Flac3D常见问题整理

Flac3D常见问题整理
Flac3D常见问题整理

1.1常见问题及其解答Gen separate 不能被识别答:原因是FLAC3D版本不行,我用3.0的版本不能。

1. FLAC3D是有限元软件吗?答:不是,是有限差法软件。

2. FLAC3D最先需要掌握的命令有哪些?答:需要掌握gen, ini, app, plo, solve等建模、初始条件、边界条件、后处理和求解的命令。

3. 怎样看模型的样子?答:plo blo gro可以看到不同的group的颜色分布。

4. 怎样看模型的边界情况?答:plo gpfix red sk

5. 怎样看模型的体力分布?答:plo fap red sk

6. 怎样看模型的云图?答:位移:plo con dis (xdis, ydis, zdis) 应力:plo con sz (sy, sx, sxy, syz, sxz)

7. 怎样看模型的矢量图?答:plo dis (xdis, ydis, zdis)

8. 怎样看模型有多少单元、节点?答:print info

9. 怎样输出模型的后处理图?答:File/Print type/Jpg file,然后选择File/Print,将保存格式选择为jpg文件。

10. 怎样调用一个文件?答:使用菜单File/call 或者call 命令。

11. 如何施加面力?答:app nstress ran

12. 如何调整视图的大小、角度?答:综合使用x, y, z, m, Shift键,配合使用Ctrl+R,Ctrl+Z等快捷键。

13. 如何进行边界约束?答:fix x ran (约束的是速度,在初始情况下约束等效于位移约束)

14. 如何知道每个单元的ID?答:使用鼠标双击单元的表面,可以知道单元的ID和坐标。

15. 如何进行切片?答:plo set plane ori (点坐标) norm (法向矢量) plo con sz plane (显示z方向应力的切片)

16. 如何保存计算结果?答:save filename(文件名可自定义)

17. 如何调用已保存的结果?答:使用菜单File/call或者命令rest filename(文件名可自定义)。

18. 如何暂停计算?答:运行中使用Esc命令。

19. 如何在程序中进行暂停,并可恢复计算?答:在命令中加入pause命令,键入continue命令后可恢复计算。

20. 如何跳过某个计算步?答:在计算中按空格键可跳过本次计算,自动进入下一步。

21. FISH是什么?答:是FLAC3D的内置语言,可以用来进行参数化模型、完成命令本身不能进行的功能。

22. FISH是否一定要学?答:可以不用,需要的时候查Manual获得需要的变量就可以了。

23. FLAC3D允许的命令文件格式有哪些?答:只要是符合FLAC3D格式要求的文本文件,无论是什么后缀名,都可以为FLAC3D调用。

24. 如何调用一些可选模块?答:使用命令config dyn (fluid, creep, cppudm)。

25. 如何使用gauss_dev对符合高斯正态分布的材料参数进行赋值?答:假定某材料的摩擦角均值为40度,标准差是2,则命令如下:prop friction 40 gauss_dev 2

26. FISH函数中是否能调用“.sav”文件?答:不能。FLAC3D中规定,new和restore命令不允许出现在FISH函数中,因为new和restore 命令会将原有存储信息清除掉。

27. initial 与apply 有何区别?答:initial初始化命令,如初始化计算体的应力状态等;apply边界条件限制命令,如施加边界的力、位移等约束等。initial的应力状态会随计算过程的发生而发生改变,一般体力需要初始化,而apply施加的边界条件不会发生变化。

28. FLAC3D动力分析中是如何计算永久变形的?答:FLAC3D采用动态运动方程求解动力方程,因此采用弹塑性本构模型可以计算永久变形。而土动力学常用的粘弹性模型由于没有考虑土体的塑性,因此不能计算永久变形。

29. 对于初学者而言,是学习FLAC还是FLAC3D?答:FLAC有较好的图形化操作界面,而FLAC3D目前只能通过命令流来操作,从学习难度上来说,FLAC要简单一些,不过复杂的三维问题还是需要使用FLAC3D才能解决。FLAC和FLAC3D的某些命令和分析方法类似,读者在学习过程中可以相互借鉴。

30. interface建模命令中的dist关键词是否表示接触面的厚度?答:FLAC3D 中的interface 是没有厚度的,dist 关键词表示的是接触面建模时选择范围时的容差,表示该范围内的“面”上将被赋予interface 单元。

31. 初始应力场计算中位移场和速度场是否都要清零?答:是的。一般,FLAC和FLAC3D中位移场和速度场的清零命令都是同时使用的。

32. 加了fix边界,再使用apply施加应力边界有效吗?答:无效。fix和apply都是边界条件,两者不能混用,fix的作用是固定节点的速度,只要用户不更改这个速度,在计算中都会保持不变。

33. solve age后面跟随的时间是真实的时间吗?答:FLAC和FLAC3D在动力、渗流、流变模式下才有真实的时间,时间的单位默认为秒,也可以根据读者使用的量纲进行调整。

34. FLAC3D中主应力大小是怎么规定的?答:FLAC和FLAC3D中的大小主应力是根据应力的数值大小来规定的,并且规定压为负,而土力学中一般规定压为正,所以FLAC3D中的大小主应力z_sig1(p_z)、z_sig2(p_z)和z_sig3(p_z)分别对应于土力学中的小主应力、中主应力和大主应力,在使用时要注意区别。

