高中数学常用公式及常用结论

高中数学常用公式及常用结论
高中数学常用公式及常用结论

高中数学常用公式及常用结论

1. 元素与集合的关系

U x A x C A ∈??,U x C A x A ∈??.

2.德摩根公式

();()U U U U U U C A B C A C B C A B C A C B == .

3.包含关系

A B A A B B =?= U U A B C B C A ????U A C B ?=Φ U C A B R ?=

4.容斥原理

()()card A B cardA cardB card A B =+-

()()card A B C cardA cardB cardC card A B =++-

()()()()card A B card B C card C A card A B C ---+ .

5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n

–2个.

6.二次函数的解析式的三种形式(1)一般式2

()(0)f x ax bx c a =++≠;(2)顶点式2

()()(0)f x a x h k a =-+≠(3)零点式12()()()(0)f x a x x x x a =--≠. .

12.

13.

14.四种命题的相互关系

15.充要条件

(1)充分条件:若p q ?,则p 是q 充分条件.(2)必要条件:若q p ?,则p 是q 必要条件.

(3)充要条件:若p q ?,且q p ?,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

16.函数的单调性

(1)设[]2121,,x x b a x x ≠∈?那么[]1212()()()0x x f x f x -->?

[]b a x f x x x f x f ,)(0)

()(2

121在?>--上是增函数;

[]1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数.

(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和

)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.

18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.

19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则

)()(a x f a x f +-=+.

20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2

b a x +=

;两个函数

)(a x f y +=与)(x b f y -= 的图象关于直线2

b a x +=

对称.

21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2

(a 对称; 若)()(a x f x f +-=,则函数)(x f y =为

周期为a 2的周期函数.

23.函数()y f x =的图象的对称性

(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-=. (2)函数()y f x =的图象关于直线2

a b x +=

对称()()f a mx f b mx ?+=-()()f a b mx f mx ?+-=.

25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.

26.互为反函数的两个函数的关系a b f

b a f =?=-)()(1

.

27.若函数)(b kx f y +=存在反函数,则其反函数为])([11

b x f

k y -=-,并不是)([1

b kx f

y +=-,而函数

)([1

b kx f

y +=-是])([1b x f k

y -=

的反函数.

28.几个常见的函数方程

(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.

(2)指数函数()x

f x a =,()()(),(1)0f x y f x f y f a +==≠.

(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α

=,'

()()(),(1)f xy f x f y f α==.

(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,

()(0)1,lim

1x g x f x

→==.

29.几个函数方程的周期(约定a>0)

(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()

(1)(≠=

+x f x f a x f ,或1()()

f x a f x +=-

(()0)f x ≠,

[]1(),(()0,1)2

f x a f x +

=+∈,则)(x f 的周期T=2a ;

(3))0)(()

(11)(≠+-

=x f a x f x f ,则)(x f 的周期T=3a ;

(4))

()(1)()()(212121x f x f x f x f x x f -+=

+且1212()1(()()1,0||2)f a f x f x x x a =?≠<-<,则)(x f 的周期T=4a ;

(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++

()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;

(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂

(1)m

n

a

=

(0,,a m n N *

>∈,且1n >).(2)1

m n

m

n

a

a

-

=

(0,,a m n N *

>∈,且1n >).

31.根式的性质

(1

)n

a =.(2)当n

a =;当n

,0

||,0a a a a a ≥?==?-

.

32.有理指数幂的运算性质

(1) (0,,)r s r s

a a a a r s Q +?=>∈.(2) ()(0,,)r

s

rs

a a a r s Q =>∈.(3)()(0,0,)r

r

r

ab a b a b r Q =>>∈. 注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 33.指数式与对数式的互化式

log b

a N

b a N =?=(0,1,0)a a N >≠>.

34.对数的换底公式

log log log m a m N N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >).

推论 log

log m

n

a a

n b b m

=

(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).

35.对数的四则运算法则

若a >0,a ≠1,M >0,N >0,则

(1)log ()log log a a a M N M N =+;(2) log log log a a a M M N N

=-;(3)log log ()n

a a M

n M n R =∈.

36.设函数)0)((log

)(2

≠++=a c bx ax

x f m

,记ac b 42

-=?.若)(x f 的定义域为R ,则0>a ,且0

)(x f 的值域为R ,则0>a ,且0≥?.对于0=a 的情形,需要单独检验.

37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a

≠,则函数log ()ax y bx =

(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数. ,

(2)当a b <时,在1(0,

)a

和1(

,)a

+∞上log ()ax y bx =为减函数.

推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2

log log log 2

a a a

m n m n +<.

.

39.数列的同项公式与前n 项的和的关系

11,

1,2n n

n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).

40.等差数列的通项公式

*

11(1)()n a a n d dn a d n N =+-=+-∈;

其前n 项和公式为

1()

2

n n n a a s +=

1(1)2

n n na d -=+

2

11()2

2

d n a d n =

+-

.

41.等比数列的通项公式

1

*

11()n n

n a a a q

q n N q

-==

?∈;

其前n 项的和公式为

11

(1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1

n n a a q

q q s na q -?≠?

-=??=?.

42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为

1(1),1(),11n n n b n d q a bq d b q d q q -+-=??=+--?≠?-?;其前n 项和公式为(1),(1)

1(),(1)111n

n nb n n d q s d q d

b n q q q q +-=??=-?-+≠?---?

. 43.分期付款(按揭贷款)

.

