质检测试方法差异导致护舒宝渗入量低于国标

质检测试方法差异导致护舒宝渗入量低于国标
质检测试方法差异导致护舒宝渗入量低于国标

护舒宝“渗入量”不达标?实为质检检测方法有异

2014年2月24日据媒体报道,北京市消费者协会公布了卫生巾比较试验结果,朵朵棉柔量多日用/夜用280mm、护舒宝棉柔丝薄日用240mm两种样品渗入量低于推荐性国家标准。对此宝洁公司非常重视,由此带来的困扰,深表关切,借此机会予以澄清。

朵朵棉柔量多日用/夜用280mm、护舒宝棉柔丝薄日用240mm 符合中国有关法律法规对产品质量的要求,是合格、合法的产品。国家权威检验机构采用合法适用的执行标准(企标Q/GZBJ 35)测试证明,该两款产品完全符合产品标准对质量和性能的要求(附件:产品质量检测报告)。

同时,其运用创新棉柔表层和高分子吸收材料,在实际使用(而不是实验室检测)中加速吸收渗透、并有效减少反渗,从而为消费者提供洁净干爽的体验。研发过程中,为此进行过大量、反复的消费者实际使用测试。上市之后,消费者对产品的忠诚度不断上升。这都充分证明了消费者对其性能和质量的接受与认可。

对于这项新技术,不适用于现有国标中的检测方法衡量其渗入量,宝洁公司在企标中采用了新的测试方法,产品的渗入性能与国标的渗入量要求相当(≥1.8g)。使用企标检测该两款产品,渗入量均大于1.8g(参见附件:产品质量检测报告)。

目前的国家标准是2008年制定的推荐性标准,根据国家标准管理的相关规定,企业可以根据自己产品的技术特点,制定相应的企业标准以适应产品创新的需要。

该两款卫生巾产品已在上市之时,按照国家相关规定在企业所在地的质量技术监督局备案,并在包装上明示执行的企业标准号作为产品生产和质量检验的依据。

秉承“亲近生活,美化生活”的宗旨,宝洁公司始终坚持向消费者提供优质的产品和服务。我们对“朵朵”“护舒宝”卫生巾充满信心,并会继续加强对其的研发与创新。感谢并欢迎相关部门、媒体以及消费者对我们的监督。

相关小知识:

(1)卫生巾到底是什么做的?

卫生巾是由纤维(吸收速率及能力快)、聚脂纤维及尼龙(保持表面干爽)组成。因为是由多孔式及低密度的聚乙烯组成,能使经血迅速渗入内层,同时保持触面干爽。而且质地柔软,吸收

力良好。可吸收本身重量数十至百多倍的水分,吸收后经血藏于巾身内部。

(2)什么样的卫生巾好?

A、棉质面层最理想棉质透气度高,不易引起过敏。

B、吸收能力强能带引经血流入巾内,储存血的能力高,减低因来不及吸收而导致向两边渗漏的机会。

C、防渗漏能力高:当胯下两边受压,将卫生巾向中间压缩成原来的一半时,卫生巾两边仍然没有侧漏;凡有凹形防折压线的,都可防止卫生巾折皱,减低侧漏的机会。

D、粘贴效能强:借着底部的粘贴作用,把位置固定于内裤上,防止移位,有护翼的卫生巾不易移位。

(3)卫生巾的选购和使用:

经期中的女性,敏感部位的皮肤最易受损伤。调查表明,73%的女性会在经期感到局部皮肤瘙痒、灼痛。这多是由于使用不透气的卫生巾造成的,因此,要想让特殊的日子舒服些,选择合适的卫生巾至关重要。

溶液固含量测试方法

溶液固含量测试方法 本测试方法适用于液体树脂溶液固含量测定,即液体树脂溶液在一定温度下减压干燥后剩余物重量与试样重量的比值,以百分数表示。 一.仪器设备 铝/锡箔纸盒,真空烘箱(干冰和乙醇,冷肼),真空泵(油泵) 分析天平(精确度0.0001g),玻璃干燥器(内放变色硅胶或无水氯化钙), 氮气钢瓶,镊子,温度计(量程为0~200℃),一次性取样吸管 二.测定方法 先将一块干燥洁净铝箔纸(可做成圆槽状)放入140℃烘箱中干燥20分钟。取出放入干燥器中冷却至室温。称量铝盒重,再称量1.5g左右树脂于铝盒中(树脂液体均匀铺在铝盒底部),最后放入140℃烘箱中,-0.1MPa条件下干燥1h。一小时后关闭烘箱和真空泵,通入氮气(条件有限,通入空气亦可),烘箱正压后迅速取出铝盒并放入干燥器中,冷却至室温后称量总重。计算数据得到固含,再以三组固含的平均值为最终固含。 三.测定方法详解 1准备烘箱: 开启烘箱,设定烘箱温度SV:140℃。加热一段时间后当烘箱显示温度到达设定温度时,打开烘箱,快速查看温度计读数。当温度计读数与设定温度不一致时,调整烘箱设定直至实际温度为所需温度。 2准备真空泵: 检查真空泵的状态,看是否需要换泵油(运行时冒黑烟,噪声大即需要换),连接烘箱抽真空,能否将烘箱气压抽到-0.1Mpa。如不能,换真空泵。建议半个月换一次泵油。

倒掉冷凝管中的残存溶剂,向保温桶(乙醇量少时补加乙醇)中缓慢的加入干冰,防止乙醇喷出,最后盖上棉花保温。真空泵插上电源,连接冷肼和烘箱,待用。 4准备铝箔纸盒: 将一块干燥洁净铝箔纸做成圆槽状铝盒,做三个铝盒并在底部标上编号。将铝盒放到140℃真空烘箱中,干燥20min后取出,放入干燥器中冷却15min。铝盒全程用镊子夹取,尽量不要用手触碰。

电导分析2.

