石脑油中铅含量测定(石墨炉法)试验报告

石脑油中铅含量测定(石墨炉法)试验报告
石脑油中铅含量测定(石墨炉法)试验报告

石脑油中铅含量测定(石墨炉法)

试验报告

马宏园

中国石化股份公司茂名分公司炼油分部质检室

二○○九年六月

原子吸收法测定重金属废水中的铅含量

原子吸收法测定重金属废水中的铅含量【摘要】含铅重金属废水会给人们的生存环境和人体健康造成了严重威胁。因此,如何测定重金属废水中铅的含量就引起了社会的广泛关注。文章介绍了利用原子吸收法测定重金属废水中的铅含量,分析了不同条件对铅测定的影响,并得出了一些有益的结论,为重金属废水的铅含量测定提供参考。 【关键词】原子吸收光谱;测定;铅含量;回收试验 随着经济的快速发展,工业生产也得到了较快发展,大量含有重金属的废水未经处理就排放到环境中,对环境和人类的影响极大,这些重金属废水中含有氰化物、酸、碱以及铬、铜、铅、锌、镉、镍等重金属污染物。其中铅是一种较为有害的重金属元素,据测定,当人体内血铅浓度过30微克/100毫升时,就会出现头晕、肌肉关节前、失眠、贫血、腹痛等症状,严重时还会诱发癌症。因此,如何测定重金属废水中铅的含量就引起了社会的广泛关注。下面,就介绍利用原子吸收法测定重金属废水中的铅含量。 1.试验部分 1.1 主要试剂与仪器 1000μg/mL的铅标准储备溶液;10μg/mL的铅标准工作溶液;1%(v/v)TritonX-114溶液;0.5×10-3mol/L5-Br-PADAP的乙醇溶液;pH=8.0的H2PO4--HPO42-缓冲溶液。 SYC-15超级恒温水浴,TGL-16高速离心机,PHS-3pH计,AA370原子吸收分光光度计;工作条件:测定波长:283.3nm;灯电流:2.5mA;狭缝宽度:5nm;乙炔流量:2.0L/min,空气流量:6.0L/min。 1.2 测定方法 取一定量铅的标准溶液于10mL离心管中,依次加入1%(v/v)TritonX-114溶液0.5mL,0.5×10-3mol/L5-Br-PADAP溶液0.5mL,pH=8.0的缓冲溶液1mL,用超纯水

原子吸收法(石墨炉)测定铅的含量

原子吸收法(石墨炉)测定水样中铅的含量 一、实验目的 1了解石墨炉原子吸收分光光度计的基本结构; 2.初步掌握石墨炉原子吸收分光光度计的操作步骤。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000。C以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 三、主要仪器和试剂: 石墨炉原子吸收分光光度计;石墨管;铅标准溶液(1000ppm);0.2%稀HNO3;去离子水 四、实验步骤 1. 设置仪器工作参数; 2.配制浓度为50ug/L的标样储备液(母液),利用仪器的自动配制功能配制浓度为10.00、20.00、30.00、40.00、50.00ug/L的铅标准溶液,分别测定其吸光度,扣除试剂空白后做标准曲线; 3.水样经消解后测定其吸光度。 五、结果与数据处理: 1.数据记录 2.绘制工作曲线 3.求待测水样中铅的含量。 附:原子吸收分光光度计操作流程: 1.打开冷却水系统,水温22度左右; 2.打开氩气气瓶,出口压力调节至140-200kPa; 3.打开通风系统、主机及石墨炉电源; 4.开计算机,进入操作系统; 5.SpectrAA软件,进入仪器页面,单击“工作表格”,新建工作方法; 6.按“添加方法”,选择要分析的元素; 7.按“编辑方法”,进行进样模式、测量模式、光学参数、石墨炉升温方式、进 样器等相关参数的设置; 8.按“选择”,选定要分析的样品标签; 9.按“优化”,进行元素灯的优化及进样器位置的优化; 10.按“开始”,进行标样及样品的分析。 11.实验结束后,关机顺序依次为:氩气、冷却水、退软件、主机及石墨炉电源、 计算机、通风系统。

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

大米中镉的测定

大米中镉的测定 食品中镉的测定 一、实验目的 1了解并掌握原子吸收法测定食品中的镉含量的方法与原理; 2熟悉并能熟练使用原子吸收分光光度计。 二、实验原理 试样经灰化或酸消解后,注入一定量样品消化液于原子吸收分光光度计石墨炉中,电热原子化后吸收nm共振线,在一定浓度范围内,其吸光度值与镉含量成正比,采用标准曲线法定量。 三、仪器与试剂: 1.仪器:原子吸收分光光度计,附石墨炉;镉空心阴极灯;电子天平:感量 为mg和1 mg;可调温式电热板、可调温式电炉;马弗炉;恒温干燥箱;压力消解器、压力消解罐;微波消解系统:配聚四氟乙烯或其他合适的压力罐 2.试剂: 1)硝酸溶液(1%):优级纯,取mL硝酸加入100mL水中,稀释至1000 mL。 2)盐酸(HCl):优级纯:取50 mL盐酸慢慢加入50 mL水中。 3)硝酸高氯酸混合溶液(9+1),取9份硝酸与1份高氯酸混合。 4)磷酸二氢铵溶液(10 g/L):称取g磷酸二氢铵,用100 mL硝酸溶液(1%)溶解后定量移入1000 mL容量瓶,用硝酸溶液(1%)定容至刻度。 5)镉标准储备液(1000 mg/L):准确称取1g金属镉标准品(精确至g)于小烧杯中,分次加20 mL盐酸溶液(1+1)溶解,加2滴硝酸,移入1000 mL 容量瓶中,用水定容至刻度,混匀;或购买经国家认证并授予标准物质证书的标准物质。 6)镉标准使用液(100 ng/mL):吸取镉标准储备液mL于100 mL容量瓶中,用硝酸溶液(1%)定容至刻度,如此经多次稀释成每毫升含ng镉的标准使用液。 7)镉标准曲线工作液:准确吸取镉标准使用液0 mL、mL、mL、mL、mL、mL于100 mL容量瓶中,用硝酸溶液(1%)定容至刻度,即得到含镉量分别为0 ng/mL、ng/mL、ng/mL、ng/mL、ng/mL、ng/mL的标准系列溶液。 四、仪器条件 仪器参考条件:波长nm,狭缝nm~nm,灯电流2 mA~10 mA,干燥温度105℃,干燥时间20 s;灰化温度400℃~700℃,灰化时间20 s~40 s;原子化温度1300℃~2300℃,原子化时间3 s~5 s;背景校正为氘灯或塞曼效应。

