定比分点公式的向量形式及应用

定比分点公式的向量形式及应用
定比分点公式的向量形式及应用

三角形的定比分点公式及应用

三角形的定比分点公式及应用 河南驻马店 郭新华 本文从有向面积的定义推导出三角形的定比分点公式及其推论,并揭示该公式和梅涅劳斯定理,塞瓦定理,凡·奥贝尔公式以及调和点列公式的内在关系,同时举例说明其应用。 1. 预备知识 定义 三角形的有向面积是指通常所知的面积大小加上正负号。当三个顶点逆时针排列时有向面积为正,反之为负,三点共线时为零。 为简化叙述,约定AB 表示有向线段AB 的数量,ABC ?表示△ABC 的有向面积。 由定义,△ABC 的有向面积表达式有下列关系: ABC ?=BCA ?=CAB ?=BAC ?-=ACB ?-=CBA ?-. 对于△ABC 所在平面上任意点P ,AP 的连线交边BC 所在直线于D ,如图1-1,图1-2所示,有 PCA PBC PAB ABC ?+?+?=? . 及 AD PD ABC PBC =?? 2. 三角形的定比分点公式

设点P 在△ABC 所在平面上,直线AP ,BP ,CP 分别交边BC ,CA ,AB 所在直线于D ,E ,F ,如图2-1,图2-2所示,则 111 11113 21=+++++λλλ (1) 其中PD AP =1λ,PE BP =2λ,PF CP =3λ. 证明:因为 AD PD ABC PBC =??PD AP PD +=1 11 λ+= 类似地 BCA PCA ??211λ+=,CAB PAB ??3 11 λ+=. 所以321111111λλλ+++++=ABC PBC ??+BCA PCA ??+CAB PAB ??=1 变形1 21113 32211=+++++λλλλ λλ (2) 变形2 3213212λλλλλλ=+++ (3) 式(1)展开既得式(3) 3 三角形的定比分点公式的推论 如图2-1所示,当点P 在△ABC 内时,321λλλ,,均为正数, 记 321λλλ++=U , 313221λλλλλλ++=V , 321λλλ=W .

3平面向量的坐标表示及线段的定比分点公式

5.3平面向量的坐标表示及线段的定比分点公式 要点透视: 1.要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关. 2.遇到共线向量与平行有关问题,一般应考虑运用向量平行的充要条件. 3.线段的定比分点公式,要注意求定比分点A 的值,以便顺利求出分点坐标. 活题解析: 例1.(2002年天津卷)平面直角坐标系中, O 是坐标原点,已知两点A (3, 1),B (-1,3),若点C 满足OC OA OB αβ=+ ,其中α,β∈R ,且α+β=1,则点C 的轨迹方程是( ) A .3x +2y -11=0 B .(x -1)2+(y -2)2=25 C .2x -y =0 D .x +2 y -5=0 要点精析:I 设OC =(x ,y ),OA =(3,1),OB =(-1,3), α· OA =(3α,α),βOB =(-β,3β),又αOA +βOB =(3α-β,α+3β), ∴ (x ,y )=(3α-β,α+3β),∴ 33x y αβαβ=-??=+? , 又α+β=1,因此得x +2y =5,所以选D . 思维延伸:本题主要考查向量法和坐标法的相互关系及转换方法. 例2.(2003年江苏卷)已知常数a >0,向量c =(0,a ),i =(1,0),经过原点O 以c +λi 为方向向量的直线与经过定点A (0,a )以i -2λc 为方向向量的直线相交于点P ,其中λ∈R ,试问是否存在两个定点E ,F ,使得|PE |+|PF |为定值?若存在,求出E ,F 的坐标;若不存在,说明理由. 要点精析:本题考查平面向量的概念和计算、求轨迹的方法、椭圆的方程和性质、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力. 解:根据题没条件,首先求出点P 满足的方程,据此再判断是否存在两定点,使得P 到两定点的距离之和为定值. 因为i =(1,0),c =(0,a ), 所以c +λi =(λ,a ),i -2λc =(1,-2λa ). 因此直线OP 和AP 的方程分别为λy =ax 和y -a =-2λax , 消去参数λ,得点P (x ,y )的坐标满足y (y -a )=-2a 2x 2, 整理得222 ()211()82 a y x a -+= ① 因为a >0,所以得 (1)当a =2 2时,方程①表示圆,故不存在合乎题意的定点E 和F ; (2)当0

