迪卡尔座标各种曲线方程式

迪卡尔座标各种曲线方程式
迪卡尔座标各种曲线方程式

1.碟形弹簧 圓柱坐标

方程:r

= 5 theta = t*3600

z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg

2.葉形线.

笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3))

此主题相关图片如下:2.jpg

3.螺旋线(Helical

curve)

圆柱坐标(cylindrical ) 方程: r=t

theta=10+t*(20*360) z=t*3

此主题相关图片如下:3.jpg

4.蝴蝶曲线 球坐标

方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

此主题相关图片如下:4.jpg

5.渐开线 采用笛卡尔坐标系 方程:r=1

ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0

此主题相关图片如下:5.jpg

6.螺旋线. 笛卡儿坐标

方程:x = 4 * cos (

t *(5*360))

y = 4 * sin ( t *(5*360)) z = 10*t

此主题相关图片如下:6.jpg

7.对数曲线

笛卡尔坐标系 方程:z=0 x = 10*t

y = log(10*t+0.0001) 此主题相关图片如下:7.jpg

8.球面螺旋线

采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20

此主题相关图片如下:8.jpg

9.双弧外摆线

卡迪尔坐标 方程: l=2.5 b=2.5

x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 此主题相关图片如下:9.jpg

10.星行线 卡迪尔坐标 方程:a=5

x=a*(cos(t*360))^3

y=a*(sin(t*360))^3

此主题相关图片如下:10.jpg

11.心脏线

圓柱坐标 方程:a=10 r=a*(1+cos(theta))

theta=t*360

此主题相关图片如下:

11.jpg

12.圆内螺旋线

采用柱座标系

方程:theta=t*360 r=10+10*sin(6*theta) z=2*sin(6*theta)

此主题相关图片如下:12.jpg

13.正弦曲线 笛卡尔坐标系 方程:x=50*t y=10*sin(t*360) z=0

此主题相关图片如下:13.jpg

14.太阳线(这本来是做

别的曲线的,结果做错了,就变成这样了) 此主题相关图片如下:14.jpg

15.费马曲线(有点像螺纹线)

数学方程:r*r =

a*a*theta

圓柱坐标

方程1: theta=360*t*5

a=4

r=a*sqrt(theta*180/pi)

方程2: theta=360*t*5

a=4

r=-a*sqrt(theta*180/pi)

由于Pro/e只能做连续的曲线,所以只能分两次做

此主题相关图片如下:15.jpg

16.Talbot 曲线

卡笛尔坐标

方程:

theta=t*360

a=1.1

b=0.666

c=sin(theta)

f=1

x = (a*a+f*f*c*c)*cos(theta)/a

y = (a*a-2*f+f*f*c*c)*sin(theta)/b

此主题相关图片如下:16.jpg

17.4叶线(一个方程做的,没有复制)

此主题相关图片如下:17.jpg

18.Rhodonea 曲线

采用笛卡尔坐标系

方程:theta=t*360*4

x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta)

y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta)

此主题相关图片如下:18.jpg

19. 抛物线

笛卡儿坐标

方程:x =(4

* t) y =(3 * t) + (5 * t ^2) z =0

此主题相关图片如下:

19.jpg

20.螺旋线 圓柱坐标 方程:r = 5 theta = t*1800 z =(cos(theta-90))+24*t

此主题相关图片如下:20.jpg

21.三叶线 圆柱坐标 方程:a=1 theta=t*380 b=sin(theta)

r=a*cos(theta)*(4*b*b-1) 此主题相关图片如下:21.jpg

22.外摆线

迪卡尔坐标

方程:theta=t*720*5 b=8 a=5

x=(a+b)*cos(theta)-b*cos((a/b+1)*theta) y=(a+b)*sin(theta)-b*sin((a/b+1)*theta) z=0

此主题相关图片如下:22.jpg

23.

Lissajous 曲线 theta=t*360

a=1 b=1 c=100 n=3

x=a*sin(n*theta+c) y=b*sin(theta)

此主题相关图片如下:23.jpg

24.长短幅圆内旋轮线

卡笛尔坐标

方程:a=5 b=7 c=2.2

theta=360*t*10

x=(a-b)*cos(theta)+c*cos((a/b-1)*theta) y=(a-b)*sin(theta)-c*sin((a/b-1)*theta) 此主题相关图片如下:24.jpg

25.长短幅圆外旋轮线 卡笛尔坐标

方程:theta=t*360*10 a=5 b=3 c=5

x=(a+b)*cos(theta)-c*cos((a/b+1)*theta) y=(a+b)*sin(theta)-c*sin((a/b+1)*theta)

此主题相关图片如下:25.jpg

26. 三尖瓣线 a=10

x = a*(2*cos(t*360)+cos(2*t*360)) y =

a*(2*sin(t*360)-sin(2*t*360)) 此主题相关图片如下:26.jpg

27.概率曲线! 方程: 笛卡儿坐标 x =

t*10-5 y = exp(0-x^2)

此主题相关图片如下:27.jpg

28.箕舌线 笛卡儿坐标系 a = 1

x

= -5 + t*10

y = 8*a^3/(x^2+4*a^2)

samohu

29.阿基米德螺线 柱坐标 a=100 theta = t*400 r = a*theta

此主题相关图片如下:29.jpg

30.对数螺线 柱坐标

theta = t*360*2.2 a = 0.005 r = exp(a*theta)

此主题相关图片如下:30.jpg

31.蔓叶线 笛卡儿坐标系

a=10 y=t*100-50

solve

x^3 = y^2*(2*a-x) for x

此主题相关图片如下:31.jpg

32.tan 曲线

笛卡儿坐标系 x

= t*8.5 -4.25 y = tan(x*20)

此主题相关图片如下:32.jpg

33.双曲余弦 x = 6*t-3

y = (exp(x)+exp(0-x))/2

此主题相关图片如下:33.jpg

34.双曲正弦 x = 6*t-3

y = (exp(x)-exp(0-x))/2

此主题相关图片如下:

34.jpg

35.