电导分析法(2) 课题导入: 前面学过了电导分析法的基本原理,以及电导和浓度的关系。下面我们继续学习怎样利用电导进行浓度的测量。 三、溶液电导的测量 电导是电阻的倒数,因此测量电导实际上就是测量它的电阻。 电导的测量装置包括电导池和电导仪。 1.电导池 电导池是有两个电导电极构成。电导电极一般由两片平行的铂制成的。 测量电导的铂黑电极,表面积大,电流密度小,极化作用也就小,用于测量电导率高的溶液。在测量低电导率的溶液时,铂黑对电解质有强烈的吸附作用而出现不稳定现象,这时不宜用光亮铂电极。 2.溶液电导的测量方法 电阻分压法,平衡电桥法,不平衡电桥法。平衡电桥法的原理如下:

四、影响溶液电导测量的因素 1.电极极化的影响 所谓极化是指电导池中发生的电解现象。因为溶液电解后,使阳极的电位值增加,阴极的电位值减小,即两极分化,极化由此得名。影响电导测量的极化有浓差极化和化学极化。 若电导池上加一直流电压,电导池中即发生电解作用,电极反应速率要比离子迁移速率快得多,瞬时后,阳极或阴极的表面附近溶液中离子供不应求,导致电极周围的离子浓度比电导池中溶液的离子浓度低得多,形成浓差极化。电流密度越大,浓差极化越严重。浓差极化的存在使电极与溶液的接触面之间没有平衡状态存在,造成误差。 化学极化是由于电解物在电极与溶液之间形成电阻。例如,测量NaCl溶液的电导时,带负电荷的C1移向正极后失去电子变成C12,Cl2附着在电极表面形成一层气泡,使电极与溶液隔绝,相当于电阻增加。 消除浓差极化和化学极化的主要措施是用交流电源供电。因交流电源不断改变外加电压的方向,使每次电流流动所引起的极化,被下次电流流动反方向抵消,所以发生的浓差极化也相应抵消。 此外,也可用加大电极表面积的办法,即在电极表面镀上一层粉末状的铂黑以加大电极表面积,减小电流密度。但测量低电导时,铂黑会吸附大量溶液,使电导不稳定,影响结果的准确性。

常见的塑料检测标准和方法

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

固含量和NCO测定方法

1.0 原理: 测定胶粘剂的不挥发物含量,使试样在一定温度下加热一定时间后,以加热后试样质量与加热前试样质量的百分比值表示。 2.0 仪器: 2.1 鼓风恒温烘箱:温度波动不大于±2℃。 2.2 称量容器:直径为40mm,边高25mm的称量瓶。 2.3 分析天平:精度为0.1mg。 2.4 干燥器:装有变色硅胶的干燥器。 3.0 试验温度试验时间和取样量: 试验温度150 ±2℃,试验时间120min,取样量1.5g。 4.0 步骤: 按要求称取胶粘剂试样,精确到0.001g,置于在试验温度及恒重并称量过的称量瓶中,放入已按试验温度调好的数量显鼓风烘箱内加热,加热120min。取出试样,放入干燥箱中冷却至室温,称其质量。取3个样最后测其平均值,平均值为最终结果。 5.0 结果表示: 不挥发物含量按下式计算: 1/100% X M M =? X——不挥发物含量; 1 M——加热后试样的质量g; M——加热前试样的质量g。 试验结果取两位平行试验的平均值,试验结果保留到小数点三位数。 6.0 本方法依据GB/T2793-1995。

5.4 异氰酸根含量的测定 5.4.1 仪器与设备 a)分析天平(万分之一); b)实验室用一般仪器。 5.4.2 试剂和溶液 a)六氰吡啶; b)无水氯苯:用氯苯加无水氯化钙脱水; c)六氰吡啶氯苯溶液;称取2.5g 六氢吡啶,加入无水氯苯100ml ,摇匀后备用; d)盐酸标准溶液:()H C L C :0.1/m ol L ; e)无水乙醇; f)溴甲酚绿指示剂:10/g L 乙醇溶液。 5.4.3 测定步骤 称取样品0.5g (精确至0.0002g ),置于250ml 碘量瓶中,加10.0ml 六氢吡啶氯苯溶液,摇匀,放置20min ,然后加入100ml 无水乙醇,4滴溴甲酚绿指示剂,用盐酸标准溶液滴定至溶液由绿色变成黄色,15s 不褪色即为终点。同时做空白试验。 5.4.4 结果的表示和计算 异氰酸根的含量以质量分数W 计,数值以%表示:按式(1)计算: 01()/1000100V V C M W m -??=? (1) 式中: 1V ——样品滴定消耗盐酸标准滴定溶液的体积数值,单位为毫升(ml ); 0V ——空白滴定消耗盐酸标准滴定溶液的体积数值,单位为毫升(ml ); C ——盐酸标准滴定溶液浓度的准确数值,单位为摩尔每升(/m ol L ); m ——样品的质量数值,单位为克(g ); M ——异氰酸根的摩尔质量数值,单位为克每摩尔(/g m ol )(M=42.00)。