定比、定比分点公式

8.1(3)定比、定比分点公式 一、教学内容分析 本节是8.1的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=u u u r u u u r 中的λ由实 数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法. 本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别. 根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计 1理解定比的概念,掌握定比分点公式; 2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式; 3通过本节的学习,提升发现能力、推理能力,渗透数形结合 思想. 三、教学重点及难点 定比的概念,定比分点公式的推导和应用. 四、教学流程设计

五、教学过程设计 一、 情景引入 观察思考,引入新课 问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA u u u r ∥AC u u u r ,即存 在实数λ,使BA u u u r = λAC u u u r ,那么实数λ= . 而若 BC CA λ=u u u r u u u r ,则λ= . [说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=u u u r u u u r 时, 你能求出点P 的坐标吗?(引出课题) [说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐

3平面向量的坐标表示及线段的定比分点公式

5. 3平面向量的坐标表示及线段的定比分点公式要点透视: 1?要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关. 2?遇到共线向量与平行有关问题,一般应考虑运用向量平行的充要条件. 3?线段的定比分点公式,要注意求定比分点A的值,以便顺利求出分点坐 标. 活题解析: 例1. (2002年天津卷)平面直角坐标系中, O是坐标原点,已知两点A(3, 1),B( — 1, 3),若点 C 满足 OC =aOA+POB,其中 a 氏 R 且 a+3=1,则点 C的 轨迹方程是() 2 2 A. 3x+ 2y— 11 = 0 B. (x— 1) + (y—2)=25 C. 2x— y= 0 T D士+ 2 y— 5=0^ 要点精析:I 设OC =(x, y),OA = (3, 1),OB =(— 1,3), T T T T a OA=(3 a a, 3OB =( — 3, 3 3,又 aOA+ 3OB =(3 a— 3, a+3 3, I X =3*^ — P 二(x, y)= (3a— 3 a+ 33,;$ n , [y =a +3卩 又a+ 3= 1,因此得x+ 2y= 5,所以选D . 思维延伸:本题主要考查向量法和坐标法的相互关系及转换方法. I I 例2. (2003年江苏卷)已知常数a>0,向量c=(0, a),i = (1, 0),经过原点 O以 c+Xi为方向向量的直线与经过定点 A(0, a)以i — 2Xc为方向向量的直线相交于 点P,其中疋R,试问是否存在两个定点E, F,使得|PE| + |PF|为定值?若存在, 求出E, F的坐标;若不存在,说明理由. 要点精析:本题考查平面向量的概念和计算、求轨迹的方法、椭圆的方程和性质、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力. 解:根据题没条件,首先求出点P满足的方程,据此再判断是否存在两定点,使得P到两定点的距离之和为定值. 因为1=(° 0), c = (0, a), 所以 c + xi =( X, a), i — 2 入c = (1, — 2 Xa). 因此直线OP和AP的方程分别为?y=ax和y— a= — 2 Xx,

定比分点的向量公式及应用

定比分点的向量公式及应用 浙江省永康市古山中学(321307) 吴汝龙 定比分点的向量公式:在平面上任取一点O ,设OP =1,OP =2,若21PP P λ=,则b a OP λ λ λ+++= 111。 特别地,当1=λ时,即P 为线段21P P 的中点,则有b a OP 2 1 21+= 。 用定比分点的向量公式,可使有些问题的解决更简洁。下面举几例说明。 一、求定比λ的值: 例1:已知A (1,2),B (1,3-)及直线l :54-=x y ,直线AB 与l 相交于P 点,求P 点分AB 的比λ。 解:设),(y x P ,则由λ=,得 )11,131()1,3(1)1,2(11),(λ λ λλλλλ+-++=-+++= y x , 又∵P 点在直线l 上, ∴51)31(411-++=+-λ λλλ, ∴31=λ。 例2:如图所示,在ABC ?中,D 为边BC 上的点,且k =,E 为AD 上的一点,且l =,延长BE 交AC 于F ,求F 分有向线段所成的比λ。 解:∵λ=,∴λλλ+++= 111, 又EA l DE =,∴BA l l BD l BE +++=111, 而BC k k DC k BD +==1, ∴BA l l BC k l k BE ++++= 1)1)(1(, ∵B 、E 、F 共线,∴设BF t BE =,而BA t BC t BF t λ λλ+++=11 ∴ BA t BC t BA l l BC k l k λ λλ+++=++++111)1)(1( F E D C B A