双曲正切 x = 6*t-3

y = (exp(x)-exp(0-x))/(exp(x)+exp(0-x))

此主题相关图片如下:35.jpg

36.一峰三驻点曲线 x = 3*t-1.5

y=(x^2-1)^3+1

此主题相关图片如下:

36.jpg

37.八字曲线

x = 2 * cos ( t *(2*180)) y = 2 * sin ( t *(5*360)) z = 0

此主题相关图片如下:37.jpg

38.螺旋曲线 r=t*(10*180)+1 theta=10+t*(20*180) z=t

此主题相关图片如下:38.jpg

39.圆

x = cos ( t *(5*180))

y = sin ( t *(5*180)) z = 0

此主题相关图片如下:39.jpg

40.封闭球形环绕曲线 rho=2 theta=360*t phi=t*360*10

此主题相关图片如下:40.jpg

41.柱坐标螺旋曲线

x = 100*t * cos ( t *(5*180)) y = 100*t * sin ( t *(5*180)) z = 0

此主题相关图片如下:41.jpg

42.蛇形曲线

x = 2 * cos ( (t+1) *(2*180)) y = 2 * sin ( t *(5*360)) z = t*(t+1)

此主题相关图片如下:

42.jpg

43.8字形曲线

柱坐标 theta = t*360 r=10+(8*sin(theta))^2

此主题相关图片如下:

43.jpg

44.椭圆曲线

笛卡尔坐标系 a = 10 b = 20 theta = t*360 x = a*cos(theta) y = b*sin(theta)

此主题相关图片如下:44.jpg

45.梅花曲线 柱坐标 theta = t*360

r=10+(3*sin(theta*2.5))^2

此主题相关图片如下:45.jpg

46.另一个花曲线 theta = t*360

r=10-(3*sin(theta*3))^2 z=4*sin(theta*3)^2

此主题相关图片如下:

46.jpg

47.改一下就成为空间感更强的花曲线了

;) theta = t*360

r=10-(3*sin(theta*3))^2 z=(r*sin(theta*3))^2

此主题相关图片如下:

47.gif

48.螺旋上升的椭圆线

a = 10

b = 20

theta = t*360*3 x = a*cos(theta) y = b*sin(theta) z=t*12

此主题相关图片如下:48.jpg

49.甚至这种螺旋花曲线

theta = t*360*4

r=10+(3*sin(theta*2.5))^2 z = t*16

此主题相关图片如下:49.jpg

50 鼓形线

笛卡尔方程

r=5+3.3*sin(t*180)+t theta=t*360*10 z=t*10

此主题相关图片如下:

50.jpg

51 长命锁曲线

笛卡尔方程: a=1*t*359.5 b=q2*t*360 c=q3*t*360 rr1=w1 rr2=w2 rr3=w3

x=rr1*cos(a)+rr2*cos(b)+rr3*cos(c) y=rr1*sin(a)+rr2*sin(b)+rr3*sin(c)

此主题相关图片如下:51.jpg

51 长命锁曲线

笛卡尔方程: a=1*t*359.5

b=q2*t*360

c=q3*t*360 rr1=w1 rr2=w2 rr3=w3

x=rr1*cos(a)+rr2*cos(b)+rr3*cos(c)

y=rr1*sin(a)+rr2*sin(b)+rr3*sin(c)

52 簪形线 球坐标 方程: rho=200*t theta=900*t phi=t*90*10

此主题相关图片如下:52.jpg

53.螺旋上升曲线 r=t^10

theta=t^3*360*6*3+t^3*360*3*3 z=t^3*(t+1)

54.蘑菇曲线

rho=t^3+t*(t+1)

theta=t*360

phi=t^2*360*20*20

此主题相关图片如下:

54.jpg

55. 8字曲线

a=1

b=1

x=3*b*cos(t*360)+a*cos(3*t*360)

Y=b*sin(t*360)+a*sin(3*t*360)

56.梅花曲线

theta=t*360

r=100+50*cos(5*theta)

z=2*cos(5*theta)

此主题相关图片如下:56.jpg

57.桃形曲线

rho=t^3+t*(t+1)

theta=t*360

phi=t^2*360*10*10

58.名稱

:碟形弹簧 建立環境:pro/e 圓柱坐 r = 5

theta

= t*3600

z

=(sin(3.5*theta-90))+24

此主题相关图片如下:58.jpg

59.环形二次曲线 笛卡儿方程:

x=50*cos(t*360) y=50*sin(t*360) z=10*cos(t*360*8)

60 蝶线

球坐标:

rho=4*sin(t*360)+6*cos(t*360^2) theta=t*360

phi=log(1+t*360)*t*360

此主题相关图片如下:60.jpg

61.正弦周弹簧 笛卡尔:

ang1=t*360

ang2=t*360*20 x=ang1*2*pi/360 y=sin(ang1)*5+cos(ang2) z=sin(ang2)

此主题相关图片如下:61.jpg

62.环形螺旋线

x=(50+10*sin(t*360*15))*cos(t*360) y=(50+10*sin(t*360*15))*sin(t*360) z=10*cos(t*360*5)

此主题相关图片如下:62.jpg

63.内接弹簧

x=2*cos(t*360*10)+cos(t*180*10) y=2*sin(t*360*10)+sin(t*180*10) z=t*6

此主题相关图片如下:63.jpg

64.多变内接式弹簧

x=3*cos(t*360*8)-1.5*cos(t*480*8) y=3*sin(t*360*8)-1.5*sin(t*480*8) z=t*8

此主题相关图片如下:64.jpg

65.柱面正弦波线 柱坐标:

方程 r=30

theta=t*360 z=5*sin(5*theta-90)