44.常见三角不等式 (1)若(0,

)2

x π

∈,则sin tan x x x <<.(2) 若(0,

)2

x π

,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.

45.同角三角函数的基本关系式

2

2

sin cos 1θθ+=,tan θ=

θ

θcos sin ,tan 1cot θθ?=.

46.正弦、余弦的诱导公式(奇变偶不变,符号看象限)

2

1

2

(1)sin ,sin()2(1)s ,n

n n co απαα-?-?+=??-?

2

1

2

(1)s ,

s()2(1)

sin ,n

n co n co απαα+?-?+=?

?-? 47.和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;

tan tan tan()1tan tan αβαβαβ

±±=

.22

sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);

2

2

cos()cos()cos sin αβαβαβ+-=-. sin cos a b αα+

)α?+(辅助角?所在象限由点(,)a b 的象限决定,tan b a

?=

).

48.二倍角公式

sin 2sin co s ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.

2

2tan tan 21tan α

αα

=-. 49. 三倍角公式

3

sin 33sin 4sin 4sin sin(

)sin(

)3

3

π

π

θθθθθθ=-=-+.

3

cos 34cos 3cos 4cos cos(

)cos(

)3

3

π

π

θθθθθθ=-=-+.

3

2

3tan tan tan 3tan tan(

)tan(

)13tan 3

3

θθππθθθθθ

-=

=-+-.

50.三角函数的周期公式

函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T π

ω

=

;函数

tan()y x ω?=+,,2

x k k Z π

π≠+

∈(A,ω,?为常数,且A ≠0,ω>0)的周期T πω

=

.

51.正弦定理

2sin sin sin a b c R A

B

C

=

=

=.52.余弦定理2222cos a b c bc A =+-;222

2cos b c a ca B =+-;

2

2

2

2cos c a b ab C =+-.

53.面积定理 (1)11122

2

a b c S ah bh ch ==

=(a b c h h h 、、分别表示a 、b 、c 边上的高).

(2)111sin sin sin 2

2

2

S ab C bc A ca B =

==

.(3)O A B S ?=

54.三角形内角和定理

在△ABC 中,有()A B C C A B ππ++=?=-+2

2

2

C A B π

+?=

-

222()C A B π?=-+.

55. 简单的三角方程的通解

sin (1)arcsin (,||1)k

x a x k a k Z a π=?=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=?=±∈≤.

tan arctan (,)x a x k a k Z a R π=?=+∈∈.

特别地,有

sin sin (1)()k

k k Z αβαπβ=?=+-∈. s cos 2()co k k Z αβαπβ=?=±∈.

tan tan ()k k Z αβαπβ=?=+∈.

56.最简单的三角不等式及其解集

sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤?∈++-∈.

sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤?∈--+∈.

cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤?∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤?∈++-∈. tan ()(arctan ,),2

x a a R x k a k k Z π

ππ>∈?∈++

∈.

tan ()(,arctan ),2

x a a R x k k a k Z π

ππ<∈?∈-

+∈.

57.实数与向量的积的运算律 设λ、μ为实数,那么

(1) 结合律:λ(μa)=(λμ)a;(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律:

(1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b= a ·(λb );(3)(a+b )·c= a ·c +b ·c. 59.平面向量基本定理

如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.

不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.

60.向量平行的坐标表示

设a=11(,)x y ,b=22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ?-=. 53. a 与b 的数量积(或内积) a ·b=|a||b|cos θ. 61. a ·b 的几何意义

数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 62.平面向量的坐标运算

(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y ++.

(2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y --.

(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--

.

(4)设a=(,),x y R λ∈,则λa=(,)x y λλ.

(5)设a=11(,)x y ,b=22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式

cos θ=

(a=11(,)x y ,b=22(,)x y ).

64.平面两点间的距离公式

,A B d =||AB =

=

(A 11(,)x y ,B 22(,)x y ).

65.向量的平行与垂直

设a=11(,)x y ,b=22(,)x y ,且b ≠0,则A||b ?b=λa 12210x y x y ?-=. a ⊥b(a ≠0)?a ·b=012120x x y y ?+=. 67.三角形的重心坐标公式 △ABC

三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC

的重心的坐标是

123

123

(

,

)3

3

x x x y y y G ++++.

68.点的平移公式

'''

'

x x h x x h y y k y y k

??=+=-?????=+=-????''

O P O P P P ?=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'

F 上的对应点为'

'

'

(,)P x y ,且'

PP

的坐标为(,)h k .

70. 三角形五“心”向量形式的充要条件

设O 为A B C ?所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则

(1)O 为A B C ?的外心

222

O A O B O C ?== . (2)O 为A B C ?的重心0OA OB OC ?++=

.

(3)O 为A B C ?的垂心OA OB OB OC OC OA ??=?=?

.

(4)O 为A B C ?的内心0aOA bOB cOC ?++=

.

(5)O 为A B C ?的A ∠的旁心aOA bOB cOC ?=+

.

71.常用不等式:

(1),a b R ∈?22

2a b ab +≥(当且仅当a =b 时取“=”号).

(2),a b R

+

∈?

2

a b +≥(当且仅当a =b 时取“=”号).

(3)3

3

3

3(0,0,0).a b c abc a b c ++≥>>>

(4)柯西不等式2

2

2

2

2

()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-.

72.极值定理

已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;

(2)若和y x +是定值s ,则当y x =时积xy 有最大值

2

4

1s .推广 已知R y x ∈,,则有xy y x y x 2)()(2

2+-=+

(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.