35. FISH函数中dof的含义是什么?答:一些关于结构单元的FISH函数中常常出现dof变量,该变量表示的是自由度,如nd_pos( np, p, dof )函数中dof?{1,2,3}表示结构节点的三个方向的自由度。

36. 怎么在不规则的面上施加水压力?答:设置合理的水压力梯度和作用范围,使用apply nstress命令即可。因为apply施加的应力边界条件是作用在“边界”上的,所以程序会在用户设置的range范围中自动寻找“边界”,而不管这个“边界”有多么复杂,而且nstress 表示力作用的方向是垂直于“边界”,该关键词可以保证水压力的作用方向始终垂直于作用面。

37. hist记录的数据如何转到Excel?答:使用类似如下的命令:hist write 1 vs 2 file 1.xls 可以将历史记录ID 为1 和2 的对应关系输入到文件1.xls 中,然后用Excel 打开进行编辑、处理。

1.2 常见错误提示及其解决办法本节汇集了FLAC3D在使用过程中常见的错误提示,并根据不同的提示总结了出错原因和解决办法。FLAC3D程序自身的检查功能不多,但也有一部分错误提示,读者也可以根据软件提示的内容迅速找到错误的原因,并予以修正。

1. Bad type (pointer) conversion 出错原因:在编写FISH函数时,某些变量的赋值错误所致。解决办法:仔细检查FISH函数中的变量赋值情况,尤其注意涉及到指针、FISH自有变量的赋值等语句。

2. Gridpoints 19801 and 19803 have identical coordinates in zone 9703 出错原因:在同一个单元内的两个节点有相同的坐标,这可能是由于将其他软件建立的模型导入到FLAC3D 时两个软件的节点坐标精度差异所导致的。解决办法:使用attach face 来合并相关节点,或者重新检查模型。

3. Memory allocation error 出错原因:可能是网格划分的过多,超过了计算的内存所致。解决办法;减小网格数量或者加大计算机的内存。

4. Mesh primitives does not conform to node numbering convention 出错原因:在建模时各节点坐标设置的顺序与FLAC3D中基本网格形状不一致。解决办法:检查建模时p0~p12等节点坐标,使其符合FLAC3D的要求。

5. Source node 2 already has a link! 出错原因:在结构单元计算中,对已存在连接的节点进行设置时会出现此类错误。解决办法:检查需要设置连接的结构节点,确保已有连接已被删除才能设置新的连接。

6. Timestep rejected by module 出错原因:一般是由于结构单元的密度没有赋值造成的。解决办法:用命令print shell prop dens 来显示结构单元的密度,查看是否所有单元都已经赋值。如有遗漏,应重新赋值。

7. The model name does not exist 出错原因:可能是由于模型名称输入错误,或者在调用某些可选模块(如渗流、动力)的模型时没有设置相应的Config。解决办法:检查模型名称是否输入有误,在可选模块下检查是否已设置相应的Config。

8. Unrecognized parameter 3 (***) 出错原因:命令输入时存在错误的参数,且出错的是命令中的第3个参数。解决办法:检查出错命令的具体位置,找到第3个参数,进行修改。

9. Viscous damping too high 出错原因:在进行UDM编写动力方面的本构时可能会遇到这种错误。解决办法:可能由于粘性函数偏大造成的,时间步的增大会导致粘性函数值的增大。在FLAC3D程序中,如果这个值大于1,那么就会出现这个错误。

10. Zero stiffness in grid-point xxx 出错原因:“0刚度”一般是由于材料参数未正确赋值所致。解决办法:仔细检查计算中的材料赋值命令,看是否有遗漏,如使用以下命令来显示体积模量(bulk)参数的赋值情况。plot block prop bulk

11. Zero volume tet in zone xxx 出错原因:一般是在计算分析中使用了大变形模式(set large)。由于在大变形模式计算过程中,节点坐标会随时步自动,这样有时会导致网格畸形,而无法进行下去。解决方法:慎用大变形模式,大变形模式适用于粘结力较小材料的开挖过程模拟。因此,一般问题的模拟过程,宜采用小变形模式(默认变形模式)进行。即使是大变形问题的初始应力场,也应采用小变形模式生成,再视后续工况的具体情况确定是否改为大变形模式。

1.3学习经验和建议以作者与大多数FLAC/FLAC3D使用者的交流,总结了几点软件学习方面的经验和建议,希望可以对读者提供帮助。1. 了解FLAC和FLAC3D的适用范围、优点和局限性任何一种方法都是有一定的适用范围,并不能不能解决所有问题,这学要读者对所使用工具的优点和局限性有清醒的认识。数值模拟的最终目的是为工程问题的诊断和解决提供服务的,需根据问题的本质选择合适的方法和工具;而非“膜拜”和迷信某种方法,机械地用它去套工程,本末倒置。

2. 由简到繁,循序渐进遵循“由简到繁,循序渐进”的学习方法,切忌盲目求大求全,期望一口气吃成胖子。学习时,可进行少量单元的简单数值试验来理解软件的特点和功能,积累一定的经验后再进行复杂的数值模拟试验。

3. 充分利用手册手册是最权威的软件说明书,一定要充分利用。尽管FLAC和FLAC3D的手册编制顺序不一定适合中国读者的思维习

惯,但应尽量养成查阅手册的习惯,做到常翻常新。手册中的例子大多都是为了说明某个特定的问题而设定的,因此在讲述该问题时往往会忽略与该问题无关的一些细节,比如参数选择等,因此读者在学习手册时不要“迷信”某个特定的例子,也不要“纠缠”于某些无关的细节,而是要从这些例子中掌握分析问题的基本方法。