此主题相关图片如下:65.jpg

66. ufo (漩涡线)球坐标:

rho=t*20^2

theta=t*log(30)*60 phi=t*7200

此主题相关图片如下:66.jpg

67. 手把曲线 thta0=t*360 thta1=t*360*6 r0=400 r1=40

r=r0+r1*cos(thta1) x=r*cos(thta0) y=r1*sin(thta1) z=0

此主题相关图片如下:67.jpg

68.篮子 圆柱坐标 r=5+0.3*sin(t*180)+t theta=t*360*30

z=t*5

此主题相关图片如下:68.gif

69. 圆柱齿轮齿廓的渐开线方程: afa=60*t

x=10*cos(afa)+pi*10*afa/180*sin(afa) x=10*sin(afa)-pi*10*afa/180*cos(afa) z=0

注:afa 为压力角,取值范围是0到60,10为基圆半径。

此主题相关图片如下:69.jpg

70.对数螺旋曲线

柱坐标: r=sqrt(theta) theta=t*360*30 z=0

此主题相关图片如下:70.jpg

71. 罩形线 球坐标:

rho=4 theta=t*60 phi=t*360*10

此主题相关图片如下:71.jpg

72. 向日葵线

theta=t*360 r=30+10*sin(theta*30) z=0

此主题相关图片如下:72.jpg

73. 太阳线

r=1.5*cos(50*theta)+1

theta=t*360 z=0

此主题相关图片如下:73.jpg

74 塔形螺旋线

r=t*80+50 theta=t*360*10 z=t*80

75 花瓣线 球坐标: rho=t*20 theta=t*360*90 phi=t*360*10

此主题相关图片如下:75.jpg

76 双元宝线

r=sin(t*360*10)+30 theta=sin(t*360*15) z=sin(t*3)

此主题相关图片如下:76.jpg

77 阿基米德螺线的变形(自己想得) 不知前面有没有??:what

柱坐标下:

theta=360*2*(t-0.5) r=10*theta z=0

此主题相关图片如下:

77.jpg

78 改过来的渐开线方程 r=20 ang = t*360

x=r*cos(ang)+2*pi*r*t*sin(ang) y=r*sin(ang)-2*pi*r*t*cos(ang)

z=0

此主题相关图片如下:78.jpg

79 双鱼曲线 球坐标系

rho=30+10*sin(t*360*10)

theta=t*180*cos(t*360*10) phi=t*360*30

此主题相关图片如下:79.jpg

80 蝴蝶结曲线

x=200*t*sin(t*3600) y=250*t*cos(t*3600) z=300*t*sin(t*1800)

此主题相关图片如下:80.jpg

81 ”两相望“曲线 球坐标系

rho=30

theta=t*360*cos(t*360*20) phi=t*360*20

迪卡尔座标各种曲线方程式

1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 此主题相关图片如下:2.jpg 3.螺旋线(Helical curve) 圆柱坐标(cylindrical ) 方程: r=t theta=10+t*(20*360) z=t*3 此主题相关图片如下:3.jpg 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 此主题相关图片如下:4.jpg 5.渐开线 采用笛卡尔坐标系 方程:r=1

ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 此主题相关图片如下:5.jpg 6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 此主题相关图片如下:6.jpg 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 此主题相关图片如下:7.jpg 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 此主题相关图片如下:8.jpg 9.双弧外摆线 卡迪尔坐标 方程: l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 此主题相关图片如下:9.jpg

2020最新部编版版五年级数学上册:笛卡尔坐标系的由来 教学资料

笛卡尔坐标系的由来 关于笛卡尔创建坐标系的过程,有一个生动的小故事,据说有一天,笛卡尔生病卧床,病情很重,尽管如此,他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来,突然,他看见屋顶上的一只蜘蛛,拉着丝垂了下来,一会儿功夫,蜘蛛又顺着丝爬了上去,在上边左右拉丝,蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数组确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把叫出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上有顺序的三个数来表示。反过来,任意给一组三个有顺序的数也可以在空间中找出一点与之对应。同样道理,用一组数(x,y)可以表示平面上的一个点,平面上的一个点也可以用一个有顺序的数组(x,y)来表示。 那么,当笛卡尔创立解析几何时,使用的是哪种坐标系呢?当时,笛卡尔取定一条直线当基线(即现在所说的x轴),再取定一条与基线相交成定角方向的直线(即现在所说的y轴,但当时并没有明确出现y轴,100年后,一个瑞士人(克拉美)才正式引入y轴),他没有要求x轴与y轴互相垂直。所以当初笛卡尔使用的并不是现在我们所用的只限制在第一象限内。“横坐标”和“纵坐标”的名称笛卡尔也没有使用过,“纵坐标”是由莱布尼茨在1694年正式使用的,而“横坐标”到18世纪才由沃尔夫等人引入。至于“坐标”一词,也是莱布尼茨在1692年首次使用的。 可见当初笛卡尔的坐标系并不完善,经过后人不断地改善,才形成了今天的直角坐标系。然而,笛卡尔迈出的最初一步具有决定意义,所以人们仍把后来使用的直角坐标系称为直角坐标系。

笛卡尔与直角坐标系

课题:笛卡尔与直角坐标系 一、教学目标 (一)知识与技能 通过展示,系统本节知识,提高知识应用能力; 2.在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系; 3.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。 (二)过程与方法 1.通过图形在直角坐标系的变换, 感悟在直角坐标系中点坐标与图形位置的对应,发展学生的形象思维能力和数形结合意识; 2.通过课前收集与学生介绍,了解笛卡尔与直角坐标系的相关故事,了解数学发展史。 (三)情感态度和价值观 1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维; 2.通过有趣的图形的研究,激发学生对教学学习的好奇心与求知欲,使他们能积极参与数学学习活动。 二、教学重点和难点 1.重点:加深对平面直角坐标系有关知识的了解 2.难点:点坐标与图形位置的对应 三、课前准备 学生课前查找笛卡尔与直角坐标系的相关故事 四、教学过程 (一)创设情境,引出课题 1.欣赏激趣 出示在直角坐标系中动态的笛卡尔心形线让学生欣赏,在学生一片赞叹声中教师引出课题:笛卡尔与直角坐标系 (设计意图:动态的笛卡尔心形线是很美的,容易引发学生对笛卡尔与直角坐标系的兴趣) 2.介绍笛卡尔 由于学生课前做过这方面的功课,所以教师请学生代表上台来介绍笛卡尔及 与直角坐标系的故事。 3.导题:在前几节课中我们学习了平面直角坐标系的有关知识,我们知道点 的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。如果坐标中 的横坐标不变,纵坐标按一定的规律变化,或者横纵坐标都按一定的规律变化, 那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