73.一元二次不等式2

0(0)ax bx c ++><或2

(0,40)a b ac ≠?=->,如果a 与2

ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

121212()()0()x x x x x x x x x <?--><或.

74.含有绝对值的不等式 当a> 0时,有

2

2

x a x a

a x a

x a x a x a >?>?>或x a <-.

75.无理不等式

(1

()0()0

()()f x g x f x g x ≥??

>?≥??>?

. (2

2

()0

()0()()0()0()[()]f x f x g x g x g x f x g x ≥?≥??

>?≥??

?

或. (3

2()0()()0

()[()]f x g x g x f x g x ≥??

??

. 76.指数不等式与对数不等式 (1)当1a >时,

()

()

()()f x g x a

a

f x

g x >?>;

()0log ()log ()()0()()a a f x f x g x g x f x g x >??

>?>??>?

.

(2)当01a <<时,

()

()

()()f x g x a

a

f x

g x >?<;

()0log ()log ()()0()()a

a f x f x g x g x f x g x >??

>?>??

77.斜率公式

2121

y y k x x -=

-(111(,)P x y 、222(,)P x y ).

78.直线的五种方程

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式

112121

y y x x y y x x --=

--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).

(4)截距式

1x y

a b

+=(a b 、分别为直线的横、纵截距,0a b ≠、)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

79.两条直线的平行和垂直

(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ?=≠;②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111122

2

2

||A B C l l A B C ?

=

;②1212120l l A A B B ⊥?+=;

80.夹角公式 (1)2121

tan |

|1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)

(2)12211212

tan |

|A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).

直线12l l ⊥时,直线l 1与l 2的夹角是2

π

.

81. 1l 到2l 的角公式 (1)2121

tan 1k k k k α-=

+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)

(2)12211212

tan A B A B A A B B α-=

+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).

直线12l l ⊥时,直线l 1到l 2的角是2

π

.

83.点到直线的距离

d =点00(,)P x y ,直线l :0Ax By C ++=).

.

86. 圆的四种方程

(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(22

4D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ

=+??

=+?.

(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ). 88.点与圆的位置关系 点00(,)P x y 与圆2

22

)()(r b y a x =-+-的位置关系有三种

若d =

d r >?点P 在圆外;d r =?点P 在圆上;d r

89.直线与圆的位置关系

直线0=++C By Ax 与圆2

22

)()

(r b y a x =-+-的位置关系有三种:

0相离r d ;0=???=相切r d ;0>???<相交r d .其中2

2

B

A C Bb Aa d +++=

.

90.两圆位置关系的判定方法

设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21

条公切线外离421??+>r r d ;条公切线外切321??+=r r d ;

条公切线相交22121??+<<-r r d r r ;条公切线内切121??-=r r d ; 无公切线内含??-<<210r r d .

91.圆的切线方程

(1)已知圆2

2

0x y Dx Ey F ++++=.

①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()

()

02

2

D x x

E y y x x y y

F ++++

+

+=.

当00(,)x y 圆外时, 0000()

()

02

2

D x x

E y y x x y y

F ++++

+

+=表示过两个切点的切点弦方程.

②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.

③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222

x y r +=.

①过圆上的000(,)P x y 点的切线方程为2

00x x y y r +=;②斜率为k 的圆的切线方程为y kx =±.

92.椭圆

22221(0)x y a b a b +

=>>的参数方程是cos sin x a y b θ

θ=??

=?

. 93.椭圆

222

2

1(0)x y a b a

b

+

=>>焦半径公式 )(2

1c a

x e PF +

=,)(2

2x c

a

e PF -=.

94.椭圆的的内外部 (1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部22

00221x y a b ?+<. (2)点00(,)P x y 在椭圆222

2

1(0)x y a b a

b

+

=>>的外部22

2

2

1x y a b ?

+

>.

95. 椭圆的切线方程 (1)椭圆

222

2

1(0)x y a b a

b

+=>>上一点00(,)P x y 处的切线方程是002

2

1x x y y a

b

+

=.

(2)过椭圆

222

2

1(0)x y a b a b

+=>>外一点00(,)P x y 所引两条切线的切点弦方程是

002

2

1x x y y a

b

+

=.

(3)椭圆

222

2

1(0)x y a b a

b +=>>与直线0Ax By C ++=相切的条件是2

2

2

2

2A a B b c +=. 96.双曲线

2222

1(0,0)x

y

a b a b

-

=>>的焦半径公式2

1|()|a

PF e x c

=+

,2

2|()|a

PF e x c

=-.

97.双曲线的内外部 (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部22

00221x y a b ?->. (2)点00(,)P x y 在双曲线

222

2

1(0,0)x y a b a

b

-

=>>的外部22

2

2

1x y a b ?

-

<.

98.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为

12

22

2=-

b

y a

x ?渐近线方程:

222

2

0x y a

b

-

=?x a

b y ±=.

(2)若渐近线方程为x a

b y ±

=?0=±b

y a x ?双曲线可设为λ=-

2

22

2b

y a

x .

(3)若双曲线与

12

22

2=-

b

y a x 有公共渐近线,可设为

λ=-

2

22

2b

y a

x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).

99. 双曲线的切线方程 (1)双曲线

222

2

1(0,0)x y a b a

b

-=>>上一点00(,)P x y 处的切线方程是002

2

1x x y y a

b

-

=.