塑料测试方法国家标准

塑料测试方法国家标准 1.GB1033-70 塑料比重试验方法 2.GB1034-70 塑料吸水性试验方法 3.GB1035-70 塑料耐热性(马丁)试验方法 4.GB1036-70 塑料线膨胀系数试验方法 5.GB1037-70 塑料透湿性试验方法 6.GB1038-70 塑料薄膜透气性试验方法 7.GB1408-78 固体电工绝缘材料工频击穿电压、击穿强度和耐电压试验方法 8.GB1409-78 固体电工绝缘材料在工频、音频、高频下相对介电系数和介质损耗角正切试验方法 9.GB1410-78 固体电工绝缘材料绝缘电阻、体积电阻系统和表面电阻系数试验方法10.GB1411-78 固体电工绝缘材料高压小电流间歇耐电弧试验方法 11.GB1039-79 塑料力学性能试验方法总则 12.GB1040-79 塑料拉伸试验方法 13.GB1041-79 塑料压缩试验方法 14.GB1042-79 塑料弯曲试验方法 15.GB1043-79 塑料简支梁冲击试验方法 16.GB1633-79 热塑性塑料软化点(维卡)试验方法 17.GB1634-79 塑料弯曲负载热变形温度(简称热变形温度)试验方法 18.GB1635-79 塑料树脂灰分测定方法 19.GB1636-79 模塑料表观密度试验方法 20.GB1841-80聚烯烃树脂稀溶液粘度试验方法 21.GB 1842-80 聚乙烯环境应力开裂试验方法 22.GB1843-80 塑料悬臂梁冲击试验方法 23.GB1846-80 聚氯醚树脂稀溶液粘度试验方法 24.GB1847-80 聚甲醛树脂稀溶液粘试验方法 25.GB2406-80 塑料燃烧性能试验方法氧指数法 26.GB2407-80 塑料燃烧性能试验方法炽热棒法 27.GB2408-80 塑料燃烧性能试验方法水平燃烧法 28.GB2409-80 塑料黄色指数试验方法 29.GB2410-80 透明塑料透光率和雾度试验方法 30.GB2411-80 塑料邵氏硬度试验方法 31.GB2412-80 聚丙烯等规指数测试方法 32.GB1657-81 增塑剂折光率的测定 33.GB1662-81 增塑剂结晶点的测定 34.GB1664-81 增塑剂外观色泽的测定(铂-钴比色法) 35.GB1665-81 增塑剂皂化值及酯含量的测定 36.GB1666-81 增塑剂比重的测定(韦氏天平法) 37.GB1667-81 增塑剂比重的测定(比重瓶法) 38.GB1668-81 增塑剂酸值的测定(一) 39.GB1669-81 增塑剂加热减量的测定 40.GB1670-81 增塑剂热稳定性试验 41.GB1671-81 增塑剂闪点的测定(开口杯法) 42.GB1672-81 增塑剂体积电阻系数的测定

产品标准及试验方法

CPE质量检验 目录 一、原料检验 1. 生产工艺对原料质量要求 2. 原料采购标准 3 .原料标准和试验方法 4. 原料分析所需要仪器和试剂材料 5. 原料的分析 6. 原料的采样 7. 原料标准与青岛海晶分析项目对照 二、中间控制检验 1. CPE中间控制分析检验一览表 2. CPE中间控制分析所需要仪器和试剂材料 3. 液氯中间控制分析检验一览表 4. 中间控制项目的分析 三、产品检验 1. 产品标准和试验方法 2 .产品分析所需要仪器和试剂材料 3. 氯化聚乙烯的分析 4. 产品结果的判定 5. 产品标准与青岛海晶分析项目对照 6. CPE采样 7. CPE用包装袋采购及检验规定 四、分析专用仪器信息、使用操作法及安全注意事项 1. 分析专用仪器 2. 使用操作法及安全注意事项 3. 与分析专用仪器安装相关的公用工程 4. 分析专用仪器目前使用状况

六、需要青岛海晶提供的资料 1. 原料标准及试验方法 2. 产品标准及试验方法 3. 分析专用仪器档案资料(仪器说明书,采购资料,使用状况等) 4. 分析试剂和玻璃仪器采购厂家信息 CPE质量检验 一、原料检验 (一) 生产工艺对原料质量要求 1. 高密度聚乙烯(HDPE) LG公司HDPE 熔融指数MI5(CE6040)=0.45±0.05g/10min 190℃ MI5(CE2030)=1.5~2.0 g/10min 190℃ MI5(CE2080)=1.4±0.2 g/10min 190℃ 颗粒分布≥500μm ≤2% ≤63μm <5%(CE6040)<15%(CE2030) 125—315μm >60%(CE6040)>50%(CE2030/CE2080) 125—250μm >55%(CE6040)>45%(CE2030/CE2080)熔点(DSC)法133℃—139℃(CE6040) 131℃—137℃(CE2030 GE2080) 辽阳石油化纤公司化工三厂HDPE 熔融指数MI5(L0555P)=0.50±0.10g/10min 190℃ MI5(L2053P)=1.6—2.4 g/10min 190℃ 颗粒分布≥500μm <5% 过筛 <125μm ≤5% 熔点(DSC)法136℃—139℃(L0555P ) 131℃—136℃((L2053P) 三星TOTAL株式会社 N220P)=0.60±0.10g/10min 190℃ 熔融指数MI5( ( MI5((N230P)=2.0±0.20 g/10min 190℃