简介笛卡尔坐标系

简介笛卡尔坐标系 (Cartesian coordinates)(法语:les coordonnées cartésiennes )就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。 推广放射坐标系和笛卡尔坐标系平面向空间的推广。相交于原点的三条不共面的数轴构成空间的放射坐标系。三条数轴上度量单位相等的放射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。笛卡尔坐标,它表示了点在空间中的位置,但却和直角坐标有区别,两种坐标可以相互转换。举个例子:某个点的笛卡尔坐标是493 ,454, 967,那它的X轴坐标就是4+9+3=16,Y轴坐标是4+5+4=13,Z轴坐标是9+6+7=22,因此这个点的直角坐标是(16, 13, 22),坐标值不可能为负数(因为三个自然数相加无法成为负数)。 笛卡尔和笛卡尔坐标系的产生据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表

笛卡尔坐标系、柱坐标系、球坐标系都有啥区别

笛卡尔坐标系、柱坐标系、球坐标系都有啥区别 什么是坐标系 坐标系,是理科常用辅助方法。为了说明质点的位置、运动的快慢、方向等,必须选取其坐标系。在参照系中,为确定空间一点的位置,按规定方法选取的有次序的一组数据,这就叫做“坐标”。在某一问题中规定坐标的方法,就是该问题所用的坐标系。 坐标系有几种形式 在数学中,坐标系的种类很多,常用的坐标系有以下几种,一是平面直角坐标系(笛卡尔坐标系),二则是平面极坐标系,三是柱坐标系,四是球坐标系坐标系的种类很多。物理学中常用的坐标系,为直角坐标系,或称为正交坐标系。 为什么会有这么多种坐标系,难度不能统一用1种 为什么我们需要多个坐标系统呢?任何一个坐标系统都是无限的,包括了空间中的所有点。所以,我们用任意一个坐标系统,然后规定它是“世界空间”,然后所有的点位置都可以用这个坐标系统来描述了。难道就不能更简单点了么? 实践证明的答案是不能。很多人发现在不同的场景下使用不同的坐标系统更方便。

使用多个坐标系统的原因是,在一个特定的场景上下文中,可以拥有一份确定的信息。也许整个世界上的所有点都可以在一个坐标系里表示,然而,对于一个确定的顶点a,我们可能不知道它在世界坐标中的位置,但是我们可能可以明确它在相对于某些坐标系统中的位置。 比如,有两个相邻的城市A,B。A城市聪明的居民们在代价公认的一个城市的中心建立了坐标原点,然后用罗盘所指的方向来作为坐标轴,而B城市的居民可能在他们的城市中一个任意的位置建立了坐标原点,然后然坐标轴的方向在一个任意的方向,两座城市的居民都觉得他们各自的坐标系统十分便利。然而,这时候有一名工程师被分配了一个任务,要求他在两个城市之间建立第一条公路,而且需要一个地图来清楚地看两个城市以及城市间的所有细节。因此引入了更为便利的第三坐标系,这个坐标系对于两座城市的居民没有任何影响。两座城市中各自的坐标点都需要从本地坐标转换成新的坐标系的坐标来绘制新地图。 几种坐标系有什么区别 笛卡尔坐标系: 平面直角坐标系

简单曲线的极坐标方程

极坐标方程 简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学: 基础知识梳理问题导引 1.极坐标系的概念(P9) 如图,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及正方向(通常取逆时针方向),这样就建立了一个极坐标系 设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.有序实数对叫做点M 的极坐标记为. 2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 , (2)直角坐标化为极坐标 , 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程的解; 以方程的解为坐标的点都在曲线C上. (1)极坐标系和以前所学的平面直角坐标系有什么区别和联系? (2)那些只是是我们应该掌握的? (3)极坐标系中如何用方程表示曲线? 【复习、预习自测】 1.极坐标化为直角坐标:________,________ 2. 直角坐标化为极坐标: ________,________ 二、合作探究 探究点一:圆的极坐标方程(P12-13)

如图,半径为a的圆的圆心坐标为C(a0)(a>0).你能用一个等式表示圆上任意一点的极坐标满 足的条件吗? 探究点1图拓展1图 小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程叫做曲线C的极 坐标方程: (1) (2) 拓展1(P13):已知圆O的半径为r,建立怎样的极坐标系,可以使圆的极坐标方程更简单?并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l经过极点,从极轴到直线l的角是,求直线l的极坐标方程. 探究点2图拓展2图拓展3图 拓展2(P14):求过点A(a0)(a>0)且垂直于极轴的直线l的极坐标方程. 拓展3(P14):设P点的极坐标为直线l过点P且与极轴所成的角为,求直线l的极坐标方程. 【课堂小结】 1.知识方面_____________________________________________________________________ 2.数学思想方面_________________________________________________________________ 探究点三:圆锥曲线的极坐标方程 已知椭圆C的焦距为2c,长轴长为2a,离心率为e(0

