ZSMY-1 型在线色谱模拟蒸馏

ZSMY-1 型在线色谱模拟蒸馏
ZSMY-1 型在线色谱模拟蒸馏

蒸馏的原理及操作和注意事项

蒸馏的原理及操作和注意事项 蒸馏是提纯液体物质和分离混合物的一种常用的方法。通过蒸馏还可以测出化合物的沸点,所以它对鉴定纯粹的液体有机化合物也具有一定的意义。 一、蒸馏原理 液体的分子由于分子运动有从表面逸出的倾向,这种倾向随着温度的升高而增大,即液体在一定温度下具有一定的蒸气压,当其温度达到沸点时,也即液体的蒸气压等于外压时(达到饱和蒸气压),就有大量气泡从液体内部逸出,即液体沸腾。一种物质在不同温度下的饱和蒸气压变化是蒸馏分离的基础。将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。 很明显,蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来。(液体混合物各组分的沸点必须相差很大,至少30o C以上才能达到较好的分离效果)。 纯粹的液体有机化合物在一定压力下具有一定的沸点。但由于有机化合物常和其它组分形成二元或三元共沸混合物(或恒沸混合物),他们也有一定的沸点(高于或低于其中的每一组分)。因此具有固定沸点的液体不一定都是纯粹的化合物。一般不纯物质的沸点取决于杂质的物理性质以及它和纯物质间的相互作用:假如杂质是不挥发的,溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并

不是溶液的沸点,而是逸出蒸气与其冷凝液平衡时的温度,即是馏出液的沸点而不是瓶中蒸馏液的沸点);若杂质是挥发性的,则蒸馏时液体的沸点会逐渐上升;或者由于组成了共沸混合物,在蒸馏过程中温度可保持不变,停留在某一范围内。 二、蒸馏操作 1. 蒸馏装置及安装 最简单的蒸馏装置,如图28所示。常压蒸馏装置主要由蒸馏烧瓶、蒸馏头、温度计套管、温度计、冷凝管、接液管和接受瓶等组成。蒸馏液体沸点在140o C以下时,用直形冷凝管;蒸馏液体沸点在140o C 以上时,由于用水冷凝管温差大,冷凝管容易爆裂,故应改用空气冷凝管——高沸点化合物用空气冷凝管已可达到冷却目的。蒸馏易吸潮的液体时,在接液管的支管处应连一干燥管;蒸馏易燃的液体时,在接液管的支管处接一胶管通入水槽,并将接受瓶在冰水浴中冷却。 安装仪器的顺序一般是自下而上,从左到右,全套仪器装置的轴线要在同一平面内,稳妥、端正。 安装步骤:先从热源开始,在铁架台上放好煤气灯,再根据煤气灯的高低依次安装铁圈、石棉网(或水浴、油浴等),然后安装蒸馏瓶(即烧瓶)、蒸馏头、温度计。注意瓶底应距石棉网1-2mm,不要触及石棉网;用水浴或油浴时,瓶底应距水浴(或油浴)锅底1-2cm。蒸馏瓶用铁夹垂直夹好。安装冷凝管时,用合适的橡皮管连接冷凝管,调整它的位置使与已装好的蒸馏瓶高度相适应并与蒸馏头的侧管同

色谱模拟蒸馏

馏分油色谱模拟蒸馏方法介绍 一、馏分油色谱模拟蒸馏分析方法(ASTM D2887、SH/T 0558方法) ●适用范围 本方法适用于测定常压终馏点低于或等于550℃、蒸汽压低到能在室温下进样和沸点范围大于55℃的石油产品或馏分的馏程分布,如汽油、煤油、柴油、润滑油、蜡油等。此方法为 ASTM D2887-01a标准及行业标准SH/T 0558-95方法。 ●方法原理 色谱模拟蒸馏方法是用具有一定分离度的非极性色谱柱,在线性程序升温条件下测定已知正构烷烃混合物组分的保留时间。然后在相同的色谱条件下,将试 样按组分沸点次序分离,同时进行切片积分,获得对应的累加面积,以及相应的 保留时间。经过温度-时间的内插校正,就可以得到对应于百分收率的温度,即 馏程。其中,累加面积百分数即收率,因烃类的相对重量校正因子近似于1,故 可认为即是试样的质量百分含量[% (m/m)]。并且,根据质量百分含量,通过相 应的计算可以得到与ASTM D86方法具有可比性的体积百分含量馏程结果。 ●仪器及实验条件 (1)仪器及设备 HP 6890气相色谱仪; HP 化学工作站; HP 6890系列自动进样器。 (2)主要试剂 C5~C40正构烷烃混合标样 二硫化碳(CS2) 分析纯 (3)色谱操作条件 色谱柱: 长10m,内径0.53mm,液膜厚0.15μm,甲基硅酮弹性石英毛细管柱。 推荐的典型色谱操作条件见表1 。

表1 馏份油模拟蒸馏操作条件 实验结果 (1)基线补偿 正式进样之前,在与运行油样相同的操作条件下进行空白作业,以便对基线漂移、噪声和残存作适当扣除。基线补偿见图1。 (a)不合格基线 (b)合格基线 (c)不合格基线 图1. 基线补偿

Agilent 1200系列液相色谱方法开发的应用实例

Agilent 1200系列液相色谱方法开发解决方案在分析倍他乐克片降解产物中的应用 摘要 Agilent 1200系列液相色谱方法开发解决方案具有最大的灵活性和高度自动化。 本文将该系统用于寻找分析药物降解产物的最佳分离条件。以倍他乐克片为例,将其暴露在高温条件下,使其产生降解产物,在几根色谱柱上进行了如下分析:? 用安捷伦化学工作站方法筛选向导自动设置方法和序列? 不同选择性的6根Agilent ZORBAX RRHT 色谱柱? 不同流动相? 不同温度和梯度 作者 Angelika Gratzfeld-Hüsgen 安捷伦科技公司,德国,Waldbronn 应用报告 药物研发 9 5 % 50 %?30 oC 15 5 % 50 %?30 oC 9 5 % 50 %?60 oC