∴???????+=+++=+l l t k l k t 11) 1)(1(1λλλ,解得k k l )1(+=λ。 二、求直线上点的坐标 例3:已知点)1,1(--A ,)5,2(B ,点C 为直线AB 上一点,且5-=,求C 点的坐标。 分析:先求出C 点分的λ的值,再利用定比分点的向量公式求出点C 的坐标。 解:∵5-=,∴5==CB λ, 利用定比分点的坐标公式有 )4,2 3 ()5,2(65)1,1(616561=+--=+=OB OA OC 。 ∴C 点的坐标为)4,2 3 (。 例4:已知)3,2(A ,)5,1(-B ,且AB AC 3 1 =,3=,求点C ,D 的坐标。 分析:由题设,运用定比分点的向量公式,可以求得点C ,D 的坐标。 解:设),(11y x C ,),(22y x D , ∵AB AC 31 = ,∴2 11== λ, ∴根据定比分点的向量公式有OB OA OC 2 11111 λλλ+++= , ∴)311 ,1()5,1(31)3,2(32)5,1(2 1121 )3,2(2111),(11=-?+?=-?++?+=y x 同理由AB AD 3=得2 3 2- == λ, ∴根据定比分点的向量公式有OB OA OC 2 11111 λλλ+++= , ∴)9,7()5,1(3)3,2(2)5,1(2 3123 )3,2(2311 ),(22-=-?+?-=-?+- +?-=y x

线段的定比分点公式的应用(精品绝对好)

线段的定比分点公式的应用 一、难点知识剖析 (一)、在运用线段的定比分点坐标公式时,要注意(x 1,y 1)是起点的坐标,(x 2,y 2)是终点的坐标,(x ,y)表示分点的坐标,在每个等式中涉及到四个不同的量,它们分别表示三个坐标和定比λ,只要知道其中任意三个量,便可求第四个量. (二)、如何确定定比分点坐标公式中的λ 1、由坐标确定:分点坐标 终点坐标起点坐标 分点坐标--=--=--= y y y y x x x x 2121λ 2、由12 PP PP λ= 确定:先求||||21PP =λ2 1PP =λP 1与2PP 的方向决定λ的符号. 例:设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 1 2PP PP λ= ,求点P 的坐标. (三)、特殊情况的分析 1、λ=0时,分点P 与起点P 1重合 2、λ=1时,分点P 为线段P 1P 2的中点 3、λ不可能等于-1(若λ=-1,则P 1、P 2重合,与P 1P 2为线段矛盾) ∴λ∈(-∞,-1)∪(-1,+∞) 4、无论λ取何实数(当然λ≠-1)分点P 不可能与终点P 2重合 二、例题讲解 例1、已知点A 分有向线段的比为2,求下列定比λ:(1)A 分的比;(2)B 分的比;(3)C 分的比.

分析:本题直接用公式计算不太方便,若画出图表就一目了然. 解答:因为A分的比为2,所以A在BC之间,且|BA|=2|AC|(如图所示) 例2、已知P分所成的比为λ,O为平面上任意一点,. 求证:线段定比分点向量公式 证明:∵P分所成比为λ, 例3、已知三点A(x1,y1),B(x2,y2),C(x3,y3),D点内分的比为,E在BC上,且使△BDE的面积是△ABC面积的一半,求向量的坐标.(提示:三角形面积等于两边与其夹角正弦乘积的一半) 分析:要求的坐标,就要求D点的坐标,也要求E点的坐标.由于E点在线段BC上,且已知B、C两点的坐标,因此我们只要能确定E分有向线段的比,应用定比分点公式就能求出E点的坐标,将E点坐标减去D点的坐标就可得到向量. 解答:如图所示,

定比、定比分点公式

(3)定比、定比分点公式 一、教学内容分析 本节是的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法. 本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别. 根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计 1理解定比的概念,掌握定比分点公式; 2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式; 3通过本节的学习,提升发现能力、推理能力,渗透数形结合 思想. 三、教学重点及难点 定比的概念,定比分点公式的推导和应用. 四、教学流程设计

