膛处于自由状态,测量炉膛纵横中心,作为振动炉排的安装基准。 其次,要确定炉膛更放的膨胀量。在确定振动炉排安装中心基准后,考虑锅炉四侧水冷壁向下及向外侧膨胀的数值,从锅炉膨胀系统图中查出各处的膨胀值,安装密封装置时必须考虑此部分的膨胀量。如果密封间隙过大,会造成运行时炉排四侧的漏风量太大,导致炉排透风孔中的风量不足,影响秸秆的燃烧。 在确定以上数值后,进行振动炉排的安装。由于振动炉排预放在钢架支撑梁上,因此在确定了锅炉炉膛向下膨胀值后,可确定振动炉排前后联箱的中心标高,进行钢支撑固定及焊接作业。 钢支撑焊接完毕充分冷却后,在钢梁上画出前后确定出的锅炉炉膛在自由状态下的纵横中心线,振动炉排的中心线可依据此中心线确定,依据中心线将振动炉排就位安装进行初步找正。找正时按照与四周水冷壁的间隙进行调整,保证与四周水冷壁的距离满足图纸中的要求,如果无法满足图纸中的间隙要求,则进行炉排位置的调整,但必须保证炉排的中心线与炉膛的中心线重合。 初步找正满足图纸要求后,进行密封装置的安装,先确定两侧密封安装位置,

热水锅炉腐蚀与防腐蚀

济南绿桥环保技术有限公司https://www.360docs.net/doc/0717918178.html,热水锅炉腐蚀与防腐蚀 热水锅炉腐蚀与防腐蚀 济南绿桥环保王恒摘要:热水锅炉无论在工业生产还是人民生活中都发挥着重要作用。然而,热水锅炉矽统的运行腐蚀、停用腐蚀以及由此而引起的腐蚀产物结垢问题却是长期困扰人们的难题。目前在热水锅炉运行、停用期间主要是以传统的处理方法,但是,由于传统方法操作繁琐,往往不完全具备实施条件等原因,效果不理想。BF-3a解决对锅炉运行、停用期间腐蚀性两大难题。 关键词:热水锅炉,腐蚀,传统的处理,BF-30a防腐蚀性,锅炉腐蚀控制 1、问题的提出 据辽宁省辽阳市锅炉检验研究所统计,在在用的800台采暖锅炉中,发生了腐蚀的锅炉就有755台,占95%,其中严重腐蚀约占10%—15%腐蚀泄露约占5%—8%,与国外相比我国的锅炉寿命仅为设计寿命的1/2—1/3。 2、腐蚀产生的原因 锅炉材质钢中含有碳及一些杂质,由于钢中成分及组织的不均匀,存在着电极电位差,既有正负微电机的存在,锅炉水中的去极剂,如氧和二氧化碳能够不断从微电机负极吸收电子,而作为微电机正极的铁离子也能顺利的失去电子而进入水溶液。水及其中的氧、二氧化碳去极剂相当于接通电池的导线,使电子传递完而产生微电流。这种微电极的反应的最终结果是刚中的杂质或铁被溶出而形成缺陷,严重时形成深坑和穿孔,这就是电化学腐蚀。 由于溶解氧本身是阴极去极化剂,对金属的危害十分严重,而二氧化碳在水溶液呈酸性,直接破坏金属表面的保护膜,加速了氧对金属的电化学腐蚀。在天然水中,硬度主要有HCO3的盐类组成,这些重碳酸盐在锅炉中经过一系列的变化,在水中产生二氧化碳和碳酸,从而引起锅炉内表面腐蚀,特别是有些单位对原水不进行任何处理,直接送进锅炉,在锅炉被加热过程中,重盐酸被分解,产生沉淀物,粘附于锅炉及管道内加热表面,形成坚硬的水垢。 二氧化碳的产生处于直接进入锅炉的原水有关外,还与是否采用除氧有关。 3、锅炉腐蚀原因分析 3-1大量补入原水未经任何处理 当补给水质达不到标准的要求,补给水中重碳酸盐在锅炉内加热过程中产生二氧化碳,或在直接补入生水的过程中,既不进了溶解氧,对锅炉金属表面产生腐蚀。