在本应用报告中,我们将报导: ? 以倍他乐克片降解产物为例,如何用安捷伦化学工作站方法筛选向导设置序列? 用6根不同色谱柱和两套不同流动相分析降解产物 ? 用一根色谱柱和两种不同梯度,采用两种不同温度进行微调 实验 仪器 Agilent 1200系列高分离度快速液相色谱系统,组合了Agilent 1200系列液相色谱方法开发解决方案。该液相色谱系统由以下模块组成,固件版本A.06.01或更高:? Agilent 1200 系列SL型二元泵,配置脱气机 ? Agilent 1200 系列SL plus高效自动进样器 ? 2个Agilent 1200 系列SL plus柱温箱(G1316C),已安装阀驱动 ? 安捷伦方法开发阀工具包,高压 ? 安捷伦方法开发毛细管工具包,低扩散,适用于短柱 ? Agilent 1200 系列SL型二极管阵列检测器(DAD) ? 几根Agilent ZORBAX 快速分离高通量(RRHT)色谱柱,1.8 μm填料粒径? 安捷伦化学工作站B04.01,含安捷伦化学工作站方法筛选向导样品制备 2片含药50 mg的倍他乐克片,分别研磨,并80 °C加热3小时。残渣溶解于4 mL水中。用2支注射式过滤器去除不溶性颗粒– 先用Minisart 0.8 μm过滤器,然后用安捷伦0.45 μm过滤器。进样1微升滤液至液相色谱系统。 结果和讨论 安捷伦化学工作站方法筛选向导 安捷伦化学工作站方法筛选向导是安捷伦化学工作站的附加软件。用于以简便而合理的方式生成方法和序列表,以筛选选定的色谱柱、溶剂、预设梯度和温度。 方法筛选实验的设置包括几步: 前言 在进行新药开发时,分析活性药物的存放期限和稳定性非常重要,必须确保最终的片剂不会生成无法预期和潜在有害的降解产物。这些片剂要在不同条件下进行破坏试验,并分析其降解产物,一般采用HPLC法。为了保证没有其它异常化合物与主成分共洗脱,必须确定所用的分析方法可以分离样品中的所有化合物。因此,需要进行液相色谱分析方法开发。一般来说,为了实现快速筛选,并对方法最终微调获得良好的起始条件,开始要试验一系列色谱柱和溶剂。这种方法筛选过程有助于找到分离目标系列化合物的最适宜色谱柱和流动相。通常,由于整个过程不能自动进行,所以非常费时。 Agilent 1200系列液相色谱方法开发解决方案提供了一个高度灵活的系统,最多可以使用8根100 mm长的色谱柱,或6根300 mm 长色谱柱。另外,安捷伦化学工作站的方法筛选向导将自动设置方法和序列,以筛选各种色谱柱、溶剂、预设梯度和温度的组合。另外,为了进行全自动方法开发和优化,该系统还可以与复杂的方法开发软件相结合,如: ? 来自ACD/Labs用于化学工作站的ACD/AutoChrom ? 来自ChromSword Baltic 用于化学工作站的ChromSword Auto

800万吨年大庆原油常减压蒸馏装置的工艺设计—方案设计与流程模拟

辽宁石油化工大学毕业设计(论文)Graduation Project (Thesis) for Undergraduate of LSHU 题目800万吨/年大庆原油常减压蒸馏装置的工艺设计—方案设计与流程模拟 TITLE Process Design of 8 Million t/a Atmospheric and Vacuum Distillation Unit for Daqing Crude Oil—Scheme Design and Process Simulation 学院化学化工与环境学部 School Liaoning Shihua University 专业班级加工1301班(化工1304班)Major&Class Chemical Engineering and Technology 1304 姓名武志涛 Name Zhitao Wu 指导教师刘洁/李文深Supervisor Jie Liu/Wenshen Li 2017年 6 月 3 日

论文独创性声明 本人所呈交的论文,是在指导教师指导下,独立进行研究和开发工作所取得的成果。除文中已特别加以注明引用的内容外,论文中不包含任何其他个人或集体已经发表或撰写过的研究成果。对本设计的工作做出重要贡献的个人和集体,均已在文中以明确方式标明并致谢。本声明的法律结果由本人承担。 特此声明。 论文作者(签名): 年月日

摘要 本次设计主要是对处理量为800万吨/年的大庆原油常减压蒸馏装置的工艺流程设计。运用化工模拟软件Aspen Plus对大庆原油蒸馏装置进行模拟优化,并运用软件Aspen Energy Analyzer 对常减压蒸馏装置的工艺流程进行全面的热集成分析。首先通过查阅文献得到原油的TBP曲线、API重度以及轻端组成等原油性质数据,在模拟计算过程中通过这些数据来生成油品的虚拟组分,从而对原油蒸馏装置进行准确的模拟,包括原油初馏、常压蒸馏、减压蒸馏三个重要过程。软件会得到原油蒸馏过程的运行数据,包括整个设备的物料平衡数据,初馏塔和常压塔的温度分布,压力对比和气液分布等。其次对常减压蒸馏工艺的全流程进行了热集成分析,采用夹点分析对冷、热流股进行匹配,生成初始换热网络,并对其进行改进优化。 本次设计模拟结果表明,原油蒸馏装置过程模拟的操作条件能反映常减压蒸馏装置操作的真实状况,设计所建立的工艺流程模拟数据可为实际生产的常减压操作提供理论依据。采用夹点技术通过热集成分析,通过改善夹点附近的流股匹配,减少穿越夹点的热流量,可以减少整个系统的公用工程消耗量,最终可获得最优的换热网络。 关键词:常减压蒸馏;流程模拟;夹点技术;换热网络;热集成

常压蒸馏及沸点测定实验()