简单曲线的极坐标方程优秀教学设计

简单曲线的极坐标方程 内容和内容解析 本节课是普通高中新课程标准实验教科书《数学》(选修4-4)中第一讲《坐标系》第三节“简单曲线的极坐标方程”的第一课时。解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。牛顿在他的老师沃利斯的影响下,多次运用坐标系,按曲线的方程来描述曲线,而且提出了建立新的坐标系的创建。牛顿坐标系就是现在的极坐标系。极坐标系的创立为数学研究做出了巨大的贡献。简单曲线的极坐标方程这一节是本讲的重点内容,是选修4-4的重点,也是高考选考内容中的考察内容之一。极坐标方程在实际生活中有着较广的应用,同时也是学生锻炼提高数学能力的良好题材,它蕴含了许多重要的数学思想方法,如:数形结合思想、转化与化归思想等。因此,教学时应重视体现数学的思想方法及价值。 目标和目标解析 1.知识与技能目标: 理解曲线极坐标方程的概念;了解与曲线直角坐标方程的异同;掌握求曲线极坐标方程的步骤;能在极坐标系中给出简单图形(如过极点或圆心在极点的圆)的方程,通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。掌握圆的直角坐标方程和极坐标方程的互化,能根据圆的极坐标方程画出其对应的图形并进行有关计算 2.过程与方法目标: 通过对预习作业中问题的探究体会类比、从已知推测未知、从特殊到一般的数学思想方法;通过对简单曲线的极坐标方程的求解和其几何意义的探讨,培养观察、分析、比较和归纳的能力;通过不同坐标系的选择感受转化与化归的思想方法;通过极坐标方程与其几何图形的对应,体会数形结合的思想方法

3.情感、态度与价值观目标: 通过不同坐标系的选择与变换理解事物的多样性及其中必然的内在的联系性,可以多角度、多层次地分析问题.;通过练习体验小组探究合作学习,体会团结协作精神;通过阿基米德螺线,四叶玫瑰线,双曲螺线,心脏线,双纽线,星形线,三叶玫瑰线的绘制感受数学与生活的联系,欣赏和感受数学中的美,渗透数学文化,激发学习兴趣 教学重点:圆的极坐标方程的求法 教学问题诊断分析 高二学生,知识经验正逐步成熟,形成了适合自己的一套学习方法,有较强的演绎推理能力和数形结合的能力,具有较好自主探究的能力,能在教师的引导下独立、合作地解决一些问题,学生之前已经学习了极坐标系,现在基本会极坐标和直角坐标的互化,也会求曲线轨迹方程的步骤,具备了数形结合思想。在圆的极坐标方程推导中,要用到三角函数知识,关键是利用直角三角形边角关系建立起坐标变量间的关系,如何合理作图构造恰当的三角形是关键,因此在这部分内容的研究中,鼓励学生小组讨论, 尽多的给学生动手的机会,让学生在实践中体验作图的关键,另外,特殊点极坐标的选择和检验也是理解难点。本节课需要学生小组合作探究学习,因此之前的学习小组分配很关键,小组间的配合也有影响课堂进度,教师分组时引起注意。 教学难点:对不同位置的圆的极坐标方程的理解 教学支持条件分析 课堂上需要学生小组讨论,合作学习。配合班级管理把班上同学分成六个学习小组,围桌而坐,组建原则是:“组间同质、组内异质”, 根据学习能力、兴趣倾向、交往技能、守纪情况、性别比例及座位的安排等合理搭配 根据本节内容的特点,教学过程中可充分发挥信息技术的作用: 利用多媒体播放短片引起兴趣,利用动态作图优势为学生的数学探究与数学思维提供支持;利用实物投影仪,直接投影学生小组讨论的解题思路、解题过程,学生上台分析时也可直接投影自己的答题过程不用板书节约时间

笛卡尔坐标系

笛卡儿坐标系 (在这篇文章内,向量与标量分别用粗体与斜体显示。例如,位置向量通常用表示;而其大小则用来表示。) 在数学里,笛卡儿坐标系(Cartesian坐标系),也称直角坐标系,是一种正交坐标系。参阅图1 ,二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。 采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。例如,一个圆圈,半径是 2 ,圆心位于直角坐标系的原点。圆圈可以用公式表达为:。 图1 历史 笛卡尔坐标系是由法国数学家勒内·笛卡尔创建的。1637年,笛卡尔发表了巨作《方法论》。这本专门研究与讨论西方治学方法的书,提供了许多正确的见解与良好的建议,对于后来的西方学术发展,有很大的贡献。为了显示新方法的优点与果效,以及对他个人在科学研究方面的帮助,在《方法论》的附录中,他增添了另外一本书《几何》。有关笛卡儿坐标系的研究,就是出现于《几何》这本书内。笛卡儿在坐标系这方面的研究结合了代数与欧几里得几何,对于后来解析几何、微积分、与地图学的建树,具有关键的开导力。 二维坐标系统 参阅图 2 ,二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为x-轴和y-轴;两个坐标轴的相交点,称为原点,通常标记为O ,既有“零”的意思,又是英

语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡儿平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系;但如果把纸片翻转,其背面看到的坐标系则称为“左手系”。这和照镜子时左右对掉的性质有关。 图2 为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出离原点的负值整数距离。称x-轴刻画的数值为x-坐标,又称横坐标,称y-轴刻画的数值为y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直角坐标,标记为。 任何一个点P 在平面的位置,可以用直角坐标来独特表达。只要从点P画一条垂直于x-轴的直线。从这条直线与x-轴的相交点,可以找到点P的x-坐标。同样地,可以找到点P 的y-坐标。这样,我们可以得到点P 的直角坐标。例如,参阅图 3 ,点P 的直角坐标 是。 直角坐标系也可以推广至三维空间与高维空间 (higher dimension) 。 参阅图 3 ,直角坐标系的两个坐标轴将平面分成了四个部分,称为象限,分别用罗马数字编号为,,,。依照惯例,象限的两个坐标都是正值;象限的x-坐标是负值,y-坐标是正值;象限的两