固含量快速测定仪技术参数与检测方法

固含量快速测定仪技术参数与检测方法 固含量是乳液或涂料在规定条件下烘干后剩余部分占总量的质量百分数,固含量 水分检测仪可以在短时间内检测样品这一数据,通过烘干加热法计算出这一结果。 固含量的测定又叫不挥发物含量的测定,是其在规定条件下烘干后剩余部分占总 量的质量百分比。 固含量样品多种多样,有些测试之后对于器皿用清水清洗即可,有些是清洗不掉 的(对于用铝箔片)测试的试验,因此用于这类样品的测试企业要投入不定量的资金 用在设备消耗上,这也是多数试验人员的苦恼。 目前常用的干燥法比较繁琐,市场上部分测试固含量的设备在样品盘的使用上都 采用一次性的,企业多数很难承受。 固形物测量仪,实在传统检测的基础上改变了样品对于测试设备的层次,试验过 程中特别是对于粘性较大的样品,不需要采用一次性的样品盘,直接利用冠亚公司标 配的即可,测试完成后直接清洗,对于腐蚀性的样品也无需更换测试方法及测试设备。既省去了试验繁杂流程,又为企业节省消耗品投入,提高了经济效益。固含量测定仪 固含量快速测定仪介绍 固含量快速测定仪是集混合加热、自动称重、自动校准、温度设定及微调温度补 偿等众多优点测试功能为一体的固含量测定仪,WI-01固含量快速检测仪产品无需设定测试模式、测试时间,实验中更无需担忧称重系统因时漂、温漂因素而造成重复性差 的结果。客户可根据所测样品状态不同而自动调整测试空间,终点采用自动判定模式

锁定最终水分值,可选择与计算机或者打印机相链接,红色数码管显示功能,让数据更加清晰明了,避免因光线不足造成视觉模糊不清的状态。同时可以连接计算机实时展现分析曲线,也可以连接标准的微型打印机即时打印出测试结果! 固含量快速测定仪应用范围 固含量测定仪可以广泛应用于一切需要测试固含量的行业中如:胶水、白乳胶、污泥、油墨、浆料、涂料、颜料等。。 固含量快速测定仪特点 1、测试速度快,一般样品3分钟左右 2、没有任何易耗品 3、测试后,直接清洗样品盘即可 4、可以连接计算机 5、操作简单、方便 6、精准度高,易维护 固含量快速测定仪技术参数 1、称重范围:0-60g CMC吉制00000018号★★可制定最大范围 2、水分测定范围:0.01-100% ★★JQR称重系统传感器 3、样品质量:0.5-60g 4、加热温度范围:起始-180℃★★加热方式:可变混合式加热★★微调自动补偿温度最高15℃ 5、水分含量可读性:0.01% 6、显示参数:7种★★红色数码管独立显示模式 7、双重通讯接口:RS 232(打印机) RS 232(计算机) 8、外型尺寸:380×205×325(mm) 9、电源:220V±10% 10、频率:50Hz±1Hz

土壤电导率测定方法(精)

土壤电导率测定方法 土壤电导率是测定土壤水溶性盐的指标, 而土壤水溶性盐是土壤的一个重要属性, 是判定土壤中盐类离子是否限制作物生长的因素。上壤中水溶性盐的分析, 对了解盐分动态, 对作物生长的影响以及拟订改良措施具有十分重要的意义。土壤水溶性盐的分析一般包括全盐量测定, 阴离子 (Cl - 、 SO 2- 3 、 CO 2- 3 、 HCO - 3 、 NO - 3 和阳离子 (Na + 、 K + 、 Ca 2+ 、 Mg 2+ 的测定, 并常以离子组成作为盐碱土分类和利用改良的依据。下面把测定方法告诉你, 你应该更能理解土壤电导率与土壤性质的关系了。 测定方法为: 1 实验方法、原理 土壤水溶性盐的测定分水溶性盐的提取和浸出液盐分的测定两部分。在进行土壤水溶性盐提取时应特别注意水土比例、振荡时间和提取方式, 它们对盐分溶出量都有一定影响。目前在我国采用 5 :1 浸提法较为普遍。盐分的测定主要采用电导法和烘干法,其中以电导法较简便,快速,烘干法较准确,但操作繁琐费时。本实验采用水土比 5 :1 浸提,电导法测定水溶性盐总量。电导法测定原理是土壤水溶性盐是强电解质, 其水溶液具有导电作用, 在一定浓度范围内, 溶液的含盐量与电导率呈正相关, 因此通过测定待测液电导率的高低即可测出土壤水溶性盐含量。 2 仪器试剂 250ml 三角瓶,漏斗、电导仪、电导电极。 0.01M KCl , 0.02M KCL 标准溶液。 3 操作步骤 土壤水溶性盐的提取, 称取过 1mm 筛风干土 20.00g , 置于 250ml 干燥三角瓶中,加入蒸馏水 100m1( 水土比 5 :1 ,振荡 5 分钟,过滤于干燥三角瓶中,需得到清壳滤

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

塑料材料测试国标大全

序号业务内容测验类型依据标准试验设备与仪器GB GB1033-86ASTM ASTM D7921 塑料比重试验 ISO ISO 1133电子比重计 GB GB1034-70ASTM D 5702塑料吸水性试验ISO ISO 62红外线水分计 GB GB3682-83ASTM ASTM D-12383 塑料熔体流动速率(MFR ,MVR)试验ISO ISO 1133熔体流动速率仪 GB GB2411-80ASTM ASTM D-22404 橡胶邵氏硬度试验 ISO 邵氏硬度计 GB GB/T 1039GB1040.4GB1040.2ASTM ASTM D3685 塑料拉伸强度试验塑料断裂伸长率试验 ISO ISO 1271ISO3268ISO6239GB GB1042-79ASTM ASTM D7906 塑料弯曲强度试验塑料弯曲模量试验 ISO ISO 178JPL 系列微控电子拉力 机 7 塑料简支梁缺口冲击试验塑料简支梁无缺口冲击试验 GB GB1043-79 简支梁冲击试验机