4. 了解计算中每一条语句的含义初学者由于对FLAC和FLAC3D软件了解的不多,在计算时往往会直接套用软件手册或教科书中的例子,而对例子中某些语句的含义并不是真正的了解,这些“不明其意”的语句往往是造成计算结果不合理的原因。这里建议读者在使用FLAC和FLAC3D程序时,要对自己编写的命令文件中的每一条语句都有清晰的认识和了解,这就要求读者要勤查手册、注重平时的积累。

5. 多做“数值试验”FLAC和FLAC3D程序功能强大,内容众多,在分析具体问题时,读者往往会遇到如法解决的新问题,这些问题在软件手册或教科书中都很难找到答案,这时读者应该多做一些小的算例,开展数值试验,从而了解程序的功能,达到解决问题的目的。

6. 使用“?”FLAC3D的命令很多,在初学者看来,记住数量可观的各种命令及语句格式是一件很困难的事情,事实也的确如此。幸运的是,FLAC3D在命令窗口中提供了“?”功能,无论在命令的什么位置都可以插入“?”字符,让系统告诉你接下来可以应该输入的是哪些关键字或变量。

7. 夯实知识基础FLAC和FLAC3D的计算结果和中间时步表现出一些不合实际的结果,需要读者具有足够的专业和数学知识进行判断与解释。因此,决定FLAC和FLAC3D使用水平高低的决定性因素取决于使用者的专业素养、工程经验和数理知识。因此加强专业知识、数学和力学的学习,夯实知识基础十分重要。

8. 相互交流,取长补短FLAC 和FLAC3D 命令、关键词和变量繁多,个人学习难免顾此失彼,因此强交流,与他人共__享学习经验是提高FLAC 和FLAC3D 应用水平的一个捷径。互联网的出现,为大家提供了一个讨论和共享的平台,读者可以在相互间的交流、争论中取长补短,共同提高。

Fluent中常见问题

1什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响? 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。如果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。有时候,如果发现残差开始增加,你可以改变亚松驰因子重新计算。在亚松驰因子过大时通常会出现这种情况。最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几步迭代以调节到新的参数。最典型的情况是,亚松驰因子的增加会使残差有少量的增加,但是随着解的进行残差的增加又消失了。如果残差变化有几个量级你就需要考虑停止计算并回到最后保存的较好的数据文件。注意:粘性和密度的亚松驰是在每一次迭代之间的。而且,如果直接解焓方程而不是温度方程(即:对PDF计算),基于焓的温度的更新是要进行亚松驰的。要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。对于大多数流动,不需要修改默认亚松弛因子。但是,如果出现不稳定或者发散你就需要减小默认的亚松弛因子了,其中压力、动量、k和e的亚松弛因子默认值分别为0.2,0.5,0.5和0.5。对于SIMPLEC格式一般不需要减小压力的亚松弛因子。在密度和温度强烈耦合的问题中,如相当高的Rayleigh数的自然或混合对流流动,应该对温度和/或密度(所用的亚松弛因子小于1.0)进行亚松弛。相反,当温度和动量方程没有耦合或者耦合较弱时,流动密度是常数,温度的亚松弛因子可以设为1.0。对于其它的标量方程,如漩涡,组分,PDF变量,对于某些问题默认的亚松弛可能过大,尤其是对于初始计算。你可以将松弛因子设为0.8以使得收敛更容易。 SIMPLE与SIMPLEC比较 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下: 对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速度耦合所限制,你通常可以用SIMPLEC算法很快得到收敛解。在SIMPLEC中,压力校正亚松驰因子通常设为1.0,它有助于收敛。但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致不稳定。对于所有的过渡流动计算,强烈推荐使用PISO算法邻近校正。它允许你使用大的时间步,而且对于动量和压力都可以使用亚松驰因子1.0。对于定常状态问题,具有邻近校正的PISO并不会比具有较好的亚松驰因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。当你使用PISO邻近校正时,对所有方程都推荐使用亚松驰因子为1.0或者接近1.0。如果你只对高度扭曲的网格使用PISO 倾斜校正,请设定动量和压力的亚松驰因子之和为1.0比如:压力亚松驰因子0.3,动量亚

FLUENT中常见的单词

FLUENT中常见的单词 31页 visibility [vizi'biliti] n.能见度, 视程,清晰度 ①能见度 【摘要】vid/vis == see, vision 视力,视觉, invisible 看不见的, visibility 能见度. viv == life, vivid 生动的, revive 复活, survive 幸存,逃生. voc/vok == call;voice ... ②可见度 【摘要】可见度visibility 科教片science education film 科教兴国rejuvenate our country through secience and education 克扣dock wages 客流量volume of commuters; ... ③可见性 【摘要】逻辑整合的首要问题就是区别的形成,这就是“可见性”(visibility)。但“可见的”并不是在“此时此地”(here and now)的直接性之中被把握,而总是涉及一个区分背景和轮廓... ④明视度 【摘要】visibility 明视度visible wavelength 可见波长vision electronic recording apparatus 视频电子记录装置visual acuity 视觉锐度或视力visual angle 视角... geometry[d?i?mitri] vertices vertex 32页 33页 translate rotate reflect scale 34页 35页 36页 45页 inviscid Laminar spalart-allmaras Reynolds realizable equilibrium enhanced