5.茶叶中铅含量测定——详细试验指导

实习四茶叶中铅含量的测定 铅是重金属污染中数量最大的一种,是一种具蓄积性,多亲和性的毒物,能毒害神经系统和造血系统,引起痉挛、精神迟钝、贫血等疾病; 而饮茶是中国的一种传统习惯,茶叶在其生长、采集、制作过程中均易受到铅的污染,故作为茶叶重要卫生指标之一,对其测定具重大意义。常用的铅的检测方法包括食品中铅的测定方法有原子吸收光谱法、电感耦合等离子体光谱法、电感耦合等离子体质谱法、双硫腙分光光度法和原子荧光光谱法等。双硫腙分光光度法为传统的化学分析方法,操作繁琐,试剂消耗量大,基本上被原子光谱法替代。在原子光谱法中,原子吸收光谱法与电感耦合等离子体光谱法使用的仪器设备昂贵,食品检测过程中干扰严重。原子荧光光谱法因仪器设备廉价、操作简便、检测过程受介质干扰少、取样量少及检出限低,是适合基层实验室开展食品痕量铅检测的优选方法。 【实验目的】 1.掌握食品样品微波消解技术,原子荧光光谱法测定食品中铅含量的原理、结果 计算与评价。 2.掌握原子荧光光谱仪的操作程序、试验注意事项。 【实验原理】 样品经过硝酸-过氧化氢体系微波消解后,铅以离子形式存在,将其导入到原子荧光光谱仪中,在酸性介质中,食品中的铅与硼氢化钠( N aBH4 ) 或硼氢化钾( KBH4 ) 反应生成挥发性的氢化物( PbH4 ) 。以氩气为载气, 将氢化物导入电热石英原子化器中原子化, 在特制铅空心阴极灯照射下, 基态铅原子被激发至高能态; 在去活化回到基态时发射出特征波长的荧光, 其荧光强度与铅含量成正比, 根据制备好的铅标准曲线系列进行定量。 【实验器材和试剂】 要求使用去离子水,优级纯或高级纯试剂。 (1)原子荧光光度计。 (2)微波消解仪。 (3)混合酸消化液:每个样品需加入5ml硝酸,1ml双氧水。 (4)盐酸(ρ20=ml),优级纯。 (5)氢氧化钾,优级纯。 (6)载流液:2%盐酸、1%草酸混合液,需要500ml。 (7)还原剂: 称取10 g 硼氢化钾和5 g 铁氰化钾溶于500 ml 2%氢氧化钾溶液中,配制顺序不可颠倒,临用现配。

石墨炉原子吸收光谱仪

原子吸收光谱法 Atomic absorption spectrometry 各种元素的原子结构不同,不同元素的原子从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原子吸收光谱的频率ν或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hν=hc/λ 原理:利用物质的气态原子对特定波长的光的吸收来进行分析的方法。 原子吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、相当窄的频率或波长范围,即谱线实际具有一定的宽度,具有一定的轮廓。 I0为入射光强 I为透射光强 ν0为中心频率 产生谱线宽度的因素 1.自然宽度:与原子发生能级间跃迁时激发态原子的有限寿命有关,其宽度约在10-5nm数量级; 2.多普勒变宽(热变宽) 3.压力变宽通常认为两个主要因素是多普勒变宽和压力变宽。

原子吸收光谱的测量 理论上:积分吸收与原子蒸气中吸收辐射的基态原子数成正比。 吸收系数Kν将随光源的辐射频率ν而改变,这是由于物质的原子对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。长期以来无法解决的难题! 在频率O 处,吸收系数有一极大值K 0称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度范围内,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。因为当采用锐线光源进行测量,则Δνe<Δνa ,由图可见,在辐射线宽度范围内,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度范围内,可以认为原子的吸收系数为常数, 并等于中心波长处的吸2 00πd v e K v N f KN mc +∞-∞ ==?