新乡医学院医用化学实验课教案首页授课教师姓名及职称: 新乡医学院化学教研室年月日 实验常压蒸馏及沸点测定

一、实验目的 1.了解沸点测定的原理及意义; 2.掌握常压蒸馏操作技术及沸点测定方法。 二、实验原理 沸点测定实际上是一个蒸馏操作。蒸馏是一个将物质蒸发、冷凝其蒸气,并将冷凝液收集在另一种容器中的操作过程。当混合物中各组分的沸点不同时,可用蒸馏的方法将它们分开,所以蒸馏是分离有机化合物的常用手段。蒸馏的方法主要有以下四种:常压蒸馏、减压蒸馏、分馏和水蒸气蒸馏。下面我们就简单介绍一下,实验室中最常用的常压蒸馏。 基本原理 液体的分子由于热运动有从液体表面逸出的倾向,这种倾向随着温度的升高而增大,进而在液面上部形成蒸气。如果把液体置于密闭的真空体系中,液体分子继续不断地逸出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体中的速度相等,亦即使其蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施加的压力称为饱和蒸气压,简称蒸气压。同一温度下,不同的液体具有不同的蒸气压,这是由液体的本性决定的,而且在温度和外压一定时都是常数。 将液体加热,它的饱和蒸气压就随着温度升高而增大。当液体的蒸气压增大到与外界施于液面上的总压力(通常为大气压力)相等时,就有大量气泡从液体内部逸出,即液体沸腾。这时的温度称为液体的沸点。显然沸点与外压大小有关。通常所说的沸点是指在101.3 kPa压力下液体的沸腾温度。例如水的沸点为100℃,就是指在101.3 kPa压力下,水在100℃时沸腾。在其它压力下的沸点应注明压力。例如在70 kPa时水在90℃沸腾,这时水的沸点可以表示为90℃/70

蒸馏塔的设计-

1.二.设计任务及操作条件 1.设计任务: 生产能力(进料量) : 2万 吨/年 操作周期: 300*24=7200 h 进料组成: 41% 塔顶产品组成: >96% 塔底产品组成: >1% 2.操作条件: 操作压力: 4kpa (塔顶表 压) 进料热状态: 泡点进料 单板压降: 不大于0.7kpa

3.设备形式: 板式精馏塔,塔 顶为全凝器,中 间泡点进料,塔 底间接蒸汽加 热,连续精馏。 4.厂址: 齐齐哈尔市 (二)设计内容 二)设计内容 1.概述: 本次设计一筛板设计为例,筛板是在塔板上钻有均布的筛孔,上升气流经筛孔分散,鼓泡通过板上液层,形成气液密切接触的泡沫层.筛板塔的优点是结构简单,制造、维修方便,造价低,相同的条件下生产能力高于浮阀塔,塔板效率接近浮阀塔.他的缺点是操作范围小,小孔径筛板易堵噻不适宜

处理粘性大的,脏的和带固体粒子的料液.但设计良好的筛板具有足够的造作弹性,对易引起堵塞的物系可采用大孔径筛板,故近年来我国对筛板的应用日益增多. 2.设计流程的说明: 精馏装置包括精馏塔,原料预热器,再沸器,冷凝器。釜液冷却器和产品冷凝器等设备。热量自塔釜输入,物料在塔内经多次部分汽化与与部分冷凝器进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。在此过程中,热能利用率很低,为此,在确定流程装置时应考虑余热的利用,注意节能。另外,为保持塔的操作稳定性,流程中除用泵直接送入塔原料外,也可以采用高位槽送料以免

受泵操作波动的影响 塔顶冷凝装置根据生产状况以决定采用全凝器,以便于准确地控制回流比。若后继装置使用气态物料,则宜用全分凝器。总而言之确定流程时要较全面,合理的兼顾设备,操作费用操作控制及安全因素。 连续精馏操作流程图 冷凝器 再沸器 3.操作条件:

Aspen plus模拟精馏塔说明书

Aspen plus模拟精馏塔说明书 一、设计题目 根据以下条件设计一座分离甲醇、水、正丙醇混合物的连续操作常压精馏塔: 生产能力:100000吨精甲醇/年;原料组成:甲醇70%w,水28.5%w,丙醇1.5%w;产品组成:甲醇≥99.9%w;废水组成:水≥99.5%w;进料温度:323.15K;全塔压降:0.011MPa;所有塔板Murphree 效率0.35。 二、设计要求 对精馏塔进行详细设计,给出下列设计结果并利用AutoCAD绘制塔设备图,并写出设计说明。 (1).进料、塔顶产物、塔底产物、侧线出料流量; (2).全塔总塔板数N;最佳加料板位置N F;最佳侧线出料位置N P; (3).回流比R; (4).冷凝器和再沸器温度、热负荷; (5).塔内构件塔板或填料的设计。 三、分析及模拟流程 1.物料衡算(手算) 目的:求解 Aspen 简捷设计模拟的输入条件。 内容: (1)生产能力:一年按8000 hr计算,进料流量为 100000/(8000*0.7)=17.86 t/hr。 (2)原料、塔顶与塔底的组成(题中已给出): 原料组成:甲醇70%w,水28.5%w,丙醇1.5%w; 产品:甲醇≥99.9%w;废水组成:水≥99.5%w。 (3).温度及压降: 进料温度:323.15K;全塔压降:0.011MPa; 所有塔板Murphree 效率0.35。 2.用简捷模块(DSTWU)进行设计计算 目的:对精馏塔进行简捷计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、理论板数和加料板位置。 3.灵敏度分析 目的:研究回流比与塔径的关系(N T-R),确定合适的回流比与塔板数;