常见曲线的极坐标方程3

常见曲线的极坐标方程(3) 学习目标: 1、进一步体会求简单曲线的极坐标方程的基本方法; 2、了解圆锥曲线的方程; 3、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面 图形时选择适当坐标系的意义。 活动过程: 活动一:知识回顾 1、若圆心的坐标为),(00θρM ,圆的半径为r ,则圆的极坐标方程为 ; 2、(1)当圆心位于)0,(r M 时,圆的极坐标方程是: ; (2)当圆心位于),(2π r M 时,圆的极坐标方程是: 。 3、圆锥曲线统一定义: 活动二:圆锥曲线的极坐标方程 探究:设定点F 到定直线l 的距离为p ,求到定点F 和定直线l 的距离之比为常数e 的点的 轨迹的极坐标方程。

活动三:圆锥曲线的极坐标方程的简单应用 例1:2003年10月15—17日,我国自主研制的神舟五号载人航天飞船成功发射并按预定方 案安全、准确的返回地球,它的运行轨道先是以地球中心为一个焦点的椭圆,椭圆的近地点(离地面最近的点)和远地点(离地面最远的点)距离地面分别为200km 和350km ,然后进入距地面约343km 的圆形轨道。若地球半径取6378km ,试写出神舟五号航天飞船运行的椭圆轨道的极坐标方程。 例2:求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数。 例3:已知抛物线的极坐标方程为θρcos 14-= ,求此抛物线的准线的极坐标方程。

活动四:课堂小结与自主检测 1、按些列条件写出椭圆的极坐标方程: (1)离心率为0.5,焦点到准线的距离为6; (2)长轴为10,短轴为8。 2、圆心在极轴上,半径为a 的圆经过极点,求此圆过极点的弦的三等分点的轨迹方程。 3、自极点O 作射线与直线4cos =θρ相交于点M ,在OM 上取一点P ,使得12=?OP OM ,求点P 的轨迹方程。

笛卡尔坐标系方程资料

1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 此主题相关图片如下:2.jpg 3.螺旋线(Helical curve) 圆柱坐标(cylindrical)

方程:r=t theta=10+t*(20*360) z=t*3 此主题相关图片如下:3.jpg 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

此主题相关图片如下:4.jpg 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 此主题相关图片如下:5.jpg

6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 此主题相关图片如下:6.jpg 7.对数曲线 笛卡尔坐标系

方程:z=0 x = 10*t y = log(10*t+0.0001) 此主题相关图片如下:7.jpg 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 此主题相关图片如下:8.jpg 9.双弧外摆线 卡迪尔坐标 方程:l=2.5

4常见曲线的极坐标方程

第4课时:常见曲线极坐标方程 教学目标 (1)了解曲线的极坐标方程的求法, (2)了解简单图形(过极点的直线、过极点的圆、圆心在极点的圆)的极坐标方程。 教学重难点:曲线的极坐标方程的求法 教学过程: 一、新课讲解 1、直线的极坐标方程 若直线l 经过点00(,)M ρθ,且极轴到此直线的角为α,则直线l 的极坐标方程为00sin()sin()ρθαρθα-=- 2、圆心是A (0ρ,0θ),半径r 的圆的极坐标方程为2220002cos()-0r ρρρθθρ--+= 二、例题选讲: 例1、按下列条件写出直线的极坐标方程: (1)经过极点,且倾斜角是π6的直线; (2)经过点 A(2, π4 ),且垂直于极轴的直线; (3)经过点 B(3, - π3),且平行于极轴的直线; (4)经过点C(4,0),且倾斜角是3π4 的直线. 例2、按下列条件写出圆的极坐标方程. (1)以(2,0)为圆心,2为半径的圆; (2)以(4,π2 )为圆心,4为半径的圆;

(3)以(5,π)为圆心,且过极点的圆; (4)以(2,π4 )为圆心,1为半径的圆。 例3、在圆心的极坐标为点A (4,0),半径为4的圆中,求过极点的O 的弦的中点的轨迹方 程。 例4. 已知曲线:C 3cos 2sin x y θθ =??=?,直线:l (cos 2sin )12ρθθ-=. ⑴.将直线l 的极坐标方程化为直角坐标方程; ⑵.设点P 在曲线C 上,求P 点到直线l 距离的最小值. 例5在极坐标系中,已知圆C 的圆心)6, 3(πC ,半径1=r ,Q 点在圆C 上运动. (1)求圆C 的极坐标方程; (2)若P 在直线OQ 上运动,且3:2:=QP OQ ,求动点P 的轨迹方程. 课堂反馈: 1.两圆θρcos 2=和θρsin 4=的圆心距是 . 2.极坐标方程cos()4π ρθ=-所表示的曲线是 . 3.极坐标方程分别是θρcos =和θρsin =的两个圆的圆心距是 . 4、 直线αθ=和直线1)sin(=-αθρ的位置关系是 . 三、课堂小结:

各种坐标系的定义

各种坐标系的定义 一:空间直角坐标系 空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点, Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。 空间直角坐标系可用如下图所示: 二:大地坐标系: 大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间的点沿着参考椭球的法线方向到参考椭球面的距离。 附:经度和纬度的详细概念,呵呵。 经度和纬度都是一种角度。经度是个面面角,是两个经线平面的夹角。因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。本初子午线平面是起点面,终点面是本地经线平面。某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西经度。由此可见,一地的经度是该地对于本初子午线的方向和角距离。本初子午线是0°经度,东经度的最大值为180°,西经度的最大值为180°,东、西经180°经线是同一根经线,因此不分东经或西经,而统称180°经线。 纬度是个线面角。起点面是赤道平面,线是本地的地面法线。所谓法线,即垂直于参考扁球体表面的线。某地的纬度就是该地的法线与赤道平面之间的夹角。纬度在本地经线上 三:平面坐标系(这里主要将gis中高斯-克吕格尔平面直角坐标系,不是数学里面的平面坐标系) 高斯-克吕格尔平面直角坐标系 Gauss-Krüger plane rectangular coordinates system

简单曲线的极坐标方程教案

简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学:

2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 θ ρcos = x,θ ρsin = y (2)直角坐标化为极坐标 2 2 2y x+ = ρ,)0 ( tan≠ =x x y θ 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程0 ) , (= y x f 的解; 以方程0 ) , (= y x f的解为坐标的点都在 曲线C上. (3)极坐标系中如何用方 程表示曲线 【复习、预习自测】 1.极坐标化为直角坐标:→ ) 4 ,3( π________,→ ) 3 2 ,2( π________ 2. 直角坐标化为极坐标:→ )3 ,3( ________,→ -) 3 5 ,0(________ 二、合作探究 探究点一:圆的极坐标方程(P12-13) 如图,半径为a的圆的圆心坐标为C(a,0)(a>0).你能用一个等式表示圆上任意一点的极坐标) , (θ ρ满足的条件吗 探究点1图拓展1图小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程

0),(=θρf 叫做曲线C 的极坐标方程: (1) (2) 拓展1(P13):已知圆O 的半径为r ,建立怎样的极坐标系,可以使圆的 极坐标方程更简单并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l 经过极点,从极轴到直线l 的角是4 π ,求直线l 的极坐标方 程. 探究点2图 拓展2图 拓展3图 拓展2(P14):求过点A(a,0)(a>0),且垂直于极轴的直线l 的极坐标方程. 拓展3(P14):设P 点的极坐标为),(11θρ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程. 【课堂小结】 1. 知 识 方 面 _____________________________________________________________________ 2. 数 学 思 想 方 面 _______________________________________________________________

笛卡尔和费马确定直角坐标系的思想方法

笛卡尔和费马确定直角坐标系的思想方法 1.费马的思想方法. (1)引进坐标,系统地研究曲线的方程.1629年费马写成《平面和立体轨迹引论》,在这篇文章中他把希腊数学中使用立体图而苦心研究发现的曲线的特征,通过引进坐标译成了代数语言,从而使各种不同的曲线有了代数方程一般的表示方法.费马还具体地研究了直线、圆和其它圆锥曲线的方程. (2)通过坐标的平移和旋转化简方程.费马注意到了坐标可以平移或旋转.他曾给出一些较复杂的二次方程,然后通过平移或旋转将它们化为简单的形式. (3)空间解析几何思想的萌芽.1643年,费马在一封信中,曾简短地描述了三维解析几何的思想. 2.笛卡尔的思想方法. 有这么一个故事:有一天,笛卡尔生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。 突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。 笛卡尔的中心思想是要建立起一种普遍的数,使算术、代数和几何统一起来.其思想方法主要表现在以下几方面:

笛卡尔曲线方程和图

圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 3.螺旋线(Helical curve) 圆柱坐标(cylindrical) 方程:r=t theta=10+t*(20*360) z=t*3

球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0

笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20

卡迪尔坐标 方程:l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 10.星行线 卡迪尔坐标 方程:a=5 x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 11.心脏线 圓柱坐标 方程:a=10 r=a*(1+cos(theta)) theta=t*360

极坐标的几种常见题型p

极坐标的几种常见题型 一、极坐标方程与直角坐标方程的互化 互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同. 互化公式:???==θρθρsin cos y x 或 ? ? ? ??≠=+=)0(tan 2 22x x y y x θρ θ的象限由点(x,y)所在的象限确定. 例1(2007海南宁夏)⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=. (I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程. 解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位. (I)θρcos =x ,θρsin =y ,由θρcos 4=得θρρcos 42=.所以x y x 42 2=+. 即042 2 =-+x y x 为⊙O 1的直角坐标方程. 同理042 2 =++y y x 为⊙O 2的直角坐标方程. (II)解法一:由? ??=++=-+04042 222y y x x y x 解得???==0011y x ,???-==22 22y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x . 解法二: 由???=++=-+0 40 42 222y y x x y x ,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x . 评述:本题主要考查曲线的极坐标方程化为直角坐标方程的方法及两圆公共弦所在直线方程的求法. 例2(2003全国)圆锥曲线θ θ ρ2cos sin 8= 的准线方程是 (A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ 解: 由θ θρ2 cos sin 8= 去分母后两边同时乘以ρ得:θρθρsin 8cos 22=,所以x 2 =8y ,其准线方程为y=2-,在极坐标系中方程为2sin -=θρ,故选C. 例3(1998年上海)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若椭圆两焦点的极坐标分别是(1, 2 π),(1,23π),长轴长是4,则此椭圆的直角坐标方程是_______________. 解:由已知条件知椭圆两焦点的直角坐标为(0,1),(0,-1).c=1,a=2,b 2=a 2-c 2=3, 故所求椭圆的直角坐标方程为4 32 2y x +=1 类题:1(1995年上海)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1 cos 4122 -= θρ,则它的直角坐标方程是___________. (答案:3x 2-y 2=1) 2(1998年全国)曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 (A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4

简单曲线的极坐标方程

第 周 第 课时教案 时间: 教学主题 简单曲线的极坐标方程 一、教学目标 1、掌握极坐标方程的意义,掌握直线的极坐标方程 2、能在极坐标中给出简单图形的极坐标方程,会求直线的极坐标方程及与直角坐标之间的互化 3、过观察、探索、发现的创造性过程,培养创新意识。 二、教学重点、极坐标方程的意义,理解直线的极坐标方程,直角坐标方程与极坐标方程 的互化 教学难点:极坐标方程的意义 ,直线的极坐标方程的掌握 三、教学方法 讲练结合 四、教学工具 无 五、教学流程设计 教学 环节 教师活动 学生活动 圆的极坐标方程 一、复习引入: 问题情境 1、直角坐标系建立可以描述点的位置极坐标也有同样作用? 2、直角坐标系的建立可以求曲线的方程 极坐标系的建立是否可以求曲线方程? 学生回顾 1、直角坐标系和极坐标系中怎样描述点的位置? 2、曲线的方程和方程的曲线(直角坐标系中)定义 3、求曲线方程的步骤 4、极坐标与直角坐标的互化关系式: 二、讲解新课: 1、引例.如图,在极坐标系下半径为a 的圆的圆心坐标为 (a ,0)(a >0),你能用一个等式表示圆上任意一点, 的极坐标(ρ,θ)满足的条件? 解:设M (ρ,θ)是圆上O 、A 以外的任意一点,连接AM , 则有:OM=OAcos θ,即:ρ=2acos θ ①, 2、提问:曲线上的点的坐标都满足这个方程吗? 可以验证点O(0,π/2)、A(2a ,0)满足①式. 等式①就是圆上任意一点的极坐标满足的条件. 反之,适合等式①的点都在这个圆上. 3、定义:一般地,如果一条曲线上任意一点都有一个极坐 标适合方程0),(=θρf 的点在曲线上,那么这个