实验四 石墨炉原子吸收法测定铜的含量

实验四石墨炉原子吸收法测定铜的含量 一、实验目的 1. 学习原子吸收光谱法的基本原理; 2. 了解石墨炉原子吸收光谱仪的基本结构及使用方法; 3. 掌握标准曲线法测定铜的定量分析方法。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000 ℃以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14 g,并可直接测定固体试样。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 通常使用偏振塞曼石墨炉原子吸收分光光度计。它具有利用塞曼效应扣除背景的功能。 三、实验仪器和试剂 A3石墨炉原子吸收分光光度计;铜空心阴极灯;石墨管;AS3自动进样器;容量瓶铜标准溶液100.0 μg/mL;铜未知液。 四、实验步骤 1. 按下列参数设置测量条件 1) 分析线波长(324.75 nm) 2) 灯电流(75%) 3) 狭缝宽度(0.5 nm) 4) 气化温度(120 ℃)和时间(25 s) 5) 灰化温度(600 ℃)和时间(20 s) 6) 原子化温度(2000 ℃)和时间(3 s) 7) 净化温度(2100 ℃)和时间(2 s) 8)冷却时间(45 s) 9) 氩气流量(2 L/min) 2.取铜标准溶液稀释到刻度,摇匀,配制0.00,5.00,10.00,15.00,20.00,2,5.00 ng/ml

的铜标准溶液,备用。 3.另配制铜未知液1个样。 4.采取自动进样方式进样,进样量20 μg。 五、结果与数据处理 1. 数据记录; 2. 绘制工作曲线; 3. 根据函数关系,计算待测液浓度。 六、注意事项 1. 实验正式开始之前要做好微调,使得进样管的尖端能顺利进样管尖端不能触及石墨管内壁。 2. 在配制溶液时,要注意操作规范使得样品不受杂质干扰。 3. 实验开始前,要仔细检查气瓶总阀与减压阀的连接处,并仔细检查冷却水装置和排气扇是否已打开。 4. 石墨炉温度很高,实验过程中要注意安全,防止灼伤。 七、思考题 1. 石墨炉法为何灵敏度高? 2. 为什么必须使用背景扣除技术? 3. 如何选择石墨炉原子化的实验条件?

YBB00372004砷锑铅镉浸出量测定法

国家食品药品监督管理局 国家药品包装容器(材料)方法标准 (试行) YBB00372004 砷、锑、铅、镉浸出量测定法 Shen Ti Qian Ge Jin chuLia ng Cedi ngfa Tests for release of arse nic an tim ony lead and cadmium 本法适用于各类药用玻璃容器及管材中的砷、锑、铅、镉浸出量的测定。 供试液的制备 供试品为容器时取样量见下表: 表1玻璃容器容量与取样数量 供试品为玻璃管时,取总表面积(包括每截管的内、外衰面及两 端的截面)约为500cm2的玻璃管,两端截面细工研囊后作为供试品。 供试液制备将容器供试品清洗干净,并用4%(v/v)乙酸溶液灌装至满口容量的90%,

对于安瓶瓿等容量较小的容器,则灌装乙酸溶液至瓶身缩肩部.用倒置烧杯(需用平均线热膨胀系数a (20C?300C)约为3.3X 10-6K^1硼硅玻璃制成,新的烧杯须经过老化处理)或惰性材料铝箔盖住口部。 98C蒸煮2小时。冷却后取出供试品,溶液即为供试液。 将玻管供试品清洗干净,置入装有4%(v/v)乙酸溶液1000mL的玻璃容器(玻璃容器不应含有砷、锑、铅、镉元素)中,98C蒸煮2 小时.冷却后取出供试品,溶液即为供试液。 1砷浸出量测定法 试验原理供试液中含有的高价砷被碘化钾、氯化亚锡还原为三价砷.然后与锌粒和酸反应产生的新生态氢,生成砷化氢,经银盐溶液吸收后,形成红色胶态物,与标准曲线比较,测定其含量。 测定法精密量取供试液10mL、空白液10mL、标准砷溶液(每 1 mL 相当于I 卩g 的As) 1 mL、2mL、3 mL、4 mL、5 mL (必要时可根据样品实际情况调整线性范围),分别置测砷瓶中,按中华人民共和国药典2000年版二部附录忸J砷盐检查法第二法操作,用分光光度法,在510nm的波长处测定吸收度。以浓度为X轴,以吸收度为Y 轴,绘制标准曲线.与标准曲线比较确定供试品的浓度。 结果表示方法玻璃容器以As (mg/L)表示。药用玻璃管材以 As (mg/dm2)表示。 2锑浸出量测定方法 试验原理孔雀绿(C23H25N2CI)与五价锑离子形成绿色络合物,经甲苯萃取,提取有机相进行比色,与标准曲线比较,测定其含量.