常减压蒸馏装置的三环节用能分析

2003年6月 石油学报(石油加工) ACTAPETROLEISINICA(PETROLEUMPROCESSINGSECTION)第19卷第3期 文章编号:1001—8719(2003)03—0053—05 常减压蒸馏装置的“三环节"用能分析ENERGYANALYSIS0FATMoSPHERICANDVACUUMDISTILLATION UNITBASEDONTHREE-LINKMETHoD 李志强,侯凯锋,严淳 LIZhi—qiang,HOUKai—feng,YANChun (中国石化工程建设公司,北京100011) (SINOPECEngzneeringIncorporation,BeOing100011,China) 摘要:科学地分析评价炼油过程用能状况是节能工作的基础。笔者以某炼油厂常减压蒸馏装置为例,运用过程系统三环节能量结构理论,依据热力学第一定律和热力学第二定律进行了装置的能量平衡和炯平衡计算及分析,并根据分析结果指出了装置的节能方向,提出了节能措施。 关键词:常减压蒸馏;节能;三环节能量结构;能量平衡和炯平衡分析 中图分类号:TE01文献标识码:A Abstract:Energy—savinginrefineriesneedstobecarriedoutbasedonthescientificallyenergyanalysisandevaluationoftheprocessingunits.Theatmosphericandvacuumdistillationunitinarefinerywastakenasanexample,its energy andexergybalanceswerethenworkedoutthroughcalculationaccordingtothethree—linkmethodforprocessintegrationfollowingtheFirstLawandtheSecondLawofthermodynamics.Theresultswereanalyzed,andthecorrespondingmeasuresforenergy—savingwereproposed. Keywords:atmosphericandvacuumdistillationunit;energy~saving;three—linkenergymethod;energyandexergybalanceanalysis 炼油生产过程中为分离出合格的石油产品,需要消耗大量的能量。因此,能源消耗在原油加工成本中占有很大的比例。炼油过程的节能不仅可以降低加工成本,而且关系到石油资源的合理利用和企业的经济效益¨J。与国外先进的炼油厂相比,我国炼油企业的吨油能耗相对较高。2001年,中国石化股份有限公司所属炼厂平均能耗为77.85kg标油/t原油,与目前世界上大型化复杂炼厂的能耗不大于75kg标油/t原油的先进指标相比,差距较大,节能空间也更大。因此,加强节能技术的应用,降低炼油过程的能耗,是我国炼油企业降本增效、提高市场竞争力、实现可持续发展的必由之路。 炼油企业的用能水平因生产规模、加工流程、工艺装置的设计、操作和管理水平以及加工原油的品种和自然条件等不同而差别较大。因此,炼油企业的节能工作必须因厂而异,因装置而异,节能措施要有针对性。科学地分析评价炼油过程用能状况则是节能工作的基础【2J。笔者以某炼油厂的常减压蒸馏装置为例,运用过程系统三环节能量结构理论,依据热力学第一定律和热力学第二定律进行了装置的能量平衡和炯平衡计算,并根据计算结果对装置的用能状况进行了分析与评价,指出了能量利用的薄弱环节和装置的节能方向,提出了相应的节能措施。 1三环节能量结构理论 炼油生产过程的用能有3个特点:(1)产品分离和合成需要外部供应能量,以热和功两种形式传给 收稿日期:2002—07—23 通讯联系人:侯凯锋

蒸馏塔的设计---化工原理设计

过程装备设计课程设计-------分离苯-甲苯精馏塔设计 专业:过程装备与控制 班级: 3班 姓名: 彭云飞 学号: 0603020346 指导老师:杨启明 设计日期: 2010-11-17

目录 (一)设计任务书-------------------------------------------------3 (二)设计内容------------------------------------------------------3 (三)设计中符号说明------------------------------------------5 (四)精馏塔的物料衡算----------------------------------------7 (五)塔板数的确定----------------------------------------------8 (六)精馏塔塔体工艺尺寸设计------------------------------------9 (七)塔板主要工艺尺寸的计算----------------------------------11 (八)塔板负荷性能图------------------------------------------------ 13 (九)接管尺寸的选取-------------------- ----------------------17 (十)封头的选取------------------------------------------------18 (十一)法兰的选取------------------------------------------------18 (十二)筛板塔的工艺设计计算结果总表---------------------19

江苏南京科捷高效液相色谱仪的应用实例共享文档

高效液相色谱仪分析应用实例 《高效液相色谱仪分析应用实例》由南京科捷为您收集提供,液相色谱应用实例包括环境气体分析、药物分析、食品分析、生物制药等方面的液相色谱应用实例。 例1.稠环芳烃分析(环境气体分析) 样品:含六苯并苯等8种稠环芳烃的混合物 色谱仪:“南京科捷LC600”液相色谱仪,配有色谱工作站 检测器:UV紫外检测器,340nm 色谱柱:C18键合相(ODS-224),5μm,柱长25cm,柱径4.6mm 流动相:甲醇-二氯甲烷(8:2)混合溶剂 流速:1mL/min 进样:20μL 结果:所有组分在25min之内全部流出,各组分完全分离,组分出峰顺序为:六苯并苯,二苯二萘嵌苯,三苯二萘嵌苯,苯萘并二萘嵌苯,四苯二萘嵌苯,萘六苯并苯,二苯萘并二萘嵌苯,苯菲并五苯。例2.磺胺分析(药物分析) 样品:磺胺、磺胺嘧啶、磺胺甲基异噁唑和甲氧苄氨嘧啶的混合物 色谱仪:“南京科捷LC600”液相色谱仪,740色谱数据处理机 检测器:UV 481型紫外检测器,波长240nm 色谱柱:μ-Bondapak C18 , 5μm,柱长25 cm,柱径4.6 mm 流动相:由KH2PO4(0.05mol/L)和Na2HPO4(0.05 mol/L)以及MeOH所组成,其用量比例为200:10:165,流速:1mL/min 进样:10μL 结果:所有组分在6min之内全部流出,各组分完全分离,组分出峰顺序为:磺胺保留时间为2.60 min, 磺胺嘧啶保留时间为3.18 min、磺胺甲基异噁唑保留时间为4.33 min,甲氧苄氨嘧啶保留时间为5.19min。例3.银杏内酯分析(药物分析) 样品:含银杏苦内酯等4种物质的混合物 色谱仪:“南京科捷LC600”液相色谱仪 配有570自动进样器,Rheadyane 77251进样阀,HP化学工作站 检测器:500型ELSD Alltech 蒸发光散射检测器 漂移管温度为91℃,氮气流速为2.75L/min 色谱柱:Platinum OPS,5μm,柱长25cm,柱径4.6mm 流动相:水:甲醇:四氢呋喃 = 75:20:10 流速:1mL/min 进样:10μL 结果:所有组分在15min之内全部流出,各组分完全分离,组分流出顺序为:峰1为银杏苦内酯C, 峰2为白果内酯, 峰3银杏苦内酯A, 峰4为银杏苦内酯B。 例4.脂肪酸甲酯分析(药物分析) 样品:含5种脂肪酸甲酯的混合物 色谱仪:“南京科捷LC600”液相色谱仪,配有色谱工作站 检测器:500型ELSD Alltech 蒸发光散射检测器 漂移管温度为45℃,氮气流速为1.5L/min 色谱柱:Silver Impregnated Ion-Exchange ,柱长25cm,柱径4.6mm 流动相:乙腈:甲醇 = 2:98 流速:0.75mL/min