fluent问地训练题目回答

1.pressure based 和density based Coupled会同时求解所有的方程(质量守恒方程、动量守恒方程和能量守恒方程)而不是单个方程求解(方程互相分离)。当速度和压力高度耦合(高压和高速)时应该使用耦合求解,但这样会需要较长的计算时间。 在耦合求解中,能量方程中总是包含组分扩散(Species Diffusion Term)项。 当使用segregated求解时,fluent允许指定固体材料的各项异性传导性。 求解方法主要根据要求解的模型来选择。Segregated方法是基于压力,而coupled求解是基于密度的。这样就使得segregated求解低速流动较好而coupled求解音速/超音速问题较好。我不推荐使用coupled求解所有低于马赫数4的流动(直到基于压力的coupled求解方法出现在下一个fluent版本中)。我曾经用segregated方法求解直到1.5马赫的问题,并且结果很好。但是速度越高,需要的网格就越多(因为segregated趋向于“平滑”波动),所以必须多加注意划分网格。 Coupled方法使用默认设置时往往是比较稳定的。Segregated方法常常对容许极根很敏感。当使用segregated方法求解时,不要提高turbulent viscosity ration limit(除非你根据过去的经验或者你的物理模型有很好的理由超过这个极限,但我从没有听说这样是比较理想的)。不要给压力和温度极限限定的合理的范围(例如Plimits=Pstatic+/-(2*dynamic pressure))来计算适当的温度。 1,pressure based 求解方法在求解不可压流体时,如果我们联立求解从动量方程和连续性方程离散得到的代数方程组,可以直接得到各速度分量及相应的压力值,但是要占用大量的计算内存,这一方法已可以在Fluent6.3中实现,所需内存为分离算法的1.5-2倍,同时Fluent6.3中的压力基耦合求解器也很适合求解带有激波的高速空气动力问题(可压流体),这是一个新变化。本人也在尝试用这个模型模拟一些噪声问题。 2,density based求解方法是针对可压流体设计的,因而更适合于可压流场的计算。以速度分量、密度(密度基)作为基本变量,压力则由状态方程求解。 Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也就是Pressure-Based Solver 的两种处理方法; Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。 Density-Based Solver下肯定是没有SIMPLEC,PISO这些选项的,因为这些都是压力修正算法,不会在这种类型的求解器中出现的;一般还是使用Pressure-Based Solver解决问题。 2.连续性方程不收敛是怎么回事? 在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事 这和Fluent程序的求解方法SIMPLE有关。SIMPLE根据连续方程推导出压力修正方法求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。 你可以试验SIMPLEC方法,应该会收敛快些。 3.边界条件对应的一般设定方法 边界条件对应的一般设定方法:

FLUENT论坛精华常见问题[1]

湍流与黏性有什么关系? 湍流和粘性都是客观存在的流动性质。 湍流的形成需要一定的条件,粘性是一切流动都具有的。 流体流动方程本身就是具非线性的。 NS方程中的粘性项就是非线性项,当然无粘的欧拉方程也是非线性的。 粘性是分子无规则运动引起的,湍流相对于层流的特性是由涡体混掺运动引起的。 湍流粘性是基于湍流体的parcel湍流混掺是类比于层流体中的分子无规则运动,只是分子无规则运动遥远弱些吧了。不过,这只是类比于,要注意他们可是具有不同的属性。 粘性是耗散的根源,实际流体总是有耗散的。 而粘性是制约湍流的。 LANDAU说,粘性的存在制约了湍流的自由度。 湍流粘性系数和层流的是不一样的,层流的粘性系数基本可认为是常数,可湍流中层流底层中粘性系数很小,远小于层流时的粘性系数;而在过渡区,与之相当,在一个数量级;在充分发展的湍流区,又远大于层流时的粘性系数.这是鮑辛内斯克1987年提出的。 1 FLUENT的初始化面板中有一项是设置从哪个地方开始计算(compute from),选择从不同的边界开始计算有很大的区别吗?该怎样根据具体问题选择从哪里计算呢?比如有两个速度入口A和B,还有压力出口等等,是选速度入口还是压力出口?如果选速度入口,有两个,该选哪个呀?有没有什么原则标准之类的东西? 一般是选取ALL ZONE,即所有区域的平均处理,通常也可选择有代表性的进口(如多个进口时)进行初始化。对于一般流动问题,初始值的设定并不重要,因为计算容易收敛。但当几何条件复杂,而且流动速度高变化快(如音速流动),初始条件要仔细选择。如果不收敛,还应试验不同的初始条件,甚至逐次改变边界条件最后达到所要求的条件。 2 要判断自己模拟的结果是否是正确的,似乎解的收敛性要比那些初始条件和边界条件更重要,可以这样理解吗?也就是说,对于一个具体的问题,初始条件和边界条件的设定并不是唯一的,为了使解收敛,需要不断调整初始条件和边界条件直到解收敛为止,是吗?如果解收敛了,是不是就可以基本确定模拟的结果是正确的呢? 对于一个具体的问题,边界条件的设定当然是唯一的,只不过初始化时可以选择不同的初始条件(指定常流),为了使解的收敛比较好,我一般是逐渐的调节边界条件到额定值("额定值"是指你题目中要求的入口或出口条件,例如计算一个管内流动,要求入口压力和温度为10MPa和3000K,那么我开始叠代时选择入口压力和温度为1MPa和500K(假设,这看你自己问题了),等流场计算的初具规模、收敛的较好了,再逐渐调高压力和温度,经过好几次调节后最终到达额定值10MPa和3000K,这样比一开始就设为10MPa 和3000K收敛的要好些)这样每次叠代可以比较容易收敛,每次调节后不用再初始化即自动调用上次的解为这次的初始解,然后继续叠代。即使解收敛了,这并不意味着就可以基本确定模拟的结果是正确的,还需要和实验的结果以及理论分析结果进行对比分析。 连续性方程不收敛是怎么回事? 在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事 这和Fluent程序的求解方法SIMPLE有关。SIMPLE根据连续方程推导出压力修正方法求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。你可以试验SIMPLEC方法,应该会收敛快些。 边界条件对应的一般设定方法 边界条件对应的一般设定方法: *Genaeral--- pressure inlet;pressure outlet *Compressible flows---mass flow inlet;pressure far-field *Incompressible ---velocity inlet;outflow