五、教学过程设计 一、 情景引入 观察思考,引入新课 问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA ∥AC ,即存在实数λ,使BA = λAC ??,那么实数λ= . 而若?BC CA λ=,则λ= . [说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=时,你能求出点P 的坐标吗(引出课题) [说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课 1.定比分点公式

立体几何(向量法)—找点难(定比分点公式)

立体几何(向量法)—找点难(定比分点公式) 例1(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱 ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB (Ⅰ) 证明B 1C 1⊥CE ; (Ⅱ) 求二面角B 1-CE -C 1的正弦值. (Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为6 , 求线段AM 的长. 【答案】解:方法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0). (1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE → =0,所以B 1C 1⊥CE . (2)B 1C → =(1,-2,-1), 设平面B 1CE 的法向量=(x ,y ,z ),

则?????·B 1C →=0,m · CE →=0,即?????x -2y -z =0,-x +y -z =0,消去x ,得y +2z =0,不妨令z =1,可得一个法向量 为=(-3,-2,1). 由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→ =(1,0,-1)为平面CEC 1 的一个法向量. 于是cos 〈,B 1C 1→〉=m ·B 1C 1→ |m |·|B 1C 1→|=-414×2=-2 77,从而sin 〈,B 1C 1→ 〉=217. 所以二面角B 1-CE -C 1的正弦值为217. (3)AE →=(0,1,0),EC 1→=(1,1,1).设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB → =(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB → 〉|=|AM →·AB →||AM →|·|AB →|= 2λ λ2+(λ+1)2+λ2×2=λ3λ2+2λ+1. 于是 λ3λ2+2λ+1=26 ,解得λ=1 3(负值舍去),所以AM = 2. 方法二:(1)证明:因为侧棱CC 1⊥平面A 1B 1C 1D 1, B 1 C 1?平面A 1B 1C 1 D 1,所以CC 1⊥B 1C 1.经计算可得B 1 E =5,B 1C 1=2,EC 1=3,从而 B 1E 2=B 1 C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E .又CC 1,C 1E ? 平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1⊥平面CC 1E ,又CE ?平面CC 1E ,故B 1C 1⊥CE . (2)过B 1 作B 1G ⊥CE 于点G ,联结C 1G .由(1),B 1C 1⊥CE .故CE ⊥平面B 1C 1G ,得CE ⊥C 1G ,

定比、定比分点公式讲解学习

定比、定比分点公式

8.1(3)定比、定比分点公式 一、教学内容分析 本节是8.1的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=u u u r u u u r 中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法. 本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别. 根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计 1理解定比的概念,掌握定比分点公式; 2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式; 3通过本节的学习,提升发现能力、推理能力,渗透数形结 合思想. 三、教学重点及难点 定比的概念,定比分点公式的推导和应用. 四、教学流程设计

五、教学过程设计 一、 情景引入 观察思考,引入新课 问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA u u u r ∥AC u u u r ,即存在实数λ,使BA u u u r = λAC u u u r ,那么实数λ= . 而若 BC CA λ=u u u r u u u r ,则λ= . [说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=u u u r u u u r 时,你能求出点 P 的坐标吗?(引出课题) [说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课

人教版高中数学定比分点公式的向量形式及应用

定比分点公式的向量形式及应用 众所周知,向量法是解决平面几何问题的重要方法之一,而定比分点公式是解析几何中应用非常广泛的重要公式之一;本文介绍定比分点公式的向量形式及其在解决平面几何问题中的应用;供大家参考. 1 定理及其推论 定理 设点P 分21P P 的比为λ(即21PP P P λ=,1-≠λ),Q 为平面上的任意一点,则21 111QP QP QP λ λ λ+++= .(定比分点公式的向量形式) 证明: ∵21PP P P λ=,∴)(21QP QP QP QP -=-λ 即21)1(QP QP QP λλ+=+,即21 111QP QP QP λ λ λ+++= . 推论1设点P 为OAB ?的边AB 上的点,且 ,,n PB m AP ==则OB n m m OA n m n OP +++=. 推论2设点P 为OAB ?的边AB 的中点,则)(2 1 OB OA OP +=. 推论3 OAB ?中,点P 在直线AB 上的充要条件是:存在实数t ,使 OB t OA t OP )1(-+=成立 证明:(充分性)∵OB t OA t OP )1(-+=, ∴)(OB OA t OB OP -=-,即BA t BP =, 故P B A ,,三点共线,即点P 在直线AB 上. (必要性)(1)当点P 不与B 重合时,可设P 分AB 的比为λ,则由定理可知 OB OA OP λλλ+++= 111,取λ +=11 t 得OB t OA t OP )1(-+=.