铅含量测定

铅(以Pb计)≤ 1.0 砷(以As计)≤ 0.5 7.2 铅的测定(无火焰原子吸收分光光度法) 7.2.1 原理 样品经消化后,注入原子吸收分光光度计的无火焰原子化器中,升温原子化后,基态原子吸收283.3nm共振线,其吸收量与铅量成正比,与标准系列比较定量。 7.2.2 试剂 7.2.2.1 硝酸(优级纯)。 7.2.2.2 高氯酸(优级纯)。 7.2.2.3 硝酸溶液:c(HNO3)=6mol/L。量取38mL硝酸,加水稀释至100mL。 7.2.2.4 2%磷酸二氢铵:称取2.0g磷酸二氢铵(优级纯),溶于100mL水中。 7.2.2.5 铅标准溶液:精密称取1.0000g高纯金属铅(纯度99.99%以上),溶解于少量c(HNO3)=6mol/L硝酸溶液中,总量不超过37mL,用水准确稀释至1L。此溶液每毫升相当于1mg铅。 7.2.2.6 铅标准使用液:吸取10.0mL铅标准溶液,置于100mL容量瓶中,用3%硝酸溶液稀释至刻度。如此多次稀释至每毫升相当于1μg铅。 7.2.3 仪器 7.2.3.1 高速组织捣碎机; 7.2.3.2 原子吸收分光光度计(附无火焰原子化器)。 7.2.4 操作方法 7.2.4.1 样品处理 称取捣碎均匀的样品匀浆5.0~10.0g(水分多的取10.0g)于50mL烧杯中,加少许水转移至250mL凯氏烧瓶中,在电炉上蒸干水分。加10mL混合酸(HNO3∶HCIO4=5∶1),消化至棕色浓烟产生,溶液将变棕黑色时,加浓硝酸数滴,继续消化至溶液澄清透明,冷却,用去离子水定容至50mL。 7.2.4.2 仪器工作条件 a. 波长:283.3nm; b. 灰化温度:700℃; c. 原子化温度:1800℃; d. 氘灯背景扣除。 7.2.4.3 标准曲线的绘制 配制铅标准系列溶液0、10、30、50、70ng/mL。 在上述仪器工作条件下,取10μL标准溶液,注入无火焰原子化器中。为排除干扰,可随之注入等体积的2%磷酸二氢铵溶液。以吸光度对相应的铅浓度绘制标准曲线。 7.2.4.4 测定 取经消化处理的样液10μL,注入无火焰原子化器中,如出现干扰,可随之注入等体积的2%磷酸二氢铵溶液。与标准曲线比较定量,同时作试剂空白试验。 7.2.5 分析结果的计算 分析结果按下式计算: (A1-A2)╳50╳1000 X=—————————————————— m╳1000╳1000 式中:X——样品中铅的含量,mg/kg; A1——测定用样液中铅的含量,ng/mL; A2——试剂空白液中铅的含量,ng/mL;

石墨炉原子吸收光谱法测定水样中铜的含量

石墨炉原子吸收光谱法测定水样中铜的含量 一、实验目的 1、加深理解石墨炉原子吸收光谱分析的原理。 2、了解原子吸收分光光度计的主要结构,并学习其操作方法, 3、学习石墨炉原子吸收光谱法的应用。 二、实验原理 原子吸收光谱法是原子光谱法的重要组成部分,是一种适用于微量和痕量元素分析的仪器分析方法。这种分析方法的分析过程为:光源(空心阴极灯、氙弧灯等)产生的特征辐射经过样品原子化区(火焰、石墨炉等),特征辐射会被待测元素基态原子所吸收,由辐射的减弱程度求得试样中待测元素的含量。 石墨炉原子化的方法是将石墨管升至2000℃以上的高温,使管内试样中的待测元素分解成气态基态原子。该方法原子化效率高、用样量少、灵敏度高等优点,但仪器较复杂、背景吸收干扰较大。石墨炉工作步骤分干燥、灰化、原子化和净化4个阶段。 本实验采用石墨炉原子吸收光谱法测定水样中铜的含量。 三、仪器与试剂 1、原子吸收分光光度计;空气压缩机;自动循环冷却水系统;铜空心阴极灯;各种玻璃器皿等。 2、铜标准储备液:称取1.0000g铜(含铜量≥99.95%)置于250ml烧杯中,加入5ml浓硝酸酸,盖上表 面皿,待完全溶解后,将溶液移入1000ml容量瓶中,用水稀释至刻度,摇匀。此溶液1ml含1.0mg 铜。 3、铜标准使用液:移取1.00 ml铜标准储备液于100ml容量瓶中,用1%硝酸稀释至刻度,摇匀。再取该 溶液1.00 ml于100ml容量瓶中,用1%硝酸稀释至刻度,摇匀。此溶液1L含0.1mg铜。 四、实验步骤 1、将盛有高纯水的取样杯放在自动取样器的1号位置,将盛有铜标液(25μg/L)的取样杯放在自动取样 器的2号位置。将未知样品的取样杯放在3号、4号、5号……位置。 2、开机(主机、计算机、氩气、空压机和冷却水循环系统)→进入原子吸收分析系统→建立分析方法并 保存→打开方法→打开自动分析进样系统→开始分析并保存数据(同时监测分析数据)→编辑并处理数据→打印结果→关机(关空压机,氩气,冷却水循环系统,退出系统,关主机、计算机)。 建立分析方法的实验条件: 升温程序100℃(5s,20s);140℃(15s,15s);1000℃(10s,20s);2300℃(0s,5s);2600℃(1s,3s)。 取样体积20μL, 。 铜标准系列浓度5、10、15、20、25μg/L (铜标准储备液浓度25μg/L) 波长(nm):324.8nm 氩气流量:250mL/min 狭缝宽度(nm):0.7L 五、分析数据记录及实验结果 略。 六、问题讨论 1、石墨炉原子吸收法与火焰原子吸收法相比有何优点,在分析不同样品时应如何选择分析方法? 2、如何评价方法的准确度?并为本实验设计相应的实验方法。 注:本实验可自备待测水样,如各品牌矿泉水,白开水,自来水或成分简单的饮料等。