Fluent 经典问题

QUICK格式可能产生比二阶精度更好的结果。但是,一般情况下,用二阶精度就已足够,即使使用QUICK格式,结果也不一定好。乘方格式(Power-law Scheme)一般产生与一阶精度格式相同精度的结果。中心差分格式一般只用于大涡模拟,而且要求网格很细的情况。 53 对于FLUENT的耦合解算器,对时间步进格式的主要控制是Courant数(CFL),那么Courant 数对计算结果有何影响? courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。 在Fluent中,用courant number来调节计算的稳定性与收敛性。一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。 54 在分离求解器中,FLUENT提供了压力速度耦和的三种方法:SIMPLE,SIMPLEC及PISO,它们的应用有什么不同? 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下: 对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速度耦合所限制,你通常可以用SIMPLEC算法很快得到收敛解。在SIMPLEC中,压力校正亚松驰因子通常设为1.0,它有助于收敛。但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致不稳定。 对于所有的过渡流动计算,强烈推荐使用PISO算法邻近校正。它允许你使用大的时间步,而且对于动量和压力都可以使用亚松驰因子1.0。对于定常状态问题,具有邻近校正的PISO 并不会比具有较好的亚松驰因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。 当你使用PISO邻近校正时,对所有方程都推荐使用亚松驰因子为1.0或者接近1.0。如果你只对高度扭曲的网格使用PISO倾斜校正,请设定动量和压力的亚松驰因子之和为1.0比如:压力亚松驰因子0.3,动量亚松驰因子0.7)。如果你同时使用PISO的两种校正方法,推荐参阅PISO邻近校正中所用的方法 55 对于大多数情况,在选择选择压力插值格式时,标准格式已经足够了,但是对于特定的某些模型使用其它格式有什么特别的要求? 压力插值方式的列表只在使用Pressure-based求解器中出现。一般情况下可选择Standard;对于含有高回旋数的流动,高 Rayleigh数的自然对流,高速旋转流动,多孔介质流动,高曲率计算区域等流动情况,选择PRESTO格式;对于可压缩流动,选择Second Order;当然也可以选择Second Order以提高精度;对于含有大体力的流动,选择Body Force Weighted。 注意:Second Order格式不可以用于多孔介质;在使用VOF和Mixture多相流模型时,只能

FLUENT常见问题

如何区分层流和紊流?以什么为标准来区分呢?从层流过渡到紊流的标准是什么? 答:自然界中的流体流动状态主要有两种形式,即层流laminar和湍流(就是问题中所说的紊流)turbulence.层流是指流体在流动过程中两层之间没有相互混渗,而湍流是指流体不是处于分层流动状态。 对于圆管内流动,雷诺数小于等于2300,管流一定为层流,雷诺数大于等于8000到12000之间,管流一定为湍流,雷诺数大于2300而小于8 000时,流动处于层流与湍流的过渡区。 对于一般流动,在计算雷诺数时,可以用水力半径代替管径。 第40题:在处理高速空气动力学问题时,采用哪种耦合求解器效果更好?为什么? 高速空气动力学问题也属于可压缩流动的范围,在Fluent中原则上,使用Pressure-ba sed和Density-based求解器都可以。从历史根源上讲,基于压力的求解器以前主要用于不可压缩流动和微可压缩流动,而基于密度的求解器用于高速可压缩流动。现在,两种求解器都适用于从不可压到高速可压的很大范围流动,但总的来讲,当计算高速可压缩流动时,基于密度的求解器还是璧基于压力的求解器更有优势,因此,在使用Fluent计算高速可压缩流动时,推荐使用Density-based求解器。 也许有很多人对于Pressure-based和Density-based求解器的原理的认识还不够深,在此稍微介绍一下: 求解Navier-Stokes方程的计算方法根据连续方程的处理方式,可以分为密度法和压力法。不论是密度法还是压力法,速度场都是由动量方程所控制,差别在压力场的确定方法上,密度法是通过连续方程确定密度,再由状态方程换算压力,这一方法多用于可压缩流动,作一定修正后,也可用于低马赫数流动,而这一流动已被看做不可压缩流,但此时精度及鲁棒性都有所降低,对于湍流甚至会失去有效性。密度法的弱点正好是压力法的长处,压力法是通过压力方程或压力修正方程来获得压力场,由于其鲁棒性及有效性,得以广泛使用。该方法原是作为求解不可压缩流动发展起来的,但也可以推广到可压缩流的计算上。这两种方法在求解思路上也有所不同,密度法多用同步求解各变量,而压力法则常为顺序求解各变量。显然顺序求解的一个优势是便于补充方程而无需修改算法程序。 Fluent用户手册上,对于可压缩流动有以下需要注意的策略,在此就不再翻译了,以免曲解原意。 Solution Strategies for Compressible Flows The difficulties associated with solving compressible flows are a result of the hi gh degree of coupling between the flow velocity, density, pressure, and energy. Thi