塑料试样状态调节和试验的标准环境(GB/T2918-1998) 1.0原理:把试样暴露在规定的状态环境或温度中,那么试样与状态调节环境或温度之间即可达到可再现的温度和/或含湿量平衡的状态。 2.0标准环境 标准环境代号空气温度(℃)相对湿度(﹪)备注 23/502350应该使用这种标准环境, 除非另有规定 27/652765对于热带地区如各方商定 可以使用 3.0标准环境的等级 等级温度容许偏差(℃) 相对湿度容许偏差(﹪) 23/5027/65 1(加严)±1±5±5 2(一般)±2±10±10 4.0状态调节 a.状态调节的周期应在材料的相关标准中规定。当在相应标准中未规定状态调节周期时,应采用下列周期:对于标准环境23/50和27/65,不少于88小时。对于18~28﹪的室温,不少于4小时。 5.0试验 除非另有规定,状态调节后的试样应在与状态调节相同的环境或温度下进行试验,在任何情况下,试验都应在将试样从状态调节环境内取出后立即进行。

聚丙烯酰胺固含量的测定方法

聚丙烯酰胺固含量的测定方法 一、仪器 (1)恒温干燥箱 (2)干燥器 (3)干燥盘:直径为55mm的铝盘 (4)精密电子天平:感量0.0001g 二、测定步骤 (1)接通恒温干燥箱电源,设置烘干温度为120+-5℃,并恒温。 (2)将干燥盘放在恒温干燥箱内,在120℃条件下烘干2h。 (3)将干燥盘从恒温干燥箱中取出,放入干燥器内冷却30min。 (4)在精密电子天平上称干燥盘质量,准确至0.0001g,视为W1 (5)在干燥盘上均匀撒入1g左右粉状试样,在精密电子天平上称质量,准确至0.0001g,视为W2。置于干燥箱内烘干2h。 (6)将烘干后的试样移至干燥器内,冷却30min至室温。 (7)在精密电子天平上称质量,准确至0.0001g,视为W3。 (8)该实验应取3个平行试样同时测定,将3个平行试样测试值修约至小数点后第二位,取其平均值,即为待测试样的固含量S。当粉状试样单个测定值与平均值偏差大于0.5%时,重新取样测定。 三、结果表示 固含量质量百分数按式(6.1)计算 S=m/m0100% (6.1) 式中S一试样的固含量; m一干燥后试样的质量(W3-W1),g m0一干燥前试样的质量(W2-W1),g 黏度(水溶液)的测定方法 (1)烧杯:400mL; (2)立式搅拌器: (3)磁力搅拌器; (4)布氏黏度计:带UL转子; (5)温度计:0-100℃,分度值0.1℃; (6)精密电子天平:感量0.0001g (7)电子天平:感量0.01g; (8)恒温水浴:45.0℃; (8)量筒:20mL. 二、试剂与溶剂 本测定方法所用试剂和水分别为分析纯试剂和标准盐水。 三、试样溶液的配制 (1)称取199.00g新配制的标准盐水于40mL烧杯中。 (2)准确称取1.000g试样。

电导率测试实验

《化学基础》实验报告 一.实验目的: 1)配置不同浓度KCl和醋酸溶液并测量其电导率。 2)从中学会一定浓度溶液配置方法。 3)学会电子天平、电导率仪等设备的实用方法。 4)理解不同溶液电导率和浓度的关系。 二.实验原理: 测量待测溶液电导的方法称为电导分析法。电导是电阻的倒数,即 G=1RR(式5.1) 式中,G为电导,单位为西门子,用S表示。工程上因该单位太大,常用10-3、10-6作为单位,称为毫西或微西,以mS或μμS表示。R为电阻,单位用Ω表示。电导值得测量,实际上是将两只电极插入溶液中,通过电阻值得测量,再经换算得到的。根据欧姆定律,温度一定时,该电阻值与电极间距l成正比,与电极的横截面积A成反比 R=ρll AA (式5.2) 式中,ρ为电阻率,Ω·m。将式5.1代入式5.2,得 G=1ρρ×AA ll=kk AA ll(式5.3) 式中,k为电阻率的倒数,称为电导率,S/m,即 k=1ρρ(式5.4) 对于某一只电极而言,电极极板之间的距离l和极板面积A之比称为该电极的电极常数或电导池常数,用K cell表示。即 KK cccc ll ll=ll AA (式5.5) 则 kk=GG ll AA=GGKK cccc ll ll (式5.6) 对于电解质溶液,电导率相当于在电极面积为1m2,电极间距为1m的立方体中盛有该电解质溶液时的电导。 但在溶液电导及电导率的测定过程中,当电流通过电极时,由于离子在电极上会发生放电,产生极化引起误差,故测量电导和电导率时要使用频率足够高的交流电,以防止电解产物的产生。另外,所用的电极镀铂黑是为了较小过电位,提高测量结果的准确

