matlab量子化得遗传算法代码

matlab量子化得遗传算法代码
matlab量子化得遗传算法代码

clear;

clc

close all

NIND=40; %个体数目

NVAR=2; %变量的维数

PRECI=20; %变量的二进制位数

GGAP=0.9; %代沟

MP=10; %种群数目

FieldD=[rep(PRECI,[1,NVAR]);[-3,4.1;12.1,5.8];rep([1;0;1;1],[1,NVAR])]; %译码矩阵

for i=1:MP

Chrom{i}=crtbp(NIND, NVAR*PRECI); %创建初始种群

end

pc=0.7+(0.9-0.7)*rand(MP,1); %在【0.7,0.9】范围i内随机产生交叉概率

pm=0.001+(0.05-0.001)*rand(MP,1); %在【0.001,0.05】范围内随机产生变异概率

gen=0; %初始遗传代数

gen0=0; %初始保持代数

MAXGEN=10; %最优个体最少保持代数

maxY=0; %最优值

for i=1:MP

ObjV{i}=ObjectFunction(bs2rv(Chrom{i}, FieldD));%计算各初始种群个体的目标函数值end

MaxObjV=zeros(MP,1); %记录精华种群

MaxChrom=zeros(MP,PRECI*NVAR); %记录精华种群的编码

while gen0<=MAXGEN

gen=gen+1; %遗传代数加1

for i=1:MP

FitnV{i}=ranking(-ObjV{i}); % 各种群的适应度

SelCh{i}=select('sus', Chrom{i}, FitnV{i},GGAP); % 选择操作

SelCh{i}=recombin('xovsp',SelCh{i}, pc(i)); % 交叉操作

SelCh{i}=mut(SelCh{i},pm(i)); % 变异操作

ObjVSel=ObjectFunction(bs2rv(SelCh{i}, FieldD)); % 计算子代目标函数值

[Chrom{i},ObjV{i}]=reins(Chrom{i},SelCh{i},1,1,ObjV{i},ObjVSel); %重插入操作

end

[Chrom,ObjV]=immigrant(Chrom,ObjV); % 移民操作

[MaxObjV,MaxChrom]=EliteInduvidual(Chrom,ObjV,MaxObjV,MaxChrom); % 人工选择精华种群

YY(gen)=max(MaxObjV); %找出精华种群中最优的个体

if YY(gen)>maxY %判断当前优化值是否与前一次优化值相同

maxY=YY(gen); %更新最优值

gen0=0;

else

gen0=gen0+1; %最优值保持次数加1

end

end

%% 进化过程图

plot(1:gen,YY)

xlabel('进化代数')

ylabel('最优解变化')

title('进化过程')

xlim([1,gen])

%% 输出最优解

[Y,I]=max(MaxObjV); %找出精华种群中最优的个体

X=(bs2rv(MaxChrom(I,:), FieldD)); %最优个体的解码解disp(['最优值为:',num2str(Y)])

disp(['对应的自变量取值:',num2str(X)])

遗传算法经典MATLAB代码

遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程

%----------------------------------------------- % 初始化(编码) % 函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength 表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 计算目标函数值 % 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

关于量子遗传算法(QGA)