fluent 计算错误汇总

Fluent 计算错误汇总 1..fluent不能显示图像 在运行fluent时,导入case后,检查完grid,在显示grid时,总是出现这样的错误 Error message from graphics function Update_Display: Unable to Set OpenGL Rendering Context Error: FLUENT received a fatal signal (SEGMENTATION VIOLATION). Error Object: () 解决办法: 右键单击快捷方式,把目标由x: 改成:x: 2d -driver msw 如果还有三维的,可以再建立一个快捷方式改成: x: 3d -driver msw 这就可以直接调用了。如果不是以上原因引起的话,也有可能是和别的软件冲突,如MATLAB等,这也会使fluent无法显示图像。 Q1:GAMBIT安装后无法运行,出错信息是“unable find Exceed X Server” A. GAMBIT需要装EXCEED才能用。 gambit的运行:先运行命令提示符,输入gambit,回车 fluent的运行:直接在开始-程序-Fluent Inc里面 Q2:Fluent安装后无法运行,出错信息是甥?挱湵扡敬映湩層漯数? A. FLUENT和GAMBIT需要把相应文件拷贝到license目录下 文件?gambit时提示找不到gambit出错信息:运行Q3: A. FLUENT和GAMBIT推荐使用默认安装设置, 安装完GAMBIT请设置环境变量, 设置办法“开始-程序-FLUENT INC-Set Environment 另外设置完环境变量需要重启一下,否则仍会提示找不到环境变量。Q4:使用Fluent和Gambit需要注意什么问题? A. 安装好FLUENT和GAMBIT最好设置一下用户默认路径 推荐设置办法,在非系统分区建一个目录,如d:%users a)win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件 修改本地路径为d:%users,重起到该用户运行命令提示符,检查用户路径是否修改 b)xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式 在快捷方式-起始位置加入D:%users,重起检查 Q5:Gambit运行失败,出错信息“IDENTIFIER default_ Server ” 等文件default_id.*的缺省文件已经打开,到用户默认目录删除gambitA.

Fluent经典问题及答疑1

Fluent经典问题及答疑1 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼) 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?(#28) 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有

Fluent经典问题及解答

Fluent经典问题及解答 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)

fluent常见错误汇总 (1)

Fluent 计算错误汇总 1. .fluent 不能显示图像 在运行fluent 时,导入case 后,检查完grid ,在显示grid 时,总是出现这样的错误 Error message from graphics function Update_Display: Unable to Set OpenGL Rendering Context Error: FLUENT received a fatal signal (SEGMENTATION VIOLATION). Error Object: () 解决办法解决办法:: 右键单击快捷方式,把目标由x:fluent.incntbinntx86fluent.exe 改成: x:fluent.incntbinntx86fluent.exe 2d -driver msw 如果还有三维的,可以再建立一个快捷方式改成: x:fluent.incntbinntx86fluent.exe 3d -driver msw 这就可以直接调用了。如果不是以上原因引起的话,也有可能是和别的软件冲突,如MATLAB 等,这也会使fluent 无法显示图像。 Q1:GAMBIT 安装后无法运行,出错信息是“unable find Exceed X Server” A. GAMBIT 需要装EXCEED 才能用。 gambit 的运行:先运行命令提示符,输入gambit,回车 fluent 的运行:直接在开始-程序-Fluent Inc 里面 Q2:Fluent 安装后无法运行,出错信息是“unable find/open license.dat" A. FLUENT 和GAMBIT 需要把相应license.dat 文件拷贝到FLUENT.INC/license 目录下 Q3:出错信息:运行gambit 时提示找不到gambit 文件? A. FLUENT 和GAMBIT 推荐使用默认安装设置, 安装完GAMBIT 请设置环境变量, 设置办法“开始-程序-FLUENT INC-Set Environment" 另外设置完环境变量需要重启一下,否则仍会提示找不到环境变量。 Q4:使用Fluent 和Gambit 需要注意什么问题? A. 安装好FLUENT 和GAMBIT 最好设置一下用户默认路径 推荐设置办法,在非系统分区建一个目录,如d:\users a) win2k 用户在控制面板-用户和密码-高级-高级,在使用fluent 用户的配置文件 修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改 b) xp 用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式 在快捷方式-起始位置加入D:\users,重起检查

fluent经验

Fluent 问题集锦 问题1: 如果体网格做好后,感觉质量不好,然后将体网格删除,在其面上重新作网格,结果发现网格都脱离面,不再附体了,比其先前的网格质量更差了. 原因: 删除体网格时,也许连同较低层次的网格都删除了.上面的脱离面可能是需要的体的面. 解决方法: 重新生成了面,在重新划分网格 问题2: 在gambit下做一虚的曲面的网格,结果面上的网格线脱离曲面,由此产生的体网格出现负体积. 原因: 估计是曲面扭曲太严重造成的 解决方法: 可以试试分区域划分体网格,先将曲面分成几个小面,生成各自的面网格,再划体网格。 问题3: 当好网格文件的时候,并检查了网格质量满足要求,但输出*.msh时报错误. 原因: 应该不是网格数量和尺寸.可能是在定义边界条件或continuum type时出了问题. 解决方法: 先把边界条件删除重新导出看行不行.其二如果有两个几何信息重合在一起, 也可能出现上诉情况,将几何信息合并掉. 问题4: 当把两个面(其中一个实际是由若干小面组成,将若干小面定义为了group了)拼接在一起,也就是说两者之间有流体通过,两个面各属不同的体,网格导入到fluent时,使用interface时出现网格check的错误,将interface的边界条件删除,就不会发生网格检查的错误.如何将两个面的网格相连. 原因: interface后的两个体的交接面,fluent以将其作为内部流体处理(非重叠部分默认为wall,合并后网格会在某些地方发生畸变,导致合并失败.也可能准备合并的两个面几何位臵有误差,应该准确的在同一几何位臵(合并的面大小相等时),在合并之前要合理分块。 解决方法: 为了避免网格发生畸变(可能一个面上的网格跑到另外的面上了),可以一面网格粗,一面网格细,避免; 再者就是通过将一个面的网格直接映射到另一面上的,两个面默认为interior.也可以将网格拼接一起. 上述语言有些模糊不清,仅供参考,并希望高手批评指正,^_^