石墨炉原子吸收光谱仪

原子吸收光谱法 AtOmiC absorption SPeCtrOmetry 各种元素的原于结构不同,不同元素的原于从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原于吸收光谱的频率V 或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hv = hc∕λ 原理:利用物质的气态原于对特定波长的光的吸收来进行分析的方法。 原于吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、 相当窄的频率或波长范围,即谱线实际具有一定的宽度,具有一定的轮廓。 VO 产生谱线宽度的因素 1?自然宽度:与原于发生能级间跃迁时激发态原于的有限寿命有关,其宽度约在 10-5n m数量级;2.多普勒变宽(热变宽)3.压力变宽通常认为两个主要因素是多普勒 变宽和压力变宽。

退射光与频车的关系吸收线轮廊与半宽度 原子吸收光谱的测畳 +∞ 2 [K v dv = -NJ = KN. i mc 理论上:积分吸收与原于蒸气中吸收辐射的基态原于数成正比。 吸收系数KV将随光源的辐射频率V而改变,这是由于物质的原于对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。长期以来无法解决的难题! 在频率。处,吸收系数有一极大值K。称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度范围内,可以认为原于的吸收系数为常数,并等于中心波长处的吸收系数。 因为当采用锐线光源进行测量,则?ve

线宽度范围内,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度范围内,可以认为原于的吸收系数为常数,并等于中心波长处的吸收系数。 定量基础 由于NOoCNOCaC (No基态原于数,N原于总数,C待测元素浓度) 所以:A=KLN(I=KLN=KC 这表明当吸收厚度一定,在一定的工作条件下,峰值吸收测量的吸光度与被 =kN0L 测元素的含量成正比。这是原于吸收光谱定量分析法的基础。 石墨炉非火焰原子化器:利用大电流加热高阻值的石星管,产生髙达3()()0°C的 高温,使之与其中的少量试液固体熔融,可获得自由原于。 火焰的组成: 空气一乙烘火焰:最高温度约230O O C左右; N2O-乙块火焰:温度可达到3000 °C左右; 氧屏蔽空气-乙烘火焰:新型的髙温火焰,大于290OKO 原子吸收法的选择性高,干扰较少且易于克服。 由于原于的吸收线比发射线的数目少得多,这样谱线重叠的几率小得多。而且空 心阴极灯一般并不发射那些邻近波长的辐射线,因此其它辐射线干扰较小。 原子吸收具有较高的灵敏度。 在原于吸收法的实验条件下,原于蒸气中基态原于数比激发态原于数多得多,所以测定的是大部分原于。 原子吸收法比发射法具有更佳的信噪比

石墨炉原子吸收法测定大米中铅镉

不同消化方法-石墨炉原子吸收法测定大米中镉的比较 秦品芝1 摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。 关键词镉;微波消解;湿法消解;干法灰化 镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。所以,本次实验采用石墨炉原子吸收法测定大米中的镉。 前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。 实验原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。 2.实验材料 2.1仪器 原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。 2.2试剂 硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。 3.实验方法 3.1样品前处理 3.1.1干灰化法 首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.2湿消解法 准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.3微波消解法

土壤中镉含量的测定方法综述

土壤中镉含量的测定方法综述 近年来,随着人们对于食品安全意识的提高,认识到土壤中的镉可以通过食物链进入人体中,从而引发各种疾病。因此土壤中镉含量的测定也显得尤其重要,本文通过介绍土壤中镉含量的测定方法并对此进行综述,希望能为土壤中镉的监测治理起到作用。 标签:镉污染重金属测定方法 中国土壤污染的形势相当严峻,2011年10月25日,环保部部长周生贤曾在十一届全国人大常委会第二十三次会议的正式报告中表示,中国土壤环境质量总体不容乐观,中国受污染的耕地约有1.5亿亩,占18亿亩耕地的8.3%。而土壤污染中又以重金属镉的危害较大。如1931年日本富山县神通川流域出现了一种怪病,全身各部位骨痛,而这种“痛痛病”就是镉中毒引起的。 1镉污染的现状 在2009年深圳市粮食集团有限公司从湖南采购上万吨大米,经检验,该批大米质量不合格,重金属镉含量超标。2013年5月广州餐饮环节食品抽检,四成五的湖南大米和米制品被检出镉超标。在人体内,镉的半衰期长达7~30年,可蓄积50年之久,能对多种器官和组织造成损害。有大量研究表明,镉具有致癌性[1],所以对土壤中镉含量的测定就显得尤为重要。 2土壤中镉的测定方法 2.1火焰原子吸收法 制备土壤样品,吕跃明[2]用二乙基二硫代氨基甲酸钠(铜试剂DDTC)做配位剂,用四氯化碳萃取,然后用原子吸收法测定,绘制标准曲线进行镉的测定。 直接用火焰原子吸收法测定存在问题,消解速度慢,耗时长,容易出现误差,灵敏度低,用了铜试剂DDTC后能有效的、简单、准确检测土壤中的镉。 2.2石墨炉原子吸收法 [3]采用盐酸-硝酸-氢氟酸-高氯酸消解,在聚四氟乙烯干锅消解,通过100目孔径筛,加入机体改进剂定容,根据镉对特征光的吸光度,用标准曲线法测定,检出限为0.01mg/kg。 测定条件:测定波长/nm 228.8通带宽度/nm 1.3灯电流/mA 7.5干燥温度/℃(s)80~100(20)灰化温度/℃(s)500(20)原子化温度/℃(s)1500(20)消除温度/℃(s)2600(3)氩气流量/(mL/min)200 进样量/μL 10