关于量子遗传算法的杂七杂八 遗传算法确实太有名了,无论是数学建模的培训中还是机器学习的项目中,经常性能看到遗传算法(GA)活跃的身影,其用途十分广泛,而且MATLAB或者是Python的实现遗传算法功能的工具箱也很多,笔者就一度使用北卡罗莱纳大学提供的免费工具箱实现了对于BP神经网络的初始化权值与阈值的优化,效果十分不错,而且实现起来不那么费劲,所以还是挺受好评的,对于写毕业论文的同志而言,如果实在不知道强行套用第三方算法对于原本的算法进行升级该怎么做,有两个万金油组合,一个是AHP,另一个就是几乎无所不能的GA,当然了,如果需要对于矩阵进行降维操作首选一定是PCA。 1 关于GA算法的种种 1.1简介 顾名思义,学过高中生物的都应该可以理解“遗传”是什么,染色体变异、染色体交叉等术语应该也能够大概知道是什么意思。其实遗传算法主要就是模拟这一个过程。 不过,笔者觉得本算法中的核心部分中的变异与交叉的情节,其实达尔文这个姐控的贡献不是很大,最早提出相关的概念完成了相关的建模的是孟德尔 所谓物竞天择适者生存,这个对于现实生活中的生物适用,对于具有特定含义的矩阵肯定也是适用的,当然了,反映他们到底多么“适应”的函数就是所谓的适应度函数,虽然关于适应度函数的取法现在并没有十分固定的一以贯之的通用公式。相对的,一些套路多有相似之处的算法中的概念也大都没有万用公式,诸如ACA中的营养素函数等,这些算法仍然有待提升,这也是经常能在国内的中文核心期刊上依然能够看到不少惊为天人的论文的原因。因为中国特色——灰色模型、AFSA等算法第一个提出者是中国人。 1.2四个基本概念 遗传算法中,一个基本单位为“个体”,一个种群(系统)中拥有好多个体。每个个体携带两个内容:染色体与适应度。 当然了,这个时候上述的这些概念根本没有机器学习的含义,而全然为生物的含义 或者用生物上的话来说,每一个生物都有染色体,染色体决定了他们表现出来的性状是怎样的。所以说,染色体决定了每一个生物的肥瘦程度。 因此我们建立以下对应关系: 整个牧场对应的是一个种群,在机器学习中可以理解为具有实际项目含义的构成所有矩阵的cluster 一头羊相当于生物钟的一个个体,在机器学习的大背景下可以理解成矩阵,就是MATLAB里面的mat文件 某头羊决定肥瘦程度的染色体也就就是该个体的染色体,在机器学习的大背景下可以理解成mat文件中的某一行或者是某一列。题外话,MATLAB中相当一部分函数在编写的时候不知道是出于怎样的考虑,它们的参数有的时候行跟列的位置竟然是反的,于我们的习惯有很大

遗传算法Matlab程序

% f(x)=11*sin(6x)+7*cos(5x),0<=x<=2*pi; %%初始化参数 L=16;%编码为16位二进制数 N=32;%初始种群规模 M=48;%M个中间体,运用算子选择出M/2对母体,进行交叉;对M个中间体进行变异 T=100;%进化代数 Pc=0.8;%交叉概率 Pm=0.03;%%变异概率 %%将十进制编码成16位的二进制,再将16位的二进制转成格雷码 for i=1:1:N x1(1,i)= rand()*2*pi; x2(1,i)= uint16(x1(1,i)/(2*pi)*65535); grayCode(i,:)=num2gray(x2(1,i),L); end %% 开始遗传算子操作 for t=1:1:T y1=11*sin(6*x1)+7*cos(5*x1); for i=1:1:M/2 [a,b]=min(y1);%找到y1中的最小值a,及其对应的编号b grayCodeNew(i,:)=grayCode(b,:);%将找到的最小数放到grayCodeNew中grayCodeNew(i+M/2,:)=grayCode(b,:);%与上面相同就可以有M/2对格雷码可以作为母体y1(1,b)=inf;%用来排除已找到的最小值 end for i=1:1:M/2 p=unidrnd(L);%生成一个大于零小于L的数,用于下面进行交叉的位置if rand()

毕业设计--基于量子遗传算法的函数寻优算法设计

毕业论文(设计) 题目:基于量子遗传算法的函数寻优算法设计学院:数理与信息学院 学生姓名: 专业:计算机科学与技术 班级: 指导教师: 起止日期: 2014年11月16日至2015年6月12日 2015 年5 月13日