fluent经典问题整理

网格质量与那些因素有关? 网格质量本身与具体问题的具体几何特性、流动特性及流场求解算法有关。因此,网格质量最终要由计算结果来评判,但是误差分析以及经验表明,CFD计算对计算网格有一些一般性的要求,例如光滑性、正交性、网格单元的正则性以及在流动变化剧烈的区域分布足够多的网格点等。对于复杂几何外形的网格生成,这些要求往往并不可能同时完全满足。例如,给定边界网格点分布,采用Laplace 方程生成的网格是最光滑的,但是最光滑的网格不一定满足物面边界正交性条件,其网格点分布也很有可能不能捕捉流动特征,因此,最光滑的网格不一定是最好的网格。对计算网格的一个最基本的要求当然是所有网格点的Jacobian必须为正值,即网格体积必须为正,其他一些最常用的网格质量度量参数包括扭角(skew angle)、纵横比(aspect ratio、Laplacian)、以及弧长(arc length)等。通过计算、检查这些参数,可以定性的甚至从某种程度上定量的对网格质量进行评判。Parmley等给出了更多的基于网格元素和网格节点的网格质量度量参数。有限元素法关于插值逼近误差估计的理论,实际上也对网格单元的品质给出了基本的规定:即每个单元的内切球半径与外切球半径之,应该是一个适当的,与网格疏密无关的常数。 实体与虚体的区别 在建模中,经常会遇到实体、实面与虚体、虚面,虚体的计算域也可以进行计算并得到所需的结果。那么它们的区别是什么呢? 对于求解是没有任何区别的,只要你能在虚体或者实体上划分你需要的网格。关键是看你网格生成的质量如何,与实体虚体无关。 gambit的实体和虚体在生成网格和计算的时候对于结果没有任何影响,实体和虚体的主要区别有以下几点: 1.实体可以进行布尔运算但是虚体不能,虽然不能进行布尔运算,但是虚体存在merge,split 等功能。 2.实体运算在很多cad软件里面都有,但是虚体是gambit的一大特色,有了虚体以后,gambit 的建模和网格生成的灵活性增加了很多。 3.在网格生成的过程中,如果有几个相对比较平坦的面,你可以把它们通过merge合成一个,这样,作网格的时候,可以节省步骤,对于曲率比较大的面,可能生成的网格质量不好,这时候,你可以采取用split的方式把它划分成几个小面以提高网格质量。 在Fluent中进行非稳态(unsteady)计算时如何设置步长?

fluent过来人经验谈之continuity不收敛的问题

continuity不收敛的问题 (1)连续性方程不收敛是怎么回事? 在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事。 这和fluent程序的求解方法SIMPLE有关。SIMPLE根据连续方程推导出压力修正方法求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。 你可以试验SIMPLEC方法,应该会收敛快些。 在计算模拟中,continuity总不收敛,除了加密网格,还有别的办法吗?别的条件都已经收敛了,就差它自己了,还有收敛的标准是什么?是不是到了一定的尺度就能收敛了,比如10-e5具体的数量级就收敛了 continuity是质量残差,具体是表示本次计算结果与上次计算结果的差别,如果别的条件收敛了,就差它。可以点report,打开里面FLUX选项,算出进口与出口的质量流量差,看它是否小于0.5%.如果小于,可以判断它收敛. (2) fluent残差曲线图中continuity是什么含义? 是质量守恒方程的反映,也就是连续性的残差。这个收敛的快并不能说明你的计算就一定正确,还要看动量方程的迭代计算。表示某次迭代与上一次迭代在所有cells积分的差值,continuty表示连续性方程的残差 (3) 正在学习Fluent,模拟圆管内的流动,速度入口,出口outflow 运行后xy的速度很快就到1e-06了,但是continuity老是降不下去,维持在1e-00和1e-03之间,减小松弛因子好像也没什么变化大家有什么建议吗? 你查看了流量是否平衡吗?在report->flux里面操作,mass flow rate,把所有进出口都选上,compute一下,看看nut flux是什么水平,如果它的值小于总