食品中铅的测定方法

食品中铅的测定方法 1.1 原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收283.3nm共振线,在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。 1.2 试剂 1.2.1硝酸:优级纯。 1.2.2高氯酸:优级纯。 1.2.3硝酸(0.5mol/L):取3.2ml 硝酸加入50ml水中,稀释至100ml。 1.2.4硝酸(1mol/L):取6.4ml硝酸加入50ml水中,稀释至100ml。 1.2.5磷酸二氢铵溶液(20g/L):称取2.0g磷酸二氢铵,以水溶解稀释至100ml。 1.2.6混合酸:硝酸+高氯酸(4+1)。取4份硝酸与1份高氯酸混合。 1.2.7铅标准储备液:由国家标准物质研究中心提供。 1.2.8铅标准使用液:每次吸取铅标准储备液1.0ml于100ml容量瓶中,加硝酸(0.5mol/L)或硝酸(1mol/L)至刻度。如此经多次稀释成每毫升含10.0,20.0,40.0,60.0,80.0ng铅的标准使用液(可根据样品所含浓度进行配制)。 1.3仪器 所用玻璃仪器均需以硝酸(1+5)浸泡过液,用水反复冲洗,最后用去离子水冲洗干净。 1.3.1原子吸收分光光度计(附石墨炉及铅空心阴极灯)。 1.3.2消化装置 1.3.3可调式电热饭、可调式电炉。 1.4 操作 1.4.1 试样预处理 1.4.1.1 在采样和制备过程中,应注意不使试样污染。 1.4.1.2 粮食、豆类去杂物后,磨碎,过20目筛,储于塑料瓶中,保存备用。 1.4.1.3 蔬菜、水果、鱼类、肉类及蛋类等水分含量高的鲜样,用食品加工机或匀浆机打成匀浆,储于塑料瓶中,保存备用。 1.4.2 试样消化 湿式消解法:称取试样1.00g~5.00g 于锥形瓶或高脚烧杯中,放数粒玻璃珠,加10ml混合酸,加盖浸泡过夜,加一小漏斗电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10ml~25ml容量瓶中,用水少量多次洗涤锥形瓶或高脚烧杯,洗液合并于容量瓶中并定至刻度,混匀备用;同时作试剂空白。 1.4.3 测定 1.4.3.1 仪器条件:根据各自仪器性能调至最佳状态。参考条件为波长283.3nm,狭缝0.2nm~1.0nm,灯电流5mA~7mA,干燥温度120℃,20s;灰化温度450℃,持续15s~20s,原子化温度1700℃~2300℃,持续4s~5s,背景校正为氘灯或塞曼效应。 1.4.3.2 标准曲线绘制:吸取上面配制的铅标准使用液10.0,20.0,40.0,60.0,80.0ng/ml(或μl)各10μL,注入石墨炉,测得其吸光值并求得吸光值与浓度有关系的一元线性回归方程。 1.4.3.3 试样测定:分别吸取样液和试剂空白液各10μl,注入石墨炉,测得其吸光值,代入标准系列的一元线性回归方程中求得样液中铅含量。 1.4.3.4 基体改进剂的使用:对于干扰试样,则注入适量的基体改进剂磷酸二氢铵溶液(20g/L)一般为5μl或与试样同量消除干扰。绘制铅标准曲线时也要加入与试样测定时等量的基体改进剂磷酸二氢铵溶液。

石墨炉原子吸收光谱法分析步骤教学提纲

石墨炉原子吸收光谱法分析步骤

石墨炉原子吸收光谱法分析步骤 内容摘要:压力消解罐消解法称取1.00~2.OOg试样(干样、含脂肪高的样品少于1.OOg,鲜样少于2.0g或按压力消解罐使用说明书称取试样)于聚四氟乙烯内罐,加硝酸2~4mL浸泡过夜,再加过氧化氢(总量不能超过罐容积的1/3)。盖好内盖,旋紧不锈钢外套,放人恒温干燥箱,120~140℃保持3~4h,在箱内自然冷却至室温,用滴管将消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤罐,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 (1)试样预处理在采样和制备过程中,应注意不使样品污染。粮食、豆类去杂质后,磨碎,过20目筛,储于塑料瓶中,保存备用。 (2)样品消解可根据实验室条件选用以下任何一种方法消解。 ①压力消解罐消解法称取1.00~2.OOg试样(干样、含脂肪高的样品少于1.OOg,鲜样少于2.0g或按压力消解罐使用说明书称取试样)于聚四氟乙烯内罐,加硝酸2~4mL浸泡过夜,再加过氧化氢(总量不能超过罐容积的1/3)。盖好内盖,旋紧不锈钢外套,放人恒温干燥箱,120~140℃保持3~4h,在箱内自然冷却至室温,用滴管将消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤罐,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ②干法灰化称取1.00~5.OOg(根据镉含量而定)样品于瓷坩埚中,先小火在可调式电热板上炭化至无烟,移人马弗炉500℃灰化6~8h,冷却。若个别样品灰化不彻底,则加1mL硝酸一高氯酸(4十1)在可调式电炉上小火加热,反复多次直到消化完全,放冷,用硝酸(O.5mol/L)将灰分溶解,用滴管将样品消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ③过硫酸铵灰化法称取1.OO~5.OOg样品于瓷坩埚中,加2~4mL硝酸浸泡1h以上,先小火炭化,冷却后加2.OO~3.OOg过硫酸铵盖于上面,继续炭化至不冒烟,转入马弗炉,500℃恒温2h,再升至800~C:,保持20min,冷却,加2~3mL硝酸(1.Omol/L),用滴管将样品消化液洗人或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ④湿式消解法称取样品1.OO~5.OOg于三角瓶或高脚烧杯中,放数粒玻璃珠,10mL硝酸一高氯酸(4+1)(或再加1~2mL硝酸),加盖浸泡过夜,加一小漏斗电炉上消解,若变棕黑色,再加硝酸一高氯酸(4 +1),直至冒白烟,消化液呈无色透明或略带黄色,放冷用滴管将样品消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤三角瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 (3)测定 ①仪器条件根据各自仪器性能调至最佳状态。参考条件为波长228.8nm,狭缝0.5~1.Onm,灯电流8~10mA,干燥温度120℃,20s;灰化温度350~C:,15~20s,原子化温度1’700~2300~(:,4~5 s,背景校正为氘灯或塞曼效应。 ②标准曲线绘制吸取上面配制的镉标准使用液0、1.OmL、2.OmL、3.OmL、5.OmL、7.OmL、10.O mL于100mL容量瓶中稀释至刻度,相当于0、1.Ong/。mL、2.Ong/mL、3.0ng/mI.、5.Ong/mL、7.Ong