常减压蒸馏装置减压深拔技术初探

近些年来, 国内许多炼厂采用加工重质/劣质原油来降低原油加工成本。但是,原油重质化使催化和加氢裂化的原料减少,使焦化原料增多,而焦化等重油处理装置的加工能力和加工负荷使得原油重质化采购的经济效益并没有完全发挥[1]。所以各炼厂重点关注的课题是采用新的技术来提高常减压装置总拔出率。本篇文章主要是结合金陵分公司三套常减压与KBC 的 常减压蒸馏装置减压深拔技术初探 吴莉莉1 顾海成2 1.南京化工职业技术学院化工系 210009 ; 2.南京炼油厂 深拔项目方案做的减压深拔技术探讨。 减压深拔技术就是在现有的重质馏分油切割温度的基础上,将温度进一步提高,来增加馏分油的拔出率。其核心是对减压炉管内介质流速、汽化点、油膜温度、炉管管壁温度、注汽量(包括炉管注汽和塔底吹汽)等的计算和选取,以防止炉管内结焦。 一、减压深拔发展现状 近年来,国内对于常减压蒸馏深拔技术积极探索,并取得一些成效,如:常压切割较深,一般达360℃,较少的常压渣油降低了减压蒸馏强度,降低了减压塔压降;将导致油品大量裂解的温度设定为加热炉出口温度的上限;减压塔汽化率较低,最低在1.5%左右;低压降和低温降的转油线;湿式或微湿式的操作;高真空的真空产生系统;低压降的填内构件(填料);强化了分馏要领的洗涤段设计和操作;新型、高效的进料气液分布器;提高汽提效果,降低渣油裂解的高效渣油汽提段;开发减压深拔的过程模拟工具[1]。 但国内还没有真正掌握减压深拔的成套技术,少数几套装置虽然从国外SHELL 和KBC 公司引入了减压深拔工艺包,如荷兰Shell 公司采用深度闪蒸高真空装置技术,使全塔压降只有0.4 kPa ,实沸点切割温度达到585℃。英国KBC 公司的原油深度切割技术使减压蒸馏切割点达到607~621℃,但国内对该项技术的吸收和掌握需要一定的时间[2,3]。大庆石化应用KBC 技术,一套常减压渣油收率由38.5%降到36.5%以下,相应的切割点为535℃。二套常减压渣油收率由34.3%降到33.8%,减一线至减四线收率与深拔前比较提高了3.7 wt%[4] 。 二、影响减压深拔的因素分析[3,4] 有统计表明,目前国内多数早期建成的常减压蒸馏装置实沸点切割一般为520~540℃左右,国外的减压深拔技术是指减压炉分支温度达到420℃以上,原油的实沸点切割点达到565~621℃。可见国内减压蒸馏技术与国际先进水平相比, 还有相当大的差距。目前影响减压深拔的主要因素有: 油气分压和温度,雾沫夹带量,减压深拔工艺流程不完善,减压炉出口温度和汽化段的真空度等。 2.1 油气分压和温度对减压深拔的影响影响减压装置拔出率的主要因素是减压塔进料段的油气分压和温度。进料温度越高或烃分压越低, 则进料段的汽化率越大, 总拔出率越高。但是减压炉出口温度过高,会造成油品分解,在塔内产生结焦的问题。 2.2 雾沫夹带量对减压深拔的影响进料段的雾沫夹带量会影响减压塔蜡油的产品质量。另外, 被夹带上去的油滴还会使闪蒸段以上部分的塔内件严重结焦。 2.3 工艺流程不完善对减压深拔的影响较早的蒸馏装置设计拔出温度按照530℃以下考虑,设计时没有考虑减压深拔的操作方案,减压塔没有减底急冷油流程,减底温度没有很好的控制手段,塔底温度上升后,容易造成减压塔底结焦,塔底泵抽空等现象,对塔顶真空度的控制和装置的长周期运行有着不利影响。 2.4 减压炉出口温度较低对减压深拔的影响 由于没有针对具体的原油品种和加热炉结构进行严格的计算,如果只是依靠经验进一步提高加热炉出口温度,势必担心减压炉炉管结焦。装置为了减少炉管结焦的风险,减少渣油发生热裂化反应,减压炉分支温度多在400℃以下,减压塔汽化段温度多在385℃以下,常压渣油在此温度下的汽化程度不足。提高减压炉出口温度主要受炉管的材质、炉管吊架材质、注汽流程、减压炉负荷等因素的制约。 2.5 汽化段的真空度较低对减压深拔的影响 装置减压进料段的真空度较低,直接影响了常压渣油的汽化率和减压系统的拔出深度。汽化段的真空度主要受以下两方面的限制: 1). 塔顶真空度。塔顶真空度越高,在一定的填料(或塔盘)压降下,进料段真空度