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

锅炉水冷壁高温腐蚀

大型锅炉水冷壁高温腐蚀 调研报告 上海锅炉厂有限公司 二○○二年三月十五日 目录 1.前言 (2) 2.产生高温腐蚀的机理和条件 (2) 3.高温腐蚀发生在大型贫煤锅炉上的主要原因 (3) 4.大型锅炉水冷壁高温腐蚀的部位及预防措施 (5) 5.水平浓淡分离燃烧技术在防止高温腐蚀方面的应用 (7) 6.石洞口电厂#3、#4炉改造情况 (11) 7.大型锅炉炉内水冷壁发生高温腐蚀的判据 (14) 8.结论 (15) 1.前言 我国许多地方的电厂,不少燃用无烟煤、贫煤、劣质烟煤的大型锅炉投运后,炉内水冷壁都不同程度的存在高温腐蚀。这种情况,无论是在我国上海、哈尔滨、东方三大锅炉厂自行设计制造的锅炉,还是在国外日本三菱、法国斯坦因、英国巴布科克、加拿大巴威等公司设计制造的锅炉,其燃烧器高温区域,水冷壁都有高温腐蚀现象发生,而且遍及各种炉型。以水循环方式分,有自然循环、控制循环和直流锅炉;以燃烧方式分,有四角切圆、前后墙对冲和W型火焰燃烧器等许多典型设计。通过调研,我们发现水冷壁管壁腐蚀速度一般为0.8~1.5mm/104h,腐蚀后的管壁减薄

形貌较多,一般是分层减薄,而管壁向火侧减薄较快。 2.产生高温腐蚀的机理和条件 在燃煤锅炉中,高温腐蚀分三种类型:硫酸盐型、氯化物型和硫化物型。硫酸盐型腐蚀主要发生高温受热面上;氯化物型腐蚀主要发生在大型锅炉燃烧器高温区域的水冷壁管上;硫化物型腐蚀主要发生在大型锅炉水冷壁管上。水冷壁的高温腐蚀通常是由这三种类型腐蚀复合作用的结果。 硫酸盐型高温腐蚀的形成:在炉内高温下,煤中的NaCl中的Na+易挥发,除一部分被熔融的硅酸盐捕捉外,有一部分与烟气中的SO3发生反应,形成Na2SO4;另一部分是易于挥发性的硅酸盐,与挥发出的钠发生置换反应,而释放出来的钾,与SO3化合,生成K2SO4。而碱金属硫酸盐(Na2SO4、K2SO4)有粘性,且露点低。当碱金属硫酸盐沉积到受热面的管壁后会再吸收SO3,并与Fe2O3、Al2O3作用生成焦硫酸盐(Na·K)2S2O7。这样一来,受热面上熔融的硫酸盐(M2SO4)吸收SO3并在Fe2O3、Al2O3作用下,生成复合硫酸盐(Na·K)(Fe·Al)SO4,随着复合硫酸盐的沉积,其熔点降低,表面温升升高。当表面温升升高到熔点,管壁表面的Fe2O3氧化保护膜被复合硫酸盐破坏,使管壁继续腐蚀。另外,附着层中的焦硫酸盐(Na·K)2S2O7。由于熔点低,更容易与Fe2O3发生反应,生成(Na·K)3Fe(SO4)3,即形成反应速度更快的熔盐型腐蚀。 氯化物型腐蚀的形成:在炉内高温下,原煤中的NaCl中的易与H2O、SO2、SO3反应,生成硫酸盐(Na2SO4)和HCl气体。同时凝结在水冷壁上的NaCl也会和硫酸盐发生反应,生成HCl气体,因此,沉积层中的HCl浓度要比烟气中的大得多,致使受热面管壁表面的Fe2O3氧化保护膜

相关文档
最新文档