(2) 当点P 与B 重合时,可取0=t ,显然有OB t OA t OP )1(-+=成立. 推论4在直角坐标平面中,设()111,y x P ,()222,y x P ,()y x P ,,且点P 分21P P 的比为λ(其中1-≠λ),则λλ++= 121x x x ,λ λ++=12 1y y y (定比分点公式) 证明:取Q 为原点()0,0O ,由定理可得()()),(1,11 ,2211y x y x y x λ λλ+++=, 即λλ++=121x x x ,λ λ++=12 1y y y 2 应用举例 (1)证明比例线段关系 例1 如图,在ABC ?中,E D ,是BC 边的三等分点,D 在B 和E 这之间, F 是AC 的中点, G 是AB 的中点,设 H 是线段DF 与EG 的交点,求比值HG EH :. 分析:要求比值HG EH :的大小,只须得到向量与向量之间的线性关系,由平面向量基本定理可知,可选择一组合适的基底, 则向量EH 、向量都可用这组基底的线性组合表示之,一旦表示成功,则结论也唾手可得了. 证明:设=, =,连结CG 、CH ,由于EC BE 2=, 由推论1可知:=+= 3132)(3 132-+ CG CB -=31)(2131CA CB CB +-==b a 2 161-- 即2 1 61+=;∵D 、H 、F 三点共线,∴t t )1(-+= ))(1(t t --+=== --+)3121)(1(3a b t a t b t a t 2 1312-+-, ∵与EH 是共线向量,∴0312212161=-?--? t t ,即5 3 =t , E

定比分点公式的三大应用

定比分点公式的应用 线段的定比分点坐标公式:设P 1(x 1,y 1),P 2(x 2,y 2)是平面内两个定点,点P 0 (x 0,y 0)分有向线段12PP u u u u r 所成的比为λ,则 有 ??? ???? ++=++=λλλλ112 10210y y y x x x (λ≠-1) 而 01012020 x x y y x x y y λ--==-- 特别地,当点P 0为内分点或者与点P 1重合时,恒有λ≥0,当点P 为外分点时,恒有λ<0(λ≠-1)。 定比分点公式揭示了直线上点的位置与数量变化之间的转化关系。灵活应用这个公式,可使解题过程简洁明快,充分展现思维的独创性。下面举例说明它在解题中的应用。 一、用于求解数值的范围 例2.已知,0,1,a b c c <<≠-a+bc x=且1+c 求证:[,]x a b ?。 证明:设(),(),()A a B b P x 是数轴上的三点,P u u r 是AB 的定比分点,则定比 P ∴u u r 是AB 的外分点,则 [,]x a b ?。 二、用于解决不等式问题 例1.已知1,1a b <<,求证: 11a b ab +<+。 证明:设(1),(1),()1a b A B P ab +-+是数轴上的三点,P λu u r 分AB 的比是,则 1,10,a b P λ<<∴>Q 是u u r AB 的内分点, 1a b ab +∴ +在-1与1之间,即 11a b ab +<+。 定比分点公式的类比推理 从定比分点公式的结构形式来看,它与平面几何中的平行于梯形、三角形底边的截线问题,立体几何中的平行于柱、锥、台底面的截面问题以及数列中的通项公式、

定比分点公式的三大应用

定比分点公式的应用 线段的定比分点坐标公式:设P 1(x 1,y 1),P 2(x 2,y 2)是平面内两个定点,点P 0(x 0,y 0)分有向线段12PP 所成的比为λ,则 有??? ???? +=++=λλλ12 10210y y y x x x (λ≠-1)而01012020 x x y y x x y y λ--==-- λ<0(λ≠-1)。 可使解例2.已知P ∴是例1.已知证明:设1,a b