实验5 常压蒸馏

实验五常压蒸馏 一、实验目的 1、熟悉常压蒸馏和常量法测定沸点的原理,了解蒸馏和测定沸点的意义; 2、掌握蒸馏和测定沸点的操作要领和方法。 二、实验原理 液体分子由于分子运动有从表面逸出的倾向,这种倾向随着温度的升高而增大,进而在液面上部形成蒸气。当分子由液体逸出的速度与分子由蒸气回到液体中的速度相等时,液面上的蒸气达到饱和,称为饱和蒸气。它对液面所施加的压力称为饱和蒸气压。实验证明,液体的蒸气压只与温度有关,即液体在一定温度下具有一定的蒸气压。 当液体的蒸气压增大到与外界施于液面的总压力(通常是大气压力)相等时,就有大量气泡从液体内部逸出,即液体沸腾,这时的温度称为液体的沸点。 纯净的液体有机化合物在一定压力下具有一定的沸点(沸程)。利用这一点,我们可以测定纯液体有机物的沸点。又称常量法。 但是具有固定沸点的液体不一定都是纯粹的化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混合物,它们也有一定的沸点。 蒸馏是将液体有机物加热到沸腾状态,使液体变成蒸汽,又将蒸汽冷凝为液体的过程。 通过蒸馏可除去不挥发性杂质,可分离沸点差大于30 o C的液体混合物,还可以测定纯液体有机物的沸点及定性检验液体有机物的纯度。 三、药品和仪器 药品:乙醇 仪器:蒸馏瓶,蒸馏头,温度计,直型冷凝管,尾接管,锥形瓶,量筒 四、实验装置 要由气化、冷凝和接收三部分组成,如下图所示:

接收瓶 简单蒸馏装置 1、蒸馏瓶:蒸馏瓶的选用与被蒸液体量的多少有关,通常装入液体的体积应为蒸馏瓶容积的1/3-2/3。液体量过多或过少都不宜。 2、蒸馏头:在蒸馏低沸点液体时,选用长颈蒸馏头;而蒸馏高沸点液体时,选用短颈蒸馏瓶。 3、温度计:温度计应根据被蒸馏液体的沸点来选,根据精确度的要求和液体沸点高低确定温度计的选用。 3、冷凝管:冷凝管可分为水冷凝管和空气冷凝管两类,水冷凝管用于被蒸液体沸点低于140 o C;空气冷凝管用于被蒸液体沸点高于140 o C。 4、尾接管及接收瓶:尾接管将冷凝液导入接收瓶中。常压蒸馏选用锥形瓶为接收瓶,减压蒸馏选用圆底烧瓶为接收瓶。 仪器安装顺序为:先下后上,先左后右。卸仪器与其顺序相反。 五、实验步骤 1、加料:将待蒸乙醇40ml小心倒入蒸馏瓶中,不要使液体从支管流出,加入磁力搅拌子,接好蒸馏头,塞好带温度计的塞子,注意温度计的位置。检查装置是否稳妥与气密性。开启磁力搅拌器。 2、加热:先打开冷凝水龙头,注意冷水自下而上,缓缓通入冷水,然后开始加热。当液体沸腾,蒸气到达水银球部位时,温度计读数急剧上升,调节热源,让水银球上液滴和蒸气温度达到平衡,使蒸馏速度以每秒1—2滴为宜。此时温度计读数就是馏出液的沸点。

实例解析——高效液相色谱(HPLC)

原理 利用不同物质在两相中(液液、液固、离子交换、尺寸排阻)具有不同地分配系数,当二者相对运动时候,物质在两相中反复多次分配,从而使得物质得到完全分离资料个人收集整理,勿做商业用途 适用范围 高沸点、热不稳定地天然产物、生物大分子、高分子化合物、离子型样品、生化样品 特点 高压、高效、高灵敏度 仪器组成 流动液贮存提供脱气,输液系统、进样系统、分离系统、检测系统,控制记录系统 贮液瓶、高压泵、进样器、分离柱、检测器、记录仪 仪器选择 由实验条件确定是选用二元高压还是四元低压、一般来说,二元高压地准确度较高.四元低压是先将样品按比例混合再泵入,而二元高压是先泵入不同比例地溶剂再混合.确定采用地脱气系统,一般采用在线脱气.确定进样方式,人工手动六通阀进样,还是进样针自动进样,一个适用于少量样品,一个适用于大量样品.资料个人收集整理,勿做商业用途 选择检测器,如果是有较强地紫外吸收地可用紫外可见检测器(二极管阵列检测器),如果是芳香族化合物,可选用荧光检测器,对于离子可采用电导检测器.资料个人收集整理,勿做商业用途 实验条件优化 配置待测物质地标准溶液 色谱柱地确定 分析样本确定是采用何种类型地色谱柱 分配色谱,两项间分配系数 流动相选用极性地物质(甲醇、乙腈、水)则固定相选择非极性物质.一般用柱. 吸附色谱, 离子交换色谱 各种离子与树脂上交换集团地交换能力不同.固定相:离子交换树脂,流动相为无机酸、无机碱.常用于分离离子或者可解离地化合物资料个人收集整理,勿做商业用途 排阻色谱法 配置含待测物质地标准品溶液,采用不同柱分离,检测,对照不同色谱图像,可得到分离效能最高地色谱柱 最佳流动相梯度洗脱程序地确定 梯度洗脱:按照一定地程度,不断改变流动相中个溶剂组成地比例以改变流动相地极性.将色谱柱上不同地组分洗脱出来.资料个人收集整理,勿做商业用途 配置不同地梯度洗脱方案,用标准溶液进行试验,并选取能达到最高分离效能地梯度洗过方案作为最佳流动相梯度洗脱程序资料个人收集整理,勿做商业用途 流动相地确定 在分离效能相似条件下选择更经济、毒性小地流动相 流速确定 流速太大,待分离组分来不及与固定相充分作用,故其中地组分较易被洗脱下来, 出峰时间变短,而且柱压比较高,会引起泵负荷地增加,进而导致色谱柱地使用命地缩短,色谱峰地分离度变差.流动相流速太低时,会导致资料个人收集整理,勿做商业用途 色谱柱柱效降低,使得待测物质难洗脱,各个组分保留时间延长,容易引起色谱