镉的测定

水样中镉的测定 1、方法原理 将水样过滤或经消解的水样直接吸入火焰或注入石墨炉,火焰中形成的原子蒸汽或蒸发离解形成的原子蒸汽对光源发射的特征电磁辐射产生吸收,将测得水样的吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的含量。 2、试剂 2.1试验所用水均需二次蒸馏; 2.2硝酸(ρ1.42g/mL)优级纯; 2.3氢氟酸(ρ1.13 g/mL)分析纯; 2.4高氯酸(ρ1.68 g/mL)优级纯; 2.5镉标准贮存溶液:1000mg/mL; 2.6 镉标准溶液:10mg/mL; 3、仪器 3.1原子吸收光谱仪或石墨炉。 3.2镉空心阴极灯。 4、分析步骤 4.1 水样 独立地进行两次测定,取其平均值。 4.2 空白试验 随同试料做空白试验。 4.3 测定 量取水样100mL于200mL烧杯中,加入10.0mL硝酸,在电热板加热溶解(不要沸腾),蒸至20mL左右,取下冷却,移入100mL容量瓶中,用水稀释至刻度,混匀。 5、标准曲线的绘制 移取0.00、0.50、1.00、2.00、5.00、10mL镉标准溶液(10 mg/mL)于一组100mL容量瓶,加入1.0mL硝酸,用水稀释至刻度,混匀。以镉的吸光度平均值为纵坐标,以浓度(μg/m l)为横坐标,绘制标准曲线。

6、分析结果的计算 m Cd(mg/L、μg/L)= v 式中:m—从标准曲线上查出或仪器直接读出的镉的含量(mg/L、μg/L); V—分析用的水样体积(ml)。 注意事项: 1、分析水样时,水样至少需要定置半小时。 2、水样定置后,清亮的水样直接分析,混浊的水样需过滤后消解。 3、操作中所用的玻璃仪器都要用二次蒸馏水冲洗。

铅含量的测定实训标准

铅含量的测定实训标准 15.1任务工单 15.1.1实训目的 (1)掌握巩固原子吸收测定金属的原理、操作步骤和数据处理方法。 (2)会使用原子吸收分光光度计测定金属;能够简单维护保养原子吸收;会配制标准系列。 (3)具有较好的安全意识;具备严谨规范的操作意识;具有较好合理安排时间的能力。 15.1.2实训材料 饮料、酒、醋、酱油等样品 15.1.3实训仪器 (1)50ml容量瓶10个、10ml吸量管2个 (2)原子吸收分光光度计 15.1.4实训试剂 硝酸:优级纯、高氯酸:优级纯、硫酸铵、柠檬酸铵、溴百里酚蓝、二乙基二硫代氨基甲酸钠、氨水:优级纯、4-甲基-2戊酮、盐酸:优级纯。 15.2项目指导书 15.2.1实训原理 试样经处理后,铅离子在一定pH条件下与二乙基二硫代氨基甲酸钠(DDTC)形成络合物,经4甲基2戊酮(MIBK)萃取分离,导入原子吸收光谱仪中,经火焰原子化,在283.3mm处测定的吸光度。在一定浓度范围内铅的吸光度值与铅含量成正比,与标准系列比较定量。 15.2.2实训步骤 (1)试剂配制 1硝酸溶液(5+95):量取50mL硝酸,加入到950mL水中,混匀 2硝酸溶液(1+9):量取50mL硝酸,加入到450mL水中,混匀 3硫酸铵溶液(300g/L):称取30g硫酸铵.用水溶解并稀释至100mL.混匀 4柠檬酸铵溶液(250g/L):称取25g柠檬酸铵?用水溶解并稀释至100mL?混匀 5溴百里酚蓝水溶液(1g/L):称取0.lg溴百里酚蓝,用水溶解并稀释至100mL,