分成上、下两部分之比为λ(λ≠-1),则EF 的长l= λ λ++12 1l l (λ≥0)。 特别地,(1)当l 1=l 2时,条件为一平行四边形,结论仍成立; (2)当l 1=0时,条件为一三角形,结论仍成立; (3)当λ=1时,即可得到梯形的中位线公式。 证明:设BA 的延长线与CD 的延长线交于O ,由三角形相似可得 由(1)(2)可得λ λ++= 12 1l l l 。 。 h 和h ,依照公式2的推导方法,不难证明出以下两公式: 命题2’:设棱台的上、下底面积分别为S 1、S 2,平行于底面的截面的面积为S 0,若此截面将棱台的侧面分成的上、下两部分的面积之比为λ,则有λ λ++= 1)()()(2 22120S S S 命题2”:设棱台的上、下底面积分别是S 1、S 2,平行于底面的面积为S 0.若此截面将棱台分成的上、下两部分的体积比为λ,则有λ λ++=1)()()(3 2313 0S S S

定比分点公式专题讲座

线段的定比分点 南宁二中 陈芬 教学重点:1、准确理解和掌握定比分点的有关概念; 2、掌握定比分点坐标公式及其推导方法与应用。 教学难点:1、定比分点的有关概念及定比分点坐标公式的推导方法; 2、暴露公式推导中所蕴涵的数学思想与方法。 教学目标 ⑴掌握定比分点的有关概念、定比分点坐标公式及公式的推导方法和应用。 ⑵领悟到公式推导中蕴涵的数学思想,并在推导过程中培养学生的思维能力 和创新能力,以及对知识的应用能力。 ⑶感悟如何去分析问题、提出问题并解决问题的思维过程,学会自主学习。 ⑷培养学生勇于探究、善于探究的精神,从而养成学生良好的数学学习品质。 教学方式:启发式、探究式 教具使用:多媒体 教学过程: 一、设置情景 中国驻南极的科考站派出的科考车在科考站附近的两个地点1P 、2P 之间进行实地考察(如图),1P 在科考站北偏西距离10公里的地方,2P 在科考站北偏东距离20公里的地方。科考车按一定速度从1P 到2P 直线行驶需3个小时。一天,科考站收到消息,科考车从1P 出发2小时到P 处时出现故障,现从科考站派出的救援车若按一定速度行驶,则应朝哪个方向行驶可最快赶往出事点P 处? 西南

二、探究引入与揭示课题 问题一: 针对以上实际问题,请同学们提炼出一个数学模型。(展示学生的成果) ①已知点),(111y x P 、),(222y x P ,有一点P 使 k PP P P =2 1,求P 点坐标 ②已知点),(111y x P 、),(222y x P ,直线21P P 上有一点P 使 k PP P P =21,求P 点坐标 ③已知点),(111y x P 、),(222y x P ,线段21P P 上有一点P 使k PP P P =2 1,求P 点坐标 问题二: 哪几个表述是可以解决的? (通过分析,学生会发现只有③可以确定解决,①解决不了,而②包含有两种情况,其中一种就是③,那另一种情况呢?引导学生对②进行分类,得出以下两种表述) ④已知点),(111y x P 、),(222y x P ,线段21P P 延长线上有一点P 使k PP P P =2 1,求P 点 坐标 ⑤已知点),(111y x P 、),(222y x P ,线段21P P 反向延长线上有一点P 使 k PP P P =2 1,求P 点坐标 问题三: ③④⑤的表述有哪些异同?可以用什么更简洁的表述形式来代替这些表述? (引导学生归纳出:③④⑤的表述都可用下面的形式代替就) 21PP P P λ= 问题四: λ取何值时分别代表③④⑤的意义? 点P 在线段21P P 上?0>λ; 点P 在线段21P P 延长线上?1-<λ; 点P 在线段21P P 反向延长线上?01<<-λ

向量公式汇总

向量公式汇总 平面向量 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。 3、|a?b|≠|a|?|b| 4、由|a|=|b| ,推不出a=b或a=-b。 5、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ①当且仅当a、b反向时,左边取等号; ②当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