常减压蒸馏装置的提馏段操作

石油和天然气加工 常减压蒸馏装置的提馏段操作 A. I. Skoblo, O. G. Osinina, and A. A. Skorokhod 在原油的常减压蒸馏装置中广泛利用了对于任何复合塔都必不可缺的外部提馏段,提馏段是被设计用来从主塔的中间塔盘上拔出的液体产品中以蒸汽喷射方式 分离出轻馏分.汽提的效果是调节装置中产品的分离精确度的主要要素.在带有蒸汽喷射的提馏段中,沿塔盘流动的流体因为它本身的热焓值而脱水干燥;但是因为热焓值是被限制的,因此产生的蒸汽量也是有限的.在提馏段利用蒸汽喷射,蒸汽 流一般不超过液态残渣(提馏段的塔低流出物)的35%-50%.提馏段在石油产品的分离中虽然已被使用多年,但其运作还没有被充分研究,没有充分可靠的数据能够证明蒸汽流速水蒸汽的量对分离的精确度有影响.对提馏段的塔盘数量产生的影响,被汽提的产品的蒸馏曲线,塔内的总压和分压等其它因素的研究很少.进一步来说,如果没有关于提馏段运作和有关分馏法精确度的大多数重要控制参数间的相互关系的可靠数据,就不可能建立有效的控制过程.我们已经对一个莫斯科炼油厂的常减压蒸馏装置的冬季柴油机燃料的提馏段进行了实验性的研究,特别是改进了控 制和计量装置与取样的连接,并且也对实验室的模拟装置进行了实验研究.该炼油厂的提馏段的直径1.2米,有七个带矩形罩的塔盘,模拟装置的直径44毫米,有三个带有溢流装置的筛板. 对二元混合物,n-戊烷-二甲苯和甲苯-n-癸烷进行了专门试验,这些试验表明实验装置的提馏段,对于不同量的蒸汽喷射的操作,蒸汽量在0.1-0.5之间变化,其分馏效率相当于2.5-3层理论塔板.安装在工业提馏段中的七个实际的带有矩形罩的

660万吨原油常压蒸馏课程设计方案

660万吨原油常压蒸馏课程设计方案

摘要 常压塔是石油加工中重要的流程之一,这次的设计主要就是对660万吨/年处理量的原油常压塔进行设计,其中包括塔板的设计。常压塔的设计主要是依据所给的原油实沸点蒸馏数据及产品的恩氏蒸馏数据,计算产品的相关物性数据从而确定切割方案、计算产品收率。参考同类装置确定塔板数,进料及侧线抽出位置,再假设各主要部位的操作温度及操作压力,进行全塔热平衡计算。采取塔顶二级冷凝冷却和两个中段回流,塔顶取热、第一中段回流取热、第二中段回流取热的比依次为5:2:3。经过校核各主要部位温度都在允许的误差范围内。塔板型式选用F1型重阀浮阀塔板,依据常压塔内最大气、液相负荷算得塔板外径为 5.0m,板间距为0.6m。这部分最主要的是核算塔板流体力学性能及操作性能,使塔板在适宜的操作范围内操作。本次设计的结果表明,参数的校核结果与假设值间的误差在允许范围内,其余均在经验值范围内,因此可以确定,该蒸馏塔的设计是符合要求的。 关键词:常压蒸馏;物料衡算;热量衡算

目录 1.设计背景 (1) 1.1 选题背景 (1) 1.2 设计技术参数 (2) 2.设计方案 (3) 2.1 设计要求 (3) 2.2 设计计划 (4) 2.3 原油的实沸点切割及产品性质计算 (5) 2.4产品收率和物料平衡 (13) 2.5汽提水蒸汽用量 (15) 2.6塔板型式和塔板数 (16) 2.7常压塔计算草图 (17) 2.8 操作压力 (17) 2.9汽化段温度 (18) 3 塔底温度 (20) 4 塔顶及侧线温度的假设与回流分配 (21) 4.1全塔回流热 (21) 4.2侧线及塔顶温度核算 (22) 4.3全塔汽、液相负荷 (27) 4.4全塔汽液相负荷分布 (36) 5 塔的工艺计算 (36)

aspenplus模拟精馏塔说明书

Aspen plus 模拟精馏塔说明书 一、设计题目根据以下条件设计一座分离甲醇、水、正丙醇混合物的连续操作常压精馏塔: 生产能力:100000吨精甲醇/年;原料组成:甲醇70%w, 水%w,丙醇%w;产品组成:甲醇≥%w;废水组成:水≥%w;进料温度:;全塔压降:;所有塔板Murphree 效率。 二、设计要求对精馏塔进行详细设计,给出下列设计结果并利用AutoCAD绘制塔设备图,并写出设计说明。 (1) . 进料、塔顶产物、塔底产物、侧线出料流量; (2) . 全塔总塔板数N;最佳加料板位置N F;最佳侧线出料位置N P; (3) . 回流比R; (4) . 冷凝器和再沸器温度、热负荷; (5) . 塔内构件塔板或填料的设计。 三、分析及模拟流程 1. 物料衡算(手算) 目的: 求解Aspen 简捷设计模拟的输入条件。 内容: (1) 生产能力: 一年按8000 hr 计算,进料流量为100000/(8000*= t/hr 。 (2) 原料、塔顶与塔底的组成(题中已给出) :原料组成:甲醇70%w,水%w,丙醇%w;产品: 甲醇≥%w;废水组成:水≥%w。(3) . 温度及压降:进料温度:;全塔压降:;所有塔板Murphree 效率。 2. 用简捷模块( DSTW)U进行设计计算 目的: 对精馏塔进行简捷计算,根据给定的加料条件和分离要求计 算最小回流比、最小理论板数、理论板数和加料板位置。 3. 灵敏度分析 目的: 研究回流比与塔径的关系 (N T-R),确定合适的回流比与塔板数;研究加料板位置对产品的影响,确定合适的加料板位置。 方法: 作回流比与塔径的关系曲线( N T-R),从曲线上找到期望的回流比及塔板数。 4. 用详细计算模块( RadFrac)进行计算目的: 精确计算精馏塔的分离能力和设备参数。