人教版数学高二人教A选修4-4数学 1.3极坐标系-简单曲线的极坐标方程教案

三、简单曲线的极坐标方程 【基础知识导学】 1、极坐标方程的定义:在极坐标系中,如果平面曲线C 上任一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程 0),(=θρf 叫做曲线C 的极坐标方程。 1. 直线与圆的极坐标方程 ① 过极点,与极轴成α角的直线 极坐标议程为 αθραθtan tan )(=∈=或R ②以极点为圆心半径等于r 的圆的 极坐标方程为 r =ρ 【知识迷航指南】 例1求(1)过点)4 ,2(π A 平行于极轴的直线。 (2)过点)3 , 3(πA 且和极轴成 4 3π 角的直线。 解(1)如图,在直线l 上任取一点),(θρM ,因为)4 ,2(π A ,所以|MH|=224 sin =?π 在直角三角形MOH 中|MH|=|OM|sin θ即2sin =θρ,所以过点)4 ,2(π A 平行于极轴的直线 为2sin = θρ。 (2)如图 ,设M ),(θρ为直线l 上一点。 )3 , 3(π A , OA =3,3 π= ∠AOB x

由已知4 3π=∠MBx ,所以125343π ππ=-=∠OAB ,所以127125πππ= -=∠OAM 又θπ θ-= -∠=∠4 3MBx OMA 在?MOA 中,根据正弦定理得 12 7sin )43sin(3πρ θπ= - 又426)34sin(127sin +=+=πππ 将)4 3sin(θπ -展开化简可得23233)cos (sin += +θθρ 所以过)3 ,3(π A 且和极轴成 4 3π 角的直线为:23233)cos (sin +=+θθρ 〔点评〕求曲线方程,关键是找出曲线上点满足的几何条件。将它用坐标表示。再通过代数变换进行化简。 例2(1)求以C(4,0)为圆心,半径等于4的圆的极坐标方程。(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程。 解:(1)设),(θρp 为圆C 上任意一点。圆C 交极轴于另一点A 。由已知 OA =8 在直角?AOD 中θcos OA OD =,即 θρcos 8=, 这就是圆C 的方程。 (2)由4==OC r 。连接CM 。因为M 为弦ON 的中点。所以ON CM ⊥,故M 在以OC 为直径的圆上。所以,动点M 的轨迹方程是:θρcos 4=。 〔点评〕 在直角坐标系中,求曲线的轨迹方程的方法有直译法,定义法,动点转移法。在极坐标中。求曲线的极坐标方程这几种方法仍然是适用的。例2中(1)为直译法,(2)为定义法。此外(2)还可以用动点转移法。请同学们尝试用转移法重解之。 例3 将下列各题进行直角坐标方程与极坐标方程的互化。 (1)x y 42= (2)3 π θ= (3)12 cos 2 =θ ρ (4)42cos 2=θρ 解:(1)将θρθρsin ,cos ==y x 代入x y 42=得θρθρcos 4)sin (2=化简得 θθρsin 4sin 2= (2)∵x y = θtan ∴ 33tan ==x y π 化简得:)0(3≥=x x y (3)∵12cos 2=θρ ∴ 12 cos 1=+θ ρ。即2cos =+θρρ 所以 222=++x y x 。 化简得 )1(42--=x y 。 (4)由42cos 2=θρ 即4)sin (cos 222=-θθρ 所以 422=-y x 〔点评〕 (1)注意直角坐标方程与极坐标方程互化的前提。 (2)由直角坐标求极坐标时,理论上不是唯一的,但这里约定πθρ20,0<≤>

常见曲线的极坐标方程1

常见曲线的极坐标方程(1) 学习目标: 1、能在极坐标系中给出简单图形(过极点的直线)的方程; 2、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形 时选择适当坐标系的意义; 3、理解极坐标系中直线的方程。 活动过程: 活动一:知识回顾 1、曲线的极坐标方程的意义。 2、(1)直线x y 1的极坐标方程是__________________________________ ; (2)曲线COS 1的直角坐标方程是____________________________ 。 活动二:直线的极坐标方程 探究:若直线l经过M (0,0),且直线I的倾斜角为,求直线I的极坐标方程。 (这里,直线I的倾斜角是指极轴与直线I向上的方向所成的角。) 小结:一些特殊位置的直线的极坐标方程: (1)当直线I过极点时,直线I的极坐标方程是:______________________________ ; (2) 当直线I过点M(a,0)且垂直于极轴时,直线I的极坐标方程是: _________________ (3)当直线I过点M(b,7)且平行于极轴时,直线I的极坐标方程是: _______________

活动三:直线的极坐标方程的求解 例1按下列条件写出直线的极坐标方程: (1)经过极点和点A(6,g)的直线;(2)经过点B(5,),且垂直于极轴的直线; (3)经过点C(8,6),且平行于极轴的直线; (4)经过点D(2.. 3,0),且倾斜角为务的直线。 例2:分析极坐标方程cos 6,sin 6的特点,说明他们分别表示什么曲线? 例3:求曲线cos 1 0关于直线7对称的曲线方程。

相关文档
最新文档