基于量子遗传算法的函数寻优算法设计 摘要 量子遗传算法(QGA)是20世纪90年代后期兴起的一种崭新的遗传进化算法。该算法主要是将量子计算的概念引入其中,将量子的态矢量表达引入了遗传编码,使一条染色体可以表达多个信息态的叠加,同时利用量子旋转门实现染色体的演化,实现了目标解的进化。相比传统遗传算法,量子遗传算法能够在较小的种群规模下,快速的收敛到全局最优解。 本文首先介绍了量子遗传算法的基本原理与算法结构,然后对量子遗传算法提出疑问。虽然量子遗传算法的优化性能大大优于传统遗传算法,但是,对于一些多峰函数的优化问题,该类算法依旧容易陷入“局部最优”。在实际的应用中有很多优化问题都是多变量的连续优化问题,现有的量子遗传算法不能有效的解决这些问题。针对量子遗传算法容易陷入局部最优和未成熟收敛的缺陷,我们提出了一种新的优化算法——含有退火操作的量子遗传算法,该优化算法能够以可变的概率选择性地接受恶化的优化函数解,使种群解集的进化方向改变,不在依靠当前解进行遗传演化。从而使算法不易“早熟收敛”。而且在该算法中加入了全干扰的量子交叉操作,使各染色体能进行遗传信息的交换,使种群染色体更具有代表性。最后根据改进后的方案,对改进的量子遗传算法进行了数值仿真。有效地证明了改进算法在函数寻优方面的优越性。 【关键词】量子遗传算法,量子编码,退火思想,量子交叉,函数寻优

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

量子遗传算法

量子遗传算法 1.遗传算法 遗传算法是一种模拟达尔文生物进化论和遗传变异的智能算法。这种算法具有鲁棒性(用以表征控制系统对特性或参数扰动的不敏感性)较强,实现的步骤规范、简单通用等优点,在人工智能、多目标决策、社会及经济等领域都有大量运用。但一般遗传算法存在一定得局限性:收敛速度慢、迭代的次数多,易过早收敛,容易陷入局部最优解。 2.量子计算 量子计算为量子力学与信息科学的综合交叉学科。量子计算具有量子力学的并行性,计算速度更快;同时,量子状态多种多样,在进行最优解的搜索时极少陷入局部的极值。 3.量子遗传算法 量子遗传算法将量子的态矢量引入遗传算法,利用量子比特的概率幅应用于染色体的编码。一条染色体是多个量子状态的叠加。并使用量子旋转门实现染色体的变异更新。因此量子遗传算法具有迭代次数少,运行速度快,能以较少种群进行遗传变异,搜索范围广,难以陷入局部的极值等优点。 4.操作步骤 1)运用量子比特初始化父代染色体 2)在量子遗传算法中,染色体采用量子位的概率幅进行编码,编码方案如下: 1212cos()cos()cos()sin()sin()sin()i i ik i i i ik P θθθθθθ??=??? ? k j n i rand ij ,...,2,1,,...,2,1,2==?=πθ 3)对初始化种群中的每一个个体进行测量。 4)对每个测量值进行适应度的评估,以适应度来选择最优个体,进行遗传变异。 5)使用量子旋转门进行下一代个体的更新,量子旋转门为逻辑门中一种较为常用的方法,具体表示为: ???? ? ?-=i i i i u θθθθθcos sin sin cos )( 6)进行迭代1+=y y 7)达到终止设定条件,输出最佳个体,得到最优解。

基于遗传算法的matlab源代码

function youhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %for kk=1:(N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1:rndtmp,kk); %A(1:rndtmp,kk)=B(1:rndtmp,kk); %B(1:rndtmp,kk)=tmp; %end fatherrand=[fatherrand(:,1:2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,:)=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(t mpind)]; if~any(difind) difind(1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat %properties F2and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if(max(F2)>1450)||(min(F2)<=900) error('DATA property F2exceed it''s range (900,1450]') end %get group property F1of data,according to F2value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化

遗传算法的MATLAB程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

遗传算法求函数极大值(matlab实现)

遗传算法求函数最大值(matlab实现) 一、题目: 寻找f(x)=x2,,当x在0~31区间的最大值。 二、源程序: %遗传算法求解函数最大值 %本程序用到了英国谢菲尔德大学(Sheffield)开发的工具箱GATBX,该工具箱比matlab自带的GATOOL使用更加灵活,但在编写程序方面稍微复杂一些 Close all; Clear all; figure(1); fplot('variable*variable',[0,31]); %画出函数曲线 %以下定义遗传算法参数 GTSM=40; %定义个体数目 ZDYCDS=20; %定义最大遗传代数 EJZWS=5; %定义变量的二进制位数 DG=0.9; %定义代沟 trace=zeros(2, ZDYCDS); %最优结果的初始值