混匀 6DDTC溶液(50g/L):称取5 g DDTO,用水溶解并稀释至100mL,混匀 7氨水溶液(1+1):吸取100mL氨水,加入100mL水,混匀 8盐酸溶液(1+11):吸取10mL盐酸,加入110mL水,混匀 (2)标准品 硝酸铅:纯度>9999%。或经国家认证并授予标准物质证书的一定浓度的铅标准溶液 (3)标准溶液配制 1铅标准储备液(l000mg/L):准确称取1.5985g(精确至0.0001g)硝酸铅,用少量硝酸溶液1+9)溶解,移人1000mL容量瓶,加水至刻度,混匀 2铅标准使用液(10.0mg/L):淮确吸取铅标准储备液(1000mg/L)1.00mL于100mL容量瓶中,加硝酸溶液(5+95)至刻度,混匀 (4)样品处理 饮料、酒、醋、酱油等液体样品:直接吸取10.00ml样品,置于50ml容量瓶中,加蒸馏水定容,混匀。 (5)测定条件 灯电流2mA、波长324.7nm、积分时间2秒、灯头高度6mm、空气流量6-8L/min、乙炔流量2L/min (6)标准曲线的制作 分别吸取铅标准使用液0mL、0.250mL,0.500mL、1.00mL、1.0mL和2.00mL(相当0ug、2.5ug、5.00ug、10.0ug、15.0ug和20.0ug铅)于125mL分液漏斗中,补加水至60mL.加2mL柠檬酸铵溶液(250g/L)溴百里酚蓝水溶液(1g/L)3滴~5滴,用氨水溶液(1+1)调pH至溶液由黄变蓝,加硫酸铵溶液(300g/L)10mL,DDTC溶液(1g/L)l0mL,摇匀。放置5min左右,加人10mL MIBK,剧烈振摇提取1min,静置分层后,弃去水层,将MIBK层放人10mL带塞刻度管中,得到标准将标准系列溶液按质量由低到高的顺序分别导入火焰原子化器,原子化后测其吸光度值,以铅的质量为横坐标,吸光度值为纵坐标,制作标准曲线 (7)试样溶液的测定 将试样消化液及试剂空白溶液分别置于125mL分液漏斗中,补加水至60mL.

石墨炉原子吸收光谱法测定食品中的铅(修改版)

石墨炉原子吸收光谱法测定食品中的铅 姓名:徐晨希班级:13资源1班学号:2013334116 食品中铅的测定有石墨炉原子吸收法、氢化物原子荧光法、火焰原子吸收法、二硫腙比色法。目前,应用较多的是石墨炉原子吸收法,但其重现性稍差,为提高其重现性,本文对铅的石墨炉原子吸收法的测定条件及影响因素进行探讨,加入基体改进剂,减少了干法灰化和湿法消化处理样品对铅测定的影响,使仪器的测定达到准确、快速的目的。 一,材料与方法 1.试剂铅标准溶液(1.0mg/mL),铅标准使用液(10.0ng/mL),硝酸(优 级纯)、高氯酸(优级纯)、磷酸铵溶液(20g/L)、混合酸:硝酸+高氯酸(4+1)、过氧化氢(30%)。 2.仪器原子吸收分光光度计 (WYX一9003原子吸收仪),热电谱通石墨管, 铅空心阴极灯,马弗炉,可调式电热板,可调式电炉,瓷坩埚。 二,测定步骤 (1)仪器工作条件:波长283.3nm,狭缝 0.5nm,灯电流 7mA,干燥温度 120℃、30s,灰化温度 450℃、20s,原子化温度 2200℃、5s,原子化阶段停气,除残2400℃、3s,进样体积 10μl,基体改进剂磷酸二氯铵(20g/L)lOμl。 (2)样品的预处理①干法灰化:取 1.0o~5.OOg 样品于瓷坩埚中,加 5ml硝酸,放置 2h,至电热板上炭化后,移人马弗炉 500℃灰化 4~6h,冷却,加入lml 混合酸和少量过氧化氢,在电炉上加热直至消化完全。冷却后,用 0.5mol/L 硝酸将灰分溶解,并移入25ml容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中,定容,混匀备用,同时作试剂空白。②湿法消化:取 1.0o一5.00g 样品于三角瓶中,加 10ml混合酸,加盖浸泡过夜。加一小漏斗于电炉上消化,补加适量混合酸,直至冒白烟,溶液呈无色透明,冷却后加少量蒸馏水,加热至冒白烟,赶酸。冷却移人 25ml容量瓶中,用少量水洗涤三角瓶,洗液合并于容量瓶,定容,混匀备用。同时作试剂空白。 (3)标准曲线绘制取铅标准使用液,用 0.5mol/ L硝酸配制成铅浓度为 0.00、5.00、10.00、20.00、 40.00、60.00、80.00μg/L的标准系列。(4)测定按仪器工作条件依次测定,标准系列和样品的吸光值,并绘制标准曲线。由标准曲线求得样品中铅的含量。 三、结果 1.灰化温度的选择其他条件不变,只改变灰化温度,当加入 10μL基体改 进剂后,灰化温度在 45℃,校准后的信号接近最大值,背景信号最低,故 450℃ 为最佳灰化温度。 2.原子化温度的选择当原子化温度达到 2200℃时,校准后的信号接近最大值,背景信号较低,故 2200℃为原子化温度的最佳温度。 3.基体改进剂加入量的选择在相同条件下测定吸光值,5μL、10μL、15μ L磷酸二氨胺的加入,与试样进样量相同的 10μL时,吸光度最大,故选 10μL为基体改进剂的加入量。

相关文档
最新文档