国家标准塑料及塑料制品性能检测方法标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料 31 GB/T 1636-1979 模塑料表观密度试验方法 32 GB/T 1843-1996 塑料悬臂梁冲击试验方法 33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能 34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料 35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂 36 GB/T 2035-1996 塑料术语及其定义 37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法 38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法 39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法 40 GB/T 2409-1980 塑料黄色指数试验方法 41 GB/T 2410-1980 透明塑料透光率和雾度试验方法 42 GB/T 2411-1980 塑料邵氏硬度试验方法 43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和

电导率测试

香蕉(甘蕉)的营养成分列表 (每100克中含) 成分名称含量成分名称含量成分名称含量可食部59 水分(克)75.8 能量(千卡)91 能量(千焦)381 蛋白质(克) 1.4 脂肪(克)0.2 碳水化合物(克)22 膳食纤维(克) 1.2 胆固醇(毫克)0 灰份(克)0.6 维生素A(毫克)10 胡萝卜素(毫克)60 视黄醇(毫克)0 硫胺素(微克)0.02 核黄素(毫克)0.04 尼克酸(毫克)0.7 维生素C(毫克)8 维生素E(T)(毫克)0.24 a-E 0.24 (β-γ)-E 0 δ-E 0 钙(毫克)7 磷(毫克)28 钾(毫克)256 钠(毫克)0.8 镁(毫克)43 铁(毫克)0.4 锌(毫克)0.18 硒(微克)0.87 铜(毫克)0.14 锰(毫克)0.65 碘(毫克) 2.5 成分名称 含量 (毫克)成分名称 含量 (毫克) 成分名称 含量 (毫克) 异亮氨酸42 亮氨酸86 赖氨酸60 含硫氨基酸(T)37 蛋氨酸37 胱氨酸0 芳香族氨基酸(T)72 苯丙氨酸46 酪氨酸26 苏氨酸49 色氨酸 6 缬氨酸72 精氨酸60 组氨酸89 丙氨酸44 天冬氨酸157 谷氨酸172 甘氨酸43 脯氨酸49 丝氨酸51

7. 香蕉果肉电导率测试试验 7.1 试验设备 DDS-307电导率仪,本试验采用上海雷磁公司制造的DDS-307电导率仪,如图8 图8 DDS-307电导率仪 7.1.1 电导率仪使用功能 DDS-307型数字式电导率仪适用于测定一般液体的电导率,若配用适当的电导电极,还可用于电子工业,化学工业,制药工业,核能工业,电站和电厂测量纯水或高纯水的电导率,且能满足蒸馏水,饮用水,矿泉水,锅炉水纯度测定的需要。 7.1.2 电导率仪设计原理 溶解于水的酸、碱、盐电解质,在溶液中解离成正、负离子,使电解质溶液具有导电能力,其导电能力大小可用电导率表示。 电解质溶液的电导率,通常是用两个金属片(即电极)插入溶液中,测量电极间电阻率大小来确定。电导率是电阻率的倒数。其定义是截面积为1cm2,极间距离为1cm时,该溶液的电导。电导率的单位是西每厘米(S/cm)。在水分析中常用它的百万分之一即微西每厘米(μS/cm)表示水的电导率。 电导率仪由电导电极和电子单元组成。电子单元采用适当频率的交流信号的方法,将信号放大处理后换算成电导率。仪器中配有与传器相匹配的温度测量系统,能补偿到标准温度电导率的温度补偿系统、温度系数调节系统以及电导池常数调节统,以及自动换档功能等。 7.1.3 水果硬度计技术参数 仪器名称DDS-307电导率仪

塑料测试方法(中文版)

拉伸强度和拉伸模量 ASTM D 638, ISO R527, DIN 53455, DIN53457 了解材料对负载的响应程度是了解材料性能的基础。通过测试在一定应力下材料的变形程度(应变),设计者可以预测材料在其工作环境下的应用(如图1)。 图1 拉伸应力-应变曲线 A:弹性形变的极限值 B:屈服点 C:最大强度 O-A:屈服区域,发生弹性形变 超过A点:塑性变形 图2:ASTM D 6, 拉伸试样的尺寸 模量:应力/应变 Mpa

屈服应力:开始发生塑性变形的应力 Mpa 断裂应力发生断裂时的应力 Mpa 断裂伸长率材料发生断裂时的应变% 弹性极限开始发生弹性形变的终点 弹性模量发生在塑性变形时的模量 Mpa 测试速度: A速度:1mm/mm 拉伸模量 B速度:5mm/mm 填充材料 的拉伸应力/应变 C速度:50mm/mm 为填充材料的拉伸应力/应变 弯曲强度和弯曲模量 ASTM D 790, ISO 178, DIN 53452 弯曲强度是用来测量材料抵制挠曲变形的能力或者是测试材料的刚性。与拉伸负载不同的是,在测试弯曲时,所有的应力加载在一个方向上。用压头压在试样的中部使其形成一个3点的负载,在标准测试仪上,恒定的压缩速度为2mm/mm. 通过计算机收集的数据,测绘出试样的压缩负荷-变形曲线,来计算压缩模量。在曲线的线性区域至少取5个点的负载和变形。 弯曲模量(应力与应变的比值)是表征材料弯曲性能的重要指标。压缩模量是指在应力-应变的曲线的线性范围内,压缩应力与压缩应变之比。 压缩应力与压缩应变的单位都是Mpa。 图3:弯曲测试示意图 耐磨性能测试