流程模拟系统初馏塔-常压蒸馏塔联合校正法应用

!!!!!!!!!!!!!!!!" " "" 简报 流程模拟系统初馏塔!常压蒸馏塔联合校正法应用 毛福忠! 黄河清" 兰鸿森! 胡红页! (!#福建炼油化工有限公司,福建泉州$%"!!&;"#华东理工大学信息科学与技术学院,上海"’’"$&) 摘要 针对流程模拟系统无法适应常压蒸馏塔的多路进料结构的问题,提出了初馏塔(常压蒸 馏塔联合校正法。该方法的关键是虚拟物料的处理、虚拟进料点的选择以及双塔联合校正。实际应用结果表明,该方法在保证常压蒸馏塔外特性有足够的模拟精度的前提下,有效地解决了基于)*+,-./0*软件的流程模拟系统中常压蒸馏塔进料数目受限制的问题。关键词:流程模拟 数据校正 常压蒸馏塔 预分馏塔 " 前 言 随着计算机仿真技术的发展,流程模拟技术不仅成为石油化工工艺过程分析、设计与优化的有效手段,而且广泛应用于大型生产企业的计划排产、生产调度以及生产装置的操作分析及优化。自!112年以来, 福建炼化公司(福炼)在工艺流程模拟软件)*+,-./0*的开发平台上,经过二次开发形成了具有特色的“桌面炼油厂”,为公司优化原料资源配置、消除装置瓶颈、提高经济效益作出了贡献。随着福炼生产装置的技术改造和扩大加工能力“桌面炼油厂”也经历了相应的校验与标定,提高了模拟数据的有效性准确性。特别是!11&年常减压蒸馏装置扩能改造为3#’4+56后,常压蒸馏塔的装置结构发生了较大变化,进料数目超出了)*+,-./0*流程模拟软件的限制,因此,必须采用特殊的处理方法,才能拓宽)*+,-./0*流程模拟软件的适用范围。 #双塔联合校正法 装置改造前后初馏塔(常压蒸馏塔进料状况见图!、"。 当初馏塔(常压蒸馏塔改造后,原有的流程模拟系统已不再适用,其根本原因是常压蒸馏塔的进料数目($路进料)超出了)*+,-./0*流程模拟软件的限制(只能处理二路进料)。双塔联合校正法的基本思路为:(!)将常压蒸馏塔的$路进料处理成两路虚拟进料,并确定一个虚拟进料点,使常压蒸馏塔的虚拟进料数目符合)*+,-./0*流程模拟软件 的要求;(")不刻意追求常压蒸馏塔内部温度分布的准确性,但要保证常压蒸馏塔外特性(如产品分布质量参数和主要操作条件)的预测精度;($)对初馏塔和常压蒸馏塔进行双塔联合校正,以回避初馏塔初一线、 初二线油的性质无法获知的难点。 图!初馏塔(常压蒸馏塔装置改造前的进料状况 $联合校正前需处理的问题$%" 常压蒸馏塔$路进料的处理 在进行常压蒸馏塔模型校正前,将$路进料处 理成"路进料,即将初馏塔两侧线的物流用混合器模型混合成一种物流。 收稿日期:"’’’(’1("&;修改稿收到日期:"’’!(’"(!3。 作者简介:毛福忠(!1%78),工程师,!11’年毕业于抚顺石油学院,"’’’年获石油大学工学硕士学位,现主要从事炼油厂流程模拟及先进控制技术的研究开发工作。 石油炼制与化工 "’’!年%月 )9:;<=9>4);

HW-2000模拟蒸馏色谱工作站软件指标

HW-2000模拟蒸馏色谱工作站软件指标 ●整体设计 ?采用多线程技术,实现信号采集、数据处理、用户输入三者同时协同工作。 ?采用多文档技术,可同时打开多个谱图窗口,每一个谱图窗口可独立工作,例如当一个谱图窗口中正进行信号采集的同时,可在另一个谱图窗口中进行谱图的后处理或计算工作。?采用分割窗口技术,使表格和谱图显示在同一个谱图窗口中,并且表格排列采用直观易用的页签形式,避免操作时需要在不同的屏幕界面间来回切换,界面布局紧凑,操作非常简捷。 ?谱图原始采样数据及与其相关的信息,如处理方法、计算结果、备注文字、操作记录等全部集中保存在一个文件中,遵循GLP规范。 ●谱图采集与显示 ?可由符合AIA(美国分析学会)标准的CDF文件读入采样数据,由此可与Agilent、Waters 等色谱工作站接轨。 ?谱图显示区域的高度可以随意调节,且可左右分裂成全局图和局部放大图两部分。 ?在谱图采集过程中可自动调节谱图显示的满屏量程。 ?利用软件附带的谱图运算工具可以在多张谱图间做重合显示。 ●谱图处理 ?基于谱峰智能辨识技术,最大程度地减少需要用户设置的谱图处理参数,基本实现基线校正的自动处理。 ?可从谱图中扣除空白样品谱图,也可从整张谱图中扣除自身漂移的基线从而得到基线完全水平的谱图。

● 定量计算 ? 可显示标准组份(烷烃类和芳烃类)的沸点与保留时间的关系曲线: ? 按任意温度间隔进行温度切割或按重量切割计算样品(如原油、煤焦油)的实沸点蒸馏数 据,并可关联到恩式蒸馏数据: ? 可显示沸点与收率(流出重量累计百分数)的关系曲线: ? 沸点可详细地按5℃间隔给出对应的收率,收率可详细地按1%间隔给出对应的沸点。 ? 对原油可选用内标计算方法。 ● 结果输出 50 100 150 200 250 300 350 400 450 500 550 600 0102030405060 708090100 收率%(m/m)沸点(℃)

相关文档
最新文档