(2)过双曲线

222

2

1(0,0)x y a b a

b

-

=>>外一点00(,)P x y 所引两条切线的切点弦方程是

002

2

1x x y y a

b

-

=.

(3)双曲线

222

2

1(0,0)x y a b a

b

-

=>>与直线0Ax By C ++=相切的条件是22222

A a

B b c -=.

100. 抛物线px y

22

=的焦半径公式

抛物线2

2(0)y px p =>焦半径02

p C F x =+.

过焦点弦长p x x p x p x CD ++=+

++=21212

2

.

101.抛物线px y

22

=上的动点可设为P ),2(

2

y p

y 或或)2,2(2pt pt P P (,)x y ,其中 2

2y px = .

102.二次函数2

2

2

4()24b ac b y ax bx c a x a

a

-=++=++

(0)a ≠的图象是抛物线:

(1)顶点坐标为2

4(,

)24b ac b a

a

--;

(2)焦点的坐标为2

41

(,

)24b ac b a

a

-+-

(3)准线方程是2

41

4ac b y a

--=.

.

104. 抛物线的切线方程 (1)抛物线px y

22

=上一点00(,)P x y 处的切线方程是00()y y p x x =+.

(2)过抛物线px y

22

=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.

(3)抛物线2

2(0)y px p =>与直线0Ax By C ++=相切的条件是2

2pB

AC =.

106.直线与圆锥曲线相交的弦长公式 AB =

1212||||AB x x y y =

=-=-A ),(),,(2211y x B y x ,由方

程???=+=0

)y ,x (F b kx y 消去y 得到02=++c bx ax ,0?>,α为直线A B 的倾斜角,k 为直线的斜率). 107.圆锥曲线的两类对称问题

(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是

2

2

2

2

2()

2()

(,)0A Ax By C B Ax By C F x y A B

A B

++++-

-

=++.

1

115.空间向量的加法与数乘向量运算的运算律

(1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c).(3)数乘分配律:λ(a +b)=λa +λb . 122.向量的直角坐标运算

设a =123(,,)a a a ,b =123(,,)b b b 则(1)a +b =112233(,,)a b a b a b +++;(2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则

AB OB OA =-

= 212121(,,)x x y y z z ---.

132.三余弦定理

设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.

134.空间两点间的距离公式

若A 111(,,)x y z ,B 222(,,)x y z ,则 ,A B d =||AB =

=

.

135.点Q 到直线l 距离

h =

点P 在直线l 上,直线l 的方向向量a=PA

,向量b=P Q ).

136.异面直线间的距离

||

||

C D n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 137.点B 到平面α的距离 ||||

A B n d n ?=

(n

为平面α的法向量,A B 是经过面α的一条斜线,A α∈). 已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则 ①1S c l =斜棱柱侧. ②1V S l =斜棱柱.

146.球的半径是R ,则其体积3

43

V R π=

,其表面积24S R π=.

(3) 球与正四面体的组合体: 棱长为a

的正四面体的内切球的半径为

12

a ,

外接球的半径为

4a .

148.柱体、锥体的体积13

V Sh =

柱体(S 是柱体的底面积、h 是柱体的高).

13

V Sh =

锥体(S 是锥体的底面积、h 是锥体的高).

178.回归直线方程

y a bx =+,其中()()()11222

1

1

n

n

i i i

i

i i n n

i i

i i x x y y x y

n x y b x x x

nx

a y bx

====?

---?

?==

?

--??

=-?∑∑∑∑.

179.相关系数

()(

)

n

i

i x

x y y r --=

∑()(

)

n

i

i x

x y y --=

∑.

|r|180.特殊数列的极限

(1)0||1lim 1

1

||11

n

n q q q q q →∞

<=-?不存在

或.

(2)1

101

100()lim ()()k k k k t

t t n t t k

k t a n a n a a k t b n b n b b k t ---→∞-??

不存在 . (3)()

111lim 11n

n a q a S q

q

→∞

-==

--(S 无穷等比数列}{

1

1n a q

- (||1q <)的和).

.

188.瞬时速度

()()

()lim

lim

t t s s t t s t s t t

t

υ?→?→?+?-'===??.

189.瞬时加速度

0()()

()lim

lim

t t v

v t t v t a v t t

t ?→?→?+?-'===??.

190.)(x f 在),(b a 的导数

()dy df f x y dx

dx

''==

=

()()

lim

lim

x x y f x x f x x

x

?→?→?+?-==??.

191. 函数)(x f y =在点0x 处的导数的几何意义

函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是

))((000x x x f y y -'=-.

192.几种常见函数的导数

(1) 0='C (C 为常数).(2) '

1

()()n n x nx n Q -=∈.(3) x x cos )(sin ='.(4) x x sin )(cos -='.

(5) x

x 1)(ln =

';e a

x

x

a log

1)(log =

'.(6) x

x

e e =')(; a a a x

x

ln )(='.

193.导数的运算法则

(1)'

'

'

()u v u v ±=±.(2)'

'

'

()uv u v uv =+.(3)''

'

2

()(0)u u v uv v v

v

-=

≠.