fluent中的小技巧

[转帖]等值线图、矢量图、流线图、云图、直方图和XY散点图 等值线是在所指定的表面上通过若干个点的连线,在这条线上的变量(如压力)为定值。在二维或三维空间上,将横坐标取为空间长度或时间历程,将纵坐标取为某一物理量,然后用光滑曲线获取面在坐标系内绘制出某一物理量沿空间或时间的变化情况。等值线图是在物理区域上由同一变量的多条等值线组成的图形,即用不同颜色的线条表示相等物理量。等值线图包含线条图形和云图两种,云图是使用渲染的方式,将流场某个截面上的物理量用连续变化的颜色块表示其分布。 用户可以确定要显示哪个变量的等值线,可确定显示哪个面上的值,还可以指定要显示的等值线的取值范围。 矢量图:矢量图是直接给出二维或三维空间里矢量(如速度)的方向和大小。速度矢量图是反映速度变化、旋涡、回流等的有效手段,是流场分析最常用的图谱之一。在默认情况下,矢量在每个网格单元的中心绘制,用箭头表示矢量的方向,用箭头的长度和颜色表示矢量的大小。 用户可以选择指定要显示哪个表面的速度矢量,可以决定显示哪种速度(绝对速度或相对速度),也可以决定根据什么变量(如温度值、湍动能等)的值来决定颜色。 流线图:是用不同颜色线条表示质点运动轨迹,将计算域内无质量粒子的流动情况可视化。用户可指定粒子从哪个表面上释放出来。 Fluent允许用户从解的结果、data文件、残差数据中提取数据,来生成直方图与XY散点图。并且允许用户虚拟地定义任何变量或函数。 直方图是由数据条所组成的图形。直方图的横坐标是所希望的解的量(如密度),纵坐标是单元总数的百分比。使用Plot/Histogram命令,打开Solution Histogram对话框,设置直方图的内容及坐标轴。 XY散点图是由一系列离散的数据构成的线或符号图表。可以根据当前流场的解创建XY散点图,也可以从外部数据文件中取数据来创建XY散点图。 如何将fluent计算出的图形导入到tecplot中? 在fluent菜单中 点击File-Export : 在File Type 列表中选中Tecplot; 在surface列表中选中所有部分; Function to Write列表中选中所需要的 然后单击Write 命名 单击OK;数据文件输出了。 然后双击Tecplot快捷方式打开。 选择File-LOad data file 打开文件导入即可。

Fluent经典问题及答疑2

Fluent经典问题及答疑2 51 对于出口有回流的问题,在出口应该选用什么样的边界条件(压力出口边界条件、质量出口边界条件等)计算效果会更好?(#42) 52 对于不同求解器,离散格式的选择应注意哪些细节?实际计算中一阶迎风差分与二阶迎风差分有什么异同?(#69) 53 对于FLUENT的耦合解算器,对时间步进格式的主要控制是Courant数(CFL),那么Courant 数对计算结果有何影响?(#43) 54 在分离求解器中,FLUENT提供了压力速度耦和的三种方法:SIMPLE,SIMPLEC及PISO,它们的应用有什么不同?(#44) 55 对于大多数情况,在选择选择压力插值格式时,标准格式已经足够了,但是对于特定的某些模型使用其它格式有什么特别的要求? (#60) 56 计算流体力学中在设定初始条件和边界条件的时候总是要先选择一组湍流参数,并给出其初值。如何选择并给出这些初值呢?有什么经验公式或者别的好的办法吗?(#73) 57 讨论在数值模拟过程中采用四面体网格计算效果好,还是采用六面体网格更妙呢?(#70) 58 如何将自己用C语言编辑的程序导入到FLUENT中?在利用UDF编写程序时需注意哪些问题?(#157) 59 在UDF中compiled型的执行方式和interpreted型的执行方式有什么不同?(#72) 60 在用gambit的时候,导入pro/e的stp文件后,在消去最短边的时候,有些最短边不能消去,其是空间线段,用面merge的方法和连接点的方法都不行,请问该怎么消去这类短边?(#144) 61 FLUENT help和GAMBIT help能教会我们(特别是刚入门的新手)学习什么基本知识?(#126) 62 FLUENT如何做汽车外流场计算的模拟?并且怎么可以得到汽车的阻力系数和升力系数?(#170) 63 FLUENT模拟飞行器外部流场,最高MA多少时就不准确了?MA达到一定的程度做模拟需注意哪些问题?(#125) 64 在用gambit建模,保存成*.msh文件时总是出现No entity的错误:Continuum Entity fluid does not contain any valid entity and is not written! Boundary Entity wall does not contain any validentity and is not written! 不知道是什么问题?产生的原因是什么?如何解决?(#150) 65 在做燃烧模拟的时候,入口燃料温度定义为蒸发/离解开始时的温度(也就是,为离散相材料指定的蒸发温度“Vaporization Temperature”),这是指水分蒸发温度吗?一般是多少?(#196) 66 在计算煤粉燃烧时遇到这样的问题: Warning: volatile + combustible fraction for lignite is greater than 1.0shell conduction zones 如何解决? 67 FLUENT控制方程是无因次的还是有因次的?如果是无因次的,怎么无因次的? 68 做飞机设计时,经常计算一些翼型,可是经常出现计算出来的阻力是负值,出现负值究竟是什么原因,是网格的问题还是计算参数设置的问题?(#71) 69 FLUENT中的Turbulent intensify是如何定义的?该值应该是小于等于100%,可是我的计算中该值达到400%,不知为何? 70 边界条件中湍流强度怎么设置:入口边界条件中的湍流强度和出口边界条件中的回流湍流强度怎么设置?是取默认值10%吗?(#135) 71 关于Injection中的Total Flow rate:injection 选surface,此时选了好几个面(面积不一定完全相同,但颗粒的入口速度相同),那Total Flow Rate 是指几个面的总流量还是某一个面的啊?只能处理完全相同的面吗?(#160) 72 FLUENT中能不能做插值:在ansys中的模型节点坐标和FLUENT中模型的节点坐标不一致,能

相关文档
最新文档