FieldD=[5;-1;2;1;0;1;1]; %定义区域描述器的各个参数%以下为遗传算法基本操作部分,包括创建初始种群、复制、交叉和变异 Chrom=crtbp(GTSM, EJZWS); %创建初始种群,即生成给定 规模的二进制种群和结构gen=0; %定义代数计数器初始值variable=bs2rv(Chrom, FieldD); %对生成的初始种群进行十进制转换 ObjV=variable*variable; %计算目标函数值f(x)=x2 while gen

matlab遗传算法程序

matlab遗传算法程序共13个.m文件。 1、B2F.m function [B,len,v]=B2F(sol,bounds) %[B,len]=B2F(x,bounds) 二进制编码函数 %x 编码向量如x=[6 8 9]; %bounds 边界约束ru如bounds=[4 8 ;3 11;6 12;]; %B 二进制编码串 %编码长度L由bounds(2)-bounds(1)决定 %以上为例: % 编码长度向量L=[4 8 6]编成二进制L=[11 1000 110],则len=[2 4 3] % 计算B=x-bound(1)=[2 5 3]编成二进制B=[10 0101 011] n=length(sol); len=[];B=[];v=[]; L=bounds(:,2)-bounds(:,1); L=de2bi(L); for i=1:n len(i)=length(L(i,:)); end v=sol-bounds(:,1)'; for i=1:n B=[B de2bi(v(i),len(i))]; end

2、changes.m function [pops]=changes(cpop,bounds,len,p) %基因突变函数 %function [pops]=changes(pop,bounds,len,p) %pop 种群数目 %bounds 边界约束 %len 每个变量的编码长度 % 如len为[4 3 3];表示有三个变量,第一个变量的二进制编码长度为4,依次类推%p 突变概率 %pops 返回突变后的基因 %p1 基因突变数目 if isempty(p) p=0.01; end [n,m]=size(cpop); pop=cpop; p1=round(sum(len)*n*p); k=0;q=[];v=[]; while(k

遗传算法的原理及MATLAB程序实现

1 遗传算法的原理 1.1 遗传算法的基本思想 遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。 遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。这一过程循环执行,直到满足优化准则,最终产生问题的最优解。图1-1给出了遗传算法的基本过程。 1.2 遗传算法的特点 1.2.1 遗传算法的优点 遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点: 1. 遗传算法以控制变量的编码作为运算对象。传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。 2. 遗传算法具有内在的本质并行性。它的并行性表现在两个方面,一是遗传