195.常用的近似计算公式(当

x

充小时)

(1)x x 2

111+

≈+;x n

x n 111+

≈+;(2)(1)1()x x R α

αα+≈+∈;

x x

-≈+111;

(3)x e x

+≈1;(4)x x l n ≈+)1(;(5)x x ≈sin (x 为弧度);(6)x x ≈tan (x 为弧度); (7)x x ≈arctan (x 为弧度) 196.判别)(0x f 是极大(小)值的方法 当函数)(x f 在点0x 处连续时,

(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 197.复数的相等,a bi c di a c b d +=+?==.(,,,a b c d R ∈)

198.复数z a bi =+的模(或绝对值)||z =||a bi +199.复数的四则运算法则

(1)()()()()a bi c di a c b d i +++=+++;(2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++;(4)2

2

2

2

()()(0)ac bd bc ad a bi c di i c di c d

c d

+-+÷+=+

+≠++.

200.复数的乘法的运算律

对于任何123,,z z z C ∈,有交换律:1221z z z z ?=?.结合律:123123()()z z z z z z ??=??. 分配律:1231213()z z z z z z z ?+=?+? . 201.复平面上的两点间的距离公式

12||d z z =-=(111z x y i =+,222z x y i =+).

203.实系数一元二次方程的解

实系数一元二次方程2

0ax bx c ++=,①若2

40b ac ?=->,则1,22b x a

=;②若2

40b ac ?=-=,

则122b x x a

==-

;③若2

40b ac ?=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根

2

40)2x b ac a

=

-<.

高中数学常用公式及结论

高考数学常用公式及结论200条 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p a b x ,2?-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.

高中数学公式大全(必备版)

高中数学公式大全(必备版) 高中数学公式大全(必备版) 篇一 篇二 篇三 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα

cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot;cot→tan(奇变偶不变),然后在前面加上把α看成锐

高考数学常用公式及结论200条(一)【天利】

高考数学常用公式及结论200条(一) 湖北省黄石二中 杨志明 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11()f x N M N > --. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(), ()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈- =,则{}m i n () m i n ( ),() f x f p f q = ,若

高中数学公式结论大全(相当全)

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为 时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或 。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下: (1)当a>0时,若,则;

,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或. 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式 (为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是。 (3) 在给定区间的子区间上含参数的不等式(为参数)的有解充要条件是。 (4) 在给定区间的子区间上含参数的不等式(为参数)有解的充要条件是。

对于参数及函数.若恒成立,则;若 恒成立,则 ;若有 解,则 ;若 有解,则 ;若 有解,则 .若函数 无最大值或最小值的情况,可以仿此推出相应结论 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 13.四种命题的相互关系(上图): 14.充要条件记 表示条件,表示结论 1充分条件:若,则是充分条件. 2必要条件:若,则是必要条件. 3充要条件:若 ,且 ,则 是充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 15.函数的单调性的等价关系 (1)设 那么 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

高中高考数学所有二级结论《完整版》

高中数学二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为2 00))(())((r b y b y a x a x =--+-- ①过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ①过双曲线)0,0(12222>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ①椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ①双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x ①抛物线)0(22 >=p px y 的切点弦方程为)(00x x p y y += ①二次曲线的切点弦方程为02 22000000=++++++++F y y E x x D y Cy x y y x B x Ax 9.①椭圆)0,0(122 22>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+ ②双曲线)0,0(122 22>>=-b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-

高中数学常用公式汇总整理

高中数学常用公式汇总及结论 1 、元素与集合的关 系: 2 、集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个. 3 、二次函数的解析式的三种形式: (1) 一般式: (2) 顶点式:(当已知抛物线的顶点坐标时,设为此式) (3)零点式:(当已知抛物线与轴的交点坐标为时,设为此式) (4)切线式:。(当已知抛物线与直线相切且切点的横坐标为时, 设为此式) 4、真值表:同真且真,同假或假 5 、常见结论的否定形式;

6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.) 充要条件: (1) 则P是q的充分条件,反之,q是p的必要条件; (2)且q ≠> p,则P是q的充分不必要条件; (3) p ≠> p ,且,则P是q的必要不充分条件;(4)p ≠> p ,且则P是q的既不充分又不必要条件。 7、函数单调性: 增函数:(1)文字描述是:y随x的增大而增大。 (2)数学符号表述是:设f(x)在上有定义,若对任意的,都有成立, 则就叫在上是增函数。D则就是f(x)的递增区间。 减函数:(1)、文字描述是:y随x的增大而减小。 (2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有 成立,则就叫f(x)在上是减函数。D则就是f(x)的递减区间。

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数; (3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数; 注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。 复合函数的单调性: 等价关系: (1)设,那么 上是增函数; 上是减函数. (2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数. 8、函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称) 奇函数定义:在前提条件下,若有,则f(x)就是奇函数。