电导率仪的测定原理及操作步骤

电导率仪的测定原理及操作步骤 测定原理 电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)--电阻(R)的倒数,由导体本身决定的。电导率的基本单位是西门子(S),原来被称为欧姆。因为电导池的几何形状影响电导率值,标准的测量中用单位电导率S/cm来表示,以补偿各种电极尺寸造成的差别。单位电导率(C)简单的说是所测电导率(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板的面积。水溶液的电导率直接和溶解固体量浓度成正比,而且固体量浓度越高,电导率越大。电导率和溶解固体量浓度的关系近似表示为:1.4μS/cm=1ppm或2μS/cm=1ppm(每百万单位CaCO3)。利用电导率仪或总固体溶解量计可以间接得到水的总硬度值,如前述,为了近似换算方便,1μs/cm 电导率=0.5ppm硬度。电导率是物质传送电流的能力,与电阻值相对,单位Siemens/cm(S/cm),该单位的10-6以μS/cm表示,10-3时以mS/cm表示。但是需要注意:(1)以电导率间接测算水的硬度,其理论误差约20-30ppm(2)溶液的电导率大小决定分子的运动,温度影响分子的运动,为了比较测量结果,测试温度一般定为20℃或25℃(3)采用试剂检测可以获取比较准确的水的硬度值。水的电导率与其所含无机酸、碱、盐的量有一定关系。当它们的浓度较低时,电导率随浓度的增大而增加,因此,该指标常用于推测水中离子的总浓度或含盐量。不同类型的水有不同的电导率。新鲜蒸馏水的电导率为0.2-2μS/cm,但放置一段时间后,因吸收了CO2,增加到2—4μS/cm;超纯水的电导率小于0.10/μS/cm;天然水的电导率多在50—500μS/cm之间,矿化水可达500—1000μS/cm;含酸、碱、盐的工业废水电导率往往超过10000μS/cm;海水的电导率约为30000μS/cm。电极常数常选用已知电导率的标准氯化钾溶液测定。不同浓度氯化钾溶液的电导率(25℃)列于下表。溶液的电导率与其温度、电极上的极化现象、电极分布电容等因素有关,仪器上一般都采用了补偿或消除措施。水样采集后应尽快测定,如含有粗大悬浮物质、油和脂,干扰测定,应过滤或萃取除去。1)先将铂黑电极浸在去离子水中数分钟。2)调节表头螺丝M,使指针指在零点。3)将校正、测量开关K2扳到“校正”位置。4)打开电源开关K 预热数分钟后,调节校正调节器Rw3使指针在满刻度上。5)将高周、低周开关K3扳向适当的档上。6)将量程选择开关R1扳到适当的档上。7)调节电极常数调节器Rw2,使其与所用电极的常数相对应(这样就相当于把电极常数调整为1,所测得溶液的电导率在数值上就等于溶液的电导)。8)用少量待测溶液冲洗电极后,将其插头插在电极插口Kx内,并浸入待测溶液中。9)调节校正调节器Rw3至满刻度后,将校正、测量开关K2扳到测量位置。读得表针的指示数,再乘上量程选择开关R1所指的倍数,即为此溶液的电导率。重复测定一次,取其平均值。10)将校正、测量开关K2扳到“校正”位置,取出电极。11)测量完毕,断开电源。电极用去离子水荡洗后,浸到去离子水中备用。

实验五分析实验室用水电导率的测定

分析实验室用水电导率的测定 一、实验目的 1.了解电导率的含义。 2.掌握电导率测定水质意义及其测定方法。 二、实验原理 电导率是以数字表示溶液传导电流的能力。纯水的电导率很小,当水中含有无机酸、碱、盐或有机带电胶体时,电导率就增加。电导率常用于间接推测水中带电荷物质的总浓度。水溶液的电导率取决于带电荷物质的性质和浓度、溶液的温度和粘度等。电导率的标准单位是S/m(即西门子/米),一般实际使用单位为mS/m,常用单位μS/cm(微西门子/厘米)。单位间的互换为1mS/m=0.01mS/cm=10μS/cm 新蒸馏水电导率为0.05-0.2 mS/m,存放一段时间后,由于空气中的二氧化碳或氨的溶入,电导率可上升至0.2-0.4 mS/m;饮用水电导率在5-150 mS/m之间;海水电导率大约为3000 mS/m:清洁河水电导率为10 mS/m。电导率随温度变化而变化,温度每升高1℃,电导率增加约2%,通常规定25℃为测定电导率的标准温度。由于电导率是电阻的倒数,因此,当两个电极(通常为铂电极或铂黑电极)插入溶液中,可以测出两电极间的电阻R。根据欧姆定律,温度一定时,这个电阴.值与电极的间距L(cm)成正比,与电极截面积A(cm2)成反比, 即: R=ρ×L/A 由于电极面积A与间距L都是固定不变的,故L/A是一个常数,称电导池常数(以Q表示)。比例常数ρ叫做电阻率。其倒数1/ρ称为电导率,以K表示。 S=1/R=1/(ρ×Q) S表示电导率,反映导电能力的强弱。所以,K=QS或K=Q/R 当已知电导池常数,并测出电阻后,即可求出电导率。 恒温25℃下测定水样的电导率,仪器的读数即为水样的电导率(25℃),以μS/cm单位表示。 在任意水温下测定,必须记录水样温度,样品测定结果按下式计算: K25=Kt/[1+a(t-25)] 式中:K25——水样在25℃时电导率(μS/cm);