Matlab环境下的遗传算法程序设计及优化问题求解

本栏目责任编辑:谢媛媛 开发研究与设计技术 遗传算法(GA)是借鉴生物界自然选择和群体进化机制而形成的一种全局寻优算法,其本质上是一种基于概率的随机搜索算法。与其它的优化算法相比较,遗传算法具有以下优点:(1)通用性;(2)并行性;(3)简单性和可操作性;(4)稳定性和全局性。 1遗传算法概述 在遗传算法中,首先将空间问题中的决策变量通过一定的编码表示成遗传空间的一个个体,它是一个基因型串结构数据;然后将目标函数转换成适应度值,用来评价每个个体的优劣,并将其作为遗传操作的依据。遗传操作包括三个算子:选择、重组和变异。选择是从当前群体中选择适应值高的个体以生成交配池的过程,交配池是当前代与下一代之间的中间群体。选择算子的作用是用来提高群体的平均适应度值。重组算子的作用是将原有的优良基因遗传给下一代个体,并生成包含更复杂基因的新个体,它先从交配池中的个体随机配对,然后将两两配对的个体按一定方式相互交换部分基因。变异算子是对个体的某一个或几位按某一较小的概率进行反转其二进制字符,模拟自然界的基因突变现象。 遗传算法的基本程序实现流程如下: (1)先确定待优化的参数大致范围,然后对搜索空间进行编码;(2)随机产生包含各个个体的初始种群; (3)将种群中各个个体解码成对应的参数值,用解码后的参数求代价函数和适应度函数,运用适应度函数评估检测各个个体适应度; (4)对收敛条件进行判断,如果已经找到最佳个体,则停止,否则继续进行遗传操作; (5)进行选择操作,让适应度大的个体在种群中占有较大的比例,一些适应度较小的个体将会被淘汰; (6)随机交叉,两个个体按一定的交叉概率进行交叉操作,并产生两个新的子个体; (7)按照一定的变异概率变异,使个体的某个或某些位的性质发生改变; (8)重复步骤(3)至(7),直至参数收敛达到预定的指标。使用遗传算法需要确定的运行参数有:编码串长度、交叉和变异概率、种群规模。编码串长度由问题的所要求的精度来决定。交叉概率控制着交叉操作的频率,交叉操作是遗传算法中产生新 个体的主要方法,所以交叉概率通常应取较大值,但如果交叉概率太大的话又可能反过来会破坏群体的优良模式,一般取0.4- 0.99。变异概率也是影响新个体产生的一个因素,如果变异概率 太小,则产生新个体较少;如果变异概率太大,则又会使遗传算法变成随机搜索,为保证个体变异后与其父体不会产生太大的差异,通常取变异概率为0.0001-0.1以保证种群发展的稳定性。种群规模太大时,计算量会很大,使遗传算法的运行效率降低,种群规模太小时,可以提高遗传算法的运行速度,但却种群的多样性却降低了,有可能找不出最优解,通常取种群数目20-100。从理论上讲,不存在一组适用于所有问题的最佳参数值,随着问题参数的变化,有效问参数的差异往往是十分显著的。 2用Matlab语言来实现遗传算法 Matlab是一个高性能的计算软件,配备有功能强大的数学函 数支持库,适用范围大,编程效率高,语句简单,功能齐备,是世界上顶级的计算与仿真程序软件。利用Matlab来编写遗传算法程序简单而且易于操作。 2.1编码 编码就是把一个问题的可行解从其解空间转换到遗传算法能够处理的搜索空间的转化方法,编码形式决定了重组算子的操作。遗传算法是对编码后的个体作选择与交叉运算,然后通过这些反复运算达到优化目标。遗传算法首要的问题是通过编码将决策变量表示成串结构数据。我们常用的是二进制编码,即用二进制数构成的符号串来表示每个个体。通常根据搜索精度(sca_var)、决策变量上界(range(2))的和下界(range(1))来确定各个二进制字符串的长度(bit_n), 搜索精度为sca_var=(range(2)-range(1))./ (2^bit_n—1),然后再随机产生一个的初始种群(be_gen),其规模为popusize。下面用encoding函数来实现编码和产生初始的种群: function[be_gen,bit_n]=encoding(sca_var,range(1),range(2),popusize) bit_n=ceil(log2((range(2)-range(1))./sca_var));be_gen=randint(popusize,sum(bit_n));2.2译码 决策变量经过编码之后,各个个体构成的种群be_gen要通过解码才能转换成原问题空间的决策变量构成的种群vgen,这样才 收稿日期:2006-01-05 作者简介:梁科(1981-),硕士研究生,研究方向:智能计算与优化方法;夏定纯(1963-),教授,研究方向:人工智能,计算机在线检测。 Matlab 环境下的遗传算法程序设计及优化问题求解 梁科,夏定纯 (武汉科技学院计算机科学学院,湖北武汉430073) 摘要:本文介绍了遗传算法的流程及几个算子,给出了在matlab语言环境下实现编码、译码、选择、重组和变异各算子的编程方法,最后用一个实例来说明遗传算法在寻找全局最优解中的应用。 关键词:遗传算法;matlab;程序设计中图分类号:TP312 文献标识码:A 文章编号:1009-3044(2007)04-11049-03 GeneticAlgorithmProgrammingByMatlabAndOptimizingProblemSolving LIANGKe,XIADing-chun (DepartmentofComputerscience,WuhanUniversityofScience&Engineering,Wuhan430073,China) Abstract:Theseveralfactorsofgeneticalgorithmhavebeenpresentedinthispaper,andtheprogrammingofencoding、decoding、choice、crossoverandmutationofmatlabhavebeengiven,finally,afunctionoptimizingproblemhasbeenpresentedtodemonstratedtheapplicationaboutglobaloptimizingofgeneticalgorithm. Keywords:GA;matlab;programming 1049

相关文档
最新文档