高中数学公式及常见结论

高中数学公式及常见结论 1、有n 个元素的集合有2n 个子集,有(2n -1)个真子集 2、 常见的奇函数:f(x)=kx f(x)=ax 3 +bx f(x)= x k f(x)=ax +x b f(x)=1 1 +-x x a a f(x)=21121+-x f(x)=21121-+x f(x)=lg(12+x +x) f(x)=lg x x -+11 f(x)=|x+1|-|x-1| 3、 常见的偶函数:f(x)=c (c 为常数) f(x)=ax 2 +c f(x)= ax 4 +bx 2 +c f(x)=( 21121+-x )x f(x)=(2 1 121-+x )x f(x)=12+x 4、指数式与对数式: m n a = 1m n m n a a -=, 01a =, log 10a =, log 1 a a =, lg 2lg51 +=, log ln e x x =, log (0,1,0)b a a N N b a a N =?=>≠>, log a N a N =, log log log c a c b b a = , log log m n a a n b b m = log ()log log a a a MN M N =+;log log log a a a M M N N =-;log log ()n a a M n M n R =∈ 5、若函数f(x)=kx +b 是奇函数,则b =0 6、若f(x)= ax 2 +bx +c 是偶函数,则b =0; 若f(x)= ax 2+bx +c 是奇函数,则a =c =0 7、若一个函数是奇函数,且在x=0处有定义,则一定有f(0)=0 8、 若一个函数是偶函数,则f(-x)= f(x)= f(|x |) 9、 证明一个函数是奇函数的常用方法:①定义法:只要证明f(-x)=- f(x) ②求和法:只要证明f(-x)+ f(x)=0 10、证明一个函数是偶函数的常用方法:①定义法:只要证明f(-x)= f(x) ②求差法:只要证明f(-x)- f(x)=0 11、函数y= f(x)与函数y= f(-x)的图象关于y 轴对称 如y =log 2x 与y =log 2(-x ) y =2x 与y =2 x -=( 2 1)x 12、函数y= f(x)与函数y= -f(x)的图象关于x 轴对称

高中数学公式大全(完整版)

高中数学常用公式及常用结论 1.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 2.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2 个. 3.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函 数. 5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数 )(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2 b a x += 对称. 8.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2),)0)(()(1 )(≠=+x f x f a x f ,或1()() f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂 (1)m n a = (0,,a m n N * >∈,且1n >).(2)1m n m n a a - = (0,,a m n N * >∈,且1n >). 10.根式的性质 (1 )n a =.(2)当n a =;当n ,0 ||,0a a a a a ≥?==? -∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r a b a b a b r Q =>>∈. 12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>. ①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a , ④.积的对数:N M MN a a a log log )(log +=,商的对数:N M N M a a a log log log -=,

高中数学常用公式及常用结论-掌门1对1

1 高中数学常用公式及常用结论-掌门1对1 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 9.闭区间上的二次函数的最值 二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在a b x 2-=处及区间的两端点处取得,具体如下: 12.p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假 13.原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有n 个 至多有(1n -)个 小于 不小于 至多有n 个 至少有(1n +)个 对所有x , 成立 存在某x , 不成立 p 或q p ?且q ? 对任何x , 不成立 存在某x , 成立 p 且q p ?或q ? 14.四种命题的相互关系 原命题 互逆 逆命题 若p则q 若q则p 互 互 互 为 为 互 否 否 逆 逆 否 否 否命题 逆否命题 若非p则非q 互逆 若非q则非p 15.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件.

(3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 18.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x += ; 21. 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数. 22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性 (1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=- (2)()f a x f x ?-=. (2)函数()y f x =的图象关于直线2 a b x += 对称()()f a mx f b mx ?+=- ()()f a b mx f mx ?+-=. 24.两个函数图象的对称性 (1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. (3)函数)(x f y =和)(1 x f y -=的图象关于直线y=x 对称. 25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图 象. 26.互为反函数的两个函数的关系 a b f b a f =?=-)()(1. 30.分数指数幂 (1)m n a = (0,,a m n N * >∈,且1n >).

高考数学常用结论集锦

高考数学常用结论集锦 一. 函数 1.函数 ()y f x =的图象的对称性: ①. 函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②. 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ?=-- 2.两个函数图象的对称性: ①. 函数 ()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②. 函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③. 函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④. 函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- 3. 对数的换底公式 log log log m a m N N a =. 推论 log log m n a a n b b m =. 对数恒等式log a N a N =(0,1a a >≠) 4. 导数: ⑴导数定义:f(x)在点x 0处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(000 00 ; ⑵常见函数的导数公式: ①' C 0=;②1')(-=n n nx x ;③x x cos )(sin '=;④. x x sin )(cos '-=; ⑤a a a x x ln )(' =;⑥x x e e =')(;⑦'1(log )log a a x e x =;⑧. x x 1)(ln '= ; ⑶导数的四则运算法则:;)(;)(;)(2 v v u v u v u v u v u uv v u v u '-'=''+'=''±'='± 二.数列 1. 若数列 {}n a 是等差数列,n S 是其前 n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。如图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s +=1(1)2n n na d -=+21 1()22d n a d n =+- 5. 若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'12-n S ,则'1 212--=n n n n S S b a 。 等比数列 {}n a 的通项公式1*11()n n n a a a q q n N q -== ?∈;等比数列{}n a 的变通项公式m n m n q a a -= 其前n 项的和公式 11 (1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a q q q s na q -?≠? -=??=? 三.三角函数 1. 同角三角函数的基本关系式 2 2sin cos 1θθ+=,tan θ=θ θ cos sin ,tan 1cot θθ ?=2 211tan cos αα += 2. 正弦、余弦的诱导公式: 2 12(1)sin ,sin()2(1)s ,n n n n co n απαα-?-?+=??-?为偶数为奇数 212(1)s ,s()2(1)sin ,n n co n n co n απαα+?-?+=??-? 为偶数为奇数 即:奇变偶不变,符号看象限,如cos()sin ,sin()cos 22 sin()sin ,cos()cos π π ααααπααπαα +=-+ =-=-=- 3. 和角与差角公式:sin()sin cos cos sin α βαβαβ±=±;cos()cos cos sin sin αβαβαβ ±=; tan tan tan()1tan tan αβαβαβ ±±= . 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);

整理高中数学公式结论大全

高 中 数 学 公 式 结 论 大 全 20 年月日A4打印/ 可编辑

高等数学公式导数公式: 基本积分表:

三角函数的有理式积分: sinx= 2u 1+u2,cosx= 1?u2 1+u2,u=tg x 2,dx= 2du 1+u2 一些初等函数:两个重要极限: 三角函数公式: ·诱导公式: 函数 角A sin cos tg ctg -α-sinαcosα-tgα-ctgα 90°-αcosαsinαctgαtgα 90°+αcosα-sinα-ctgα-tgα 180°-αsinα-cosα-tgα-ctgα

180°+α-sinα-cosαtgαctgα 270°-α-cosα-sinαctgαtgα 270°+α-cosαsinα-ctgα-tgα 360°-α-sinαcosα-tgα-ctgα 360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:

·倍角公式: ·半角公式: sin α2=±√1?cosα2 cos α2=±√1+cosα2 tg α2=±√1?cosα1+cosα=1?cosαsinα=sinα1+cosα ctg α2=±√1+cosα1?cosα=1+cosαsinα=sinα 1?cosα ·正弦定理:a sinA = b sinB = c sinC =2R ·余弦定理:c 2=a 2+b 2?2abcosC ·反三角函数性质:arcsinx =π2?arccosx arctgx =π 2?arcctgx 高阶导数公式——莱布尼兹(Leibniz )公式: (uv)(n)=∑C n k u (n?k)v (k) n k=0 u (n)v +nu (n?1)v ′+ n(n ?1)2!u (n?2)v ′′+?+n(n ?1)?(n ?k +1)k! u (n?k)v (k)+?+uv (n) 中值定理与导数应用: 拉格朗日中值定理:f(b)?f(a)=f ′(ξ)(b ?a) 柯西中值定理:f(b)?f(a)F(b)?F(a)= f ′(ξ) F ′(ξ) 当F(x)=x 时,柯西中值定理就是拉格朗日中值定理。 曲率:

高中数学常用结论集锦

1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 2U U A B A A B B A B C B C A =?=???? U A C B ?=Φ U C A B R ?= 3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个 4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠. 三次函数的解析式的三种形式①一般式32()(0)f x ax bx cx d a =+++≠ ②零点式123()()()()(0)f x a x x x x x x a =---≠ 5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 6.函数()y f x =的图象的对称性: ①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-= ②函数()y f x =的图象关于直2 a b x +=对称()()f a x f b x ?+=-()()f a b x f x ?+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ?=-- 函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ? =-- 7.两个函数图象的对称性: ①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m += 对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- ⑤函数)(x f y =和)(1 x f y -=的图象关于直线y=x 对称. 8.分数指数幂 m n a =0,,a m n N *>∈,且1n >). 1 m n m n a a - = (0,,a m n N * >∈,且1n >). 9. log (0,1,0)b a N b a N a a N =?=>≠>. log log log a a a M N MN +=(0.1,0,0)a a M N >≠>> log log log a a a M M N N -=(0.1,0,0)a a M N >≠>>

数学常用公式精致版

MBA 数学常用公式 初等数学 一、初等代数 1. 乘法公式与因式分解: (1) 222 )2a b a ab b ±=±+( (2) 2222)222a b c a b c ab ac bc ++=+++++( (3)22()()a b a b a b -=-+ (4) 33223)33a b a a b ab b ±=±+±( (5)3322()()a b a b a ab b ±=±+ 2. 指数 (1)m n m n a a a +?= (2)m n m n a a a -÷= (3)()m n mn a a = (4)()m m m ab a b = (5)()m m m a a b b = (6)1m m a a -= 3. 对数(log ,0,1a N a a >≠) (1)对数恒等式 log a N N a =,更常用ln N N e = (2)log ()log log a a a MN M N =+ (3)log ()log log a a a M M N N =- (4)log ()log n a a M n M = (5 )1log log a a M n = (6)换底公式log log log b a b M M a = (7)log 10a =,log 1a a = 4.排列、组合与二项式定理 (1)排列 (1)(2)[(1)]m n P n n n n m =--???-- (2)全排列 (1)(2)321! n n P n n n n =--?????=

l O b b a A C (3)组合 (1)(2)[(1)] ! !!()!m n n n n n m n C m m n m --???--==- 组合的性质: (1)m n m n n C C -= (2)1 11m m m n n n C C C ---=+ (3)二项式定理 01111n n n n n n n n n n C a C a b L C ab C b ---=++++n (a+b) ● 展开式特征: 1)11,0,1,...,k n k k k n k T C a b k n -++==通项公式:第项为 2)1n +项数:展开总共项 3)指数: 1100;a n b n ???→???→逐渐减逐渐加的指数:由; 的指数:由各项a 与b 的指数之和为n 4)展开式的最大系数: 212132n n n n C n C +++n 当n 为偶数时,则中间项(第项)系数最大 2n+1当n 为奇数时,则中间两项(第和项)系数最大。 2 ● 展开式系数之间的关系 1)n r n C -=r n C ,即与首末等距的两相系数相等。 1 2.2n n n n n C C C ++=),即展开式各项系数之和为2n 0241 35 132,n n n n n n n C C C C C C -++=++=)即奇数项系数和等于偶数项系数和 二、平面几何 1. 图形面积 (1)任意三角形 11sin 22S bh ab C == (2)平行四边形:sin S bh ab ?== (3)梯形:S =中位线×高=1 2(上底+下底)×高 (4)扇形: 21 1 22S rl r θ== 弧长 l r θ=

高一数学必修四(公式总结)