塑胶件抗UV测试国家标准

塑胶件抗U V测试国家标准 Prepared on 24 November 2020

中华人民共和国国家标准| 塑料实验室光源暴露试验方法 GB/ 第3部分:荧光紫外灯eqv ISO 4892-3:1994 Plastics-Methods ofexposure to labory light sources- Part 3:Fluorescent UVlamps 紫外光老化试验标准 1范围 本标准规定了塑料暴露于不同类型荧光紫外灯气候箱的试验方法。通则在GB/T 中给出。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 9344-88 塑料氙灯光源曝露试验方法(neq ISO4892-2:1994) GB/T 15596-1995 塑料曝露于玻璃下日光或自然气候或人工光源后颜色和性能变化的测定 (cqv ISO 4582:1980) GB/T 塑料实验室光源曝露试验方法第一部分:通则(eqv ISO 4892-1:1994) 3定义 本标准采用下列定义

荧光紫外灯:发射400nm以下紫外光的能量至少占总输出光能80﹪的荧光灯。 Ⅰ型荧光紫外灯:300nm以下的光能低于总输出光能2﹪的一种荧光紫外灯。通常称为UV-A灯。 Ⅱ型荧光紫外灯:发射300nm以下的光能大于总输出光能10﹪的一种荧光紫外灯。通常称为UV-B灯。 冷凝暴露:试样表面经规定的辐照时间后转入模拟夜间的无辐照状态,此时试样表面仍受暴露室内热空气和水蒸气的饱和混合物加热作用,而试样背面继续受到周围空间的空气冷却,形成试样表面凝露状态。 4总则 在控制环境条件的荧光紫外灯气候箱中进行试样的暴露试验。有几种不同型号的灯(见~。推荐采用UV-A灯或UV-A组合灯,如采用不同光谱组合灯时,应保证试样表面所受的光谱辐照均匀,即应使试样围绕灯列连续移位。 荧光紫外灯使用一种低压汞弧激发荧光物质而发射出紫外光,它能在较窄的波长区间产生连续光谱,通常只有一个波峰。其光谱分布是由荧光物质的发射光谱和玻璃的紫外透过性决定的。这种灯一般是使试样在某一局限光谱范围内的紫外光辐照下进行试验用的。 试验程序可以包括辐照强度和试样表面辐照量的测定。 国家技术监督局1997-09-09批准1998-02-01实施 建议采用一种已知性能的类似材料作为参数,和受试材料同时暴露。 在不同型号的设备上所作的试验结果不能作比较,除非受试材料在不同设备中的重现性已被确定。

电导率测量仪温度补偿的检定方法及问题

电导率测量仪温度补偿的检定方法及问题。使用电导率仪的用户都知道这一点,溶液的电导率与温度密切相关,因为温度发生变化时,电解质的电离度、溶解度、离子迁移速度、溶液黏度等都会发生变化,电导率也会变化。温度升高,电导率增大。而此刻电导率仪的温度补偿功能就是为了克服温度的影响。 一、什么是电导率测量仪的温度补偿功能: 将溶液在实际温度下的电导率值转换为参考温度(一般为25℃)下的电导率值,使得溶液在不同温度下的电导率具有可比性,现在市场上所使用的电导率仪都有温度补偿功能,以满足各行各业比对或控制指标的需要。本文以使用电导率仪时,检定过程中需要的温补功能说明,简要的分析讨论。 在检定过程中增加这一检定项目也很有必要。实现电导率仪温度补偿的检定有两种方法,一种是温补前的KMR为定值,一种是温补后的KMV为定值,两种方法依据的原理相同,具体的检定步骤根据仪器设计的不同也可分为两种方法。 检定过程中,我们还发现温度设置会影响电导池常数,分析表明电导率仪的温度补偿本质上和电导池常数补偿是相同的,当仪器的温度补偿缺失或存在故障时,可以利用电导池常数的补偿来实现电导率的温度补偿。 二、温度补偿的检定方法及问题 对于电导率大于1×10-4S·cm-1的强电解质,电导率值与温度存在线性关系: KT=K0〔1+α(T-T0)〕 (1);在检定过程中,只要测得不同温度下的电导率值,通过JJG376-2007中的式 (5)可求出仪器的温度系数α,从而实现对电导率仪温度补偿系数的检定。

将电导率仪常数Kcell设为 1.00cm-1,输入某一信号的电导率值(如50μS·cm-1),调节温度传感器模拟电阻,使温度示值为25℃和15℃(35℃),再分别读取对应电导率仪测量值KMR和KMV。根据式 (1)有: (2) 问题: (3) 1).国产电导率仪都是手动温度补偿,温度系数无法设置,其默认值为 2.00%/℃。对于这类仪器,当温度设置为25℃时,为不补偿状态,测得的电导率为KMR,而其他温度下测得的电导率值为补偿后的电导率值KMV,可实现温度补偿的检定。 2)对于不同的电导率仪,其温度补偿的检定步骤也不尽相同,安徽赛科环保生产的DDS-307为例: 后期生产(新型)的DDS-307电导率仪,调整温度示值时,电导率发生显著变化,定义为I型(DDS- 308、国外产的电导率仪如con5等也归于此类)。早期生产的DDS-307电导率仪,调整温度示值时,电导率没有任何变化,为了便于区别我们将其定义为II型(大部分数显式DDS-11A/12A也归于此类)。 对于I型仪器,其温度系数的误差可以按JJG376-2007描述方法来测量,先设置好电导池常数,再调整温度示值。 对于II型仪器,温度示值对电导率值没有影响,并不说明温度传感器模拟电阻器发生了故障,因为如果将仪器调到“检查”状态,发现调整温度示值时,电导池常数也发生了变化,当温度示值调整为15℃和35℃时,电导池常数分别变化到

相关文档
最新文档