高一数学公式总结 复习指南 1.注重基础和通性通法 在平时的学习中,应立足教材,学好用好教材,深入地钻研教材,挖掘教材的潜力,注意避免眼高手低,偏重难题,搞题海战术,轻视基础知识和基本方法的不良倾向,当然注重基础和通性通法的同时,应注重一题多解的探索,经常利用变式训练和变式引申来提高自己的分析问题、解决问题的能力。 2.注重思维的严谨性 平时学习过程中应避免只停留在“懂”上,因为听懂了不一定会,会了不一定对,对了不一定美。即数学学习的五种境界:听——懂——会——对——美。 我们今后要在第五种境界上下功夫,每年的高考结束,结果下来都可以发现我们宿迁市的考生与南方的差距较大,这就是其中的一个原因。 另外我们的学生的解题的素养不够,比如仅仅一点“规范答题”问题,我们老师也强调很多遍,但作为学生的你们又有几人能够听进去! 希望大家还是能够做到我经常所讲的做题的“三观”: 1. 审题观 2. 思想方法观 3. 步骤清晰、层次分明观 3. 注重应用意识的培养 注重培养用数学的眼光观察和分析实际问题,提高数学的兴趣,增强学好数学的信心,达到培养创新精神和实践能力的目的。 4.培养学习与反思的整合 建构主义学习观认为知识并不是简单的由教师或者其他人传授给学生的,而只能由学生依据自身已有的知识、经验,主动地加以建构。学习是一个创造的过程,一个批判、选择、和存疑的过程,一个充满想象、探索和体验的过程。你不想学,老师强行的逼迫是不容易的或者说是作用不大,俗话说“强扭的瓜不甜”嘛!数学学习不但要对概念、结论和技能进行记忆,积累和模仿,而且还要动手实践,自主探索,并且在获得知识的基础上进行反思和修正。(这也就是我们经常将让大家一定要好好预习,养成自学的好习惯。)记得有一位中科院的教授曾经给“科学”下了一个定义:科学就是以怀疑和接纳新知识作为进步的标准的一门学问,仔细想来确实很有道理! 所以我们在平时学习中要注意反思,只有这样才能使内容得到巩固,知识的得到拓展,能力得到提高,思维得到优化,创新能力得到真正的发展,希望大能够让数学反思成为我们的自然的习惯! 5.注重平时的听课效率 听课效率高不仅可以让自己深刻的理解知识,而且事半功倍,可以省好多的时间。而有些同学则认为上课时听不到什么,索性就不听,抓紧课堂上的每一点时间做题,多做几道题心里就踏实。这种认识是不科学的,想象如果上课没有用的话,国家还开办学校干嘛?只要印刷课本就足够了,学生买了书就可以自己学习到时候参加考试就行了。 想想好多东西还是在课堂上聆听的,听听老师对问题的分析和解题技巧,老师是如何想到的,与自己预习时的想法比较。课堂上记下比较重要的东西,更重要的是跟着老师的思路,注重老师对题目的分析过程。课后宁愿花时间去整理笔记,因为整理笔记实际上是一种知识的整合和再创造!回忆课堂上老师是怎样讲的,自己在整理时有比较好的想法,就记下来,抓住自己思维的火花,因为较为深刻的思维火花往往是稍纵即逝的。 在这里我再一次强调听课要做到“五得” ◆听得懂 想得通?记得住?说得出?用得上

高考数学常用结论大盘点

2015年高考数学常用结论大盘点 江苏省苏州中学 王思俭(215007) 一、集合与逻辑常用用语 1. ()()();()()().U U U U U U C A B C A C B C A B C A C B ==I U U I 2. ;.A B A A B A B B A B =??=??I U 3.集合{}123,,,,()n A a a a a n N *=∈L ,子集个数为2n ,真子集个数为21n -。 4.集合A ,则,A A A ???;若A 为非空集合,则A ≠ ??. 5.原命题与逆否命题等价;逆命题与否命题等价;原命题、逆命题、否命题与逆否命题中,真命题个数是偶数个(即0,2,4)。 二、函数 6.对称性与周期性 (1)若()()f a x f b x +=-,,a b 为常数,则函数()f x 的图像关于直线2 a b x +=对称. (2) 若()()2f a x f b x m ++-=,,,a b m 为常数, 则函数()f x 的图像关于点(,) 2 a b m +成中心对称. (3)若()()f x a f x b +=-,,a b 为常数, 则函数()f x 为周期函数,周期为T a b =+. (4)若()()f a x f a x +=-,()()f b x f b x +=-,,a b 为不相等的常数, 则函数()f x 为周期函数,周期为2T a b =-. (5) 若()()f a x f a x +=-,()()0f b x f b x ++-=,,a b 为不相等的常数, 则函数()f x 为周期函数,周期为4T a b =-. (6) 若()()0f a x f a x ++-=,()()0f b x f b x ++-=,,a b 为不相等的常数, 则函数 ()f x 为周期函数,周期为2T a b =-. 7.函数的奇偶性 (1)()f x 的定义域()(),0a a a ->(或[],a a -),()f x 为奇函数,则()00f =,反之未必; (2) ()f x 为奇函数()()()0f x f x f x ?-+=?的图象关于原点中心对称; (3)()f x 为偶函数()()()0f x f x f x ?--=?的图象关于y 轴对称; (4)()()()0f x x R f x =∈?既是奇函数又是偶函数,但不唯一.

相关文档
最新文档