定比分点

[编辑本段] 定比分点定义 对于轴上两个已给的点P,O,它们的坐标分别为X1,X2,在轴上有一点L,可以使PL/LO等于已知常数λ。即PL/LO=λ,我们就把L叫做有向线段PO的定比分点。若设L的坐标为X,则X=(X1+λX2)/(1+λ),Y=(Y1+λY 2)/(1+λ) [编辑本段] 定比分点相关概念 1.线段的定比分点及λ: P1,P2是直线L上的两点,P是L上不同于P1,P2的任一点,存在实数λ,使向量P1P=λ向量PP2,λ叫做点P分P1P2所成的比。 P点位置与λ的关系 以P1P2中点为原点,x轴表示P相对P1 P2的位置,y轴表示λ的取值根据右图,从左往右看,λ 的取值有以下五种情况 ①P在P1左边(P在向量P1P2反向延长线上),λ∈(-1,0) ②P与P1重合,λ=0 ③P在P1与P2之间(P在向量P1P2上),λ∈(0,+∞) *i. P在P1与原点之间,即P1P<PP2,λ∈(0,1) *ii. P与原点重合,即P1P=PP2,λ=1 *iii. P在原点与P2之间,即P1P>PP2,λ∈(1,+∞) ④P与P2重合,λ∈Φ ⑤P在P2右边(P在向量P1P2正向延长线上),λ∈(-∞,-1) 2 定比分点公式:

若设点P1(x1,y1),P2(x2,y2),λ为实数,且向量P1P=λ向量PP2 即P1P=λPP2 由向量的坐标运算,得P1P=(x-x1,y-y1),PP2=(x2-x, y2-y) ∴(x-x1,y-y1)=λ(x2-x, y2-y) ∴定比分点公式为, λ=(x-x1)/(x2-x) λ=(y-y1)/(y2-y) 3.定比分点坐标公式: ∴λ=(x-x1)/(x2-x) ∴λx2-λx=x-x1 λx2+x1=λx+x 得,x=(λx2+x1)/(λ+1) 同理,y=(λy2+y1)/(λ+1) 注:当λ=1时,即中点坐标公式。 定比分点定理 目录[隐藏] 证明 定比分点补充公式 补充公式证明 已知线段PQ上有一点T,且PT/PQ=a,AB是与PQ无交点的一条线段,则S(AT B)=a*S(ABQ)+(1-a)*S(ABP) 其中S(AQB)表示AQB的面积,以此类推。 [编辑本段] 证明 记ABPQ的面积为S,则

立体几何(向量法)—找点难(定比分点公式)

立体几何(向量法)—找点难(定比分点公式) 例1(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱 ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点. (Ⅰ) 证明B 1C 1⊥CE ; (Ⅱ) 求二面角B 1-CE -C 1的正弦值. (Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为2, 求线段AM 的长. 【答案】解:方法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0). (1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE . (2)B 1C →=(1,-2,-1), 设平面B 1CE 的法向量=(x ,y ,z ), 则?????·B 1C →=0,m · CE →=0,即?????x -2y -z =0,-x +y -z =0,消去x ,得y +2z =0,不妨令z =1,可得一个法向量为=(-3,-2,1). 由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平 面CEC 1的一个法向量. 于是cos 〈,B 1C 1→〉=m ·B 1C 1→|m |·|B 1C 1→|=-414×2=-277,从而sin 〈,B 1C 1→〉=217.

线段的定比分点

课题:线段的定比分点. 目的:掌握有向线段的定比分点和线段的中点公式,并能简单应用. 重点、难点:线段的定比分点. 过程: 一、复习引入 前面我们学习了有向直线,有向线段,有向线段的长度,有向线段的数量等许多概念和符号.今天我们想在此基础上跟大家讨论线段的定比分点. 二、新授 1.定义:有向直线l 上的一点P ,把l 上的有向线段21P P 分成两条有向线段P P 1和2PP .P P 1和2PP 数量的比叫做点P 分21P P 所成的比,通常用字母λ来表示这个比值,2 1PP P P = λ,点P 叫做21P P 的定比分点. 2.说明: (1)21P P 是在过两点1P 、2P 的一条有向直线上的有向线段,1P 是起点,2P 是终点; (2)P P 1是以1P 为起点,P 为终点;2PP 是以P 为起点,2P 为终点.顺序不能颠倒,否则λ的值就会随之改变;(为了联系紧密,P 为分点,∴2 1PP P P =λ中,P P →1,2P P →,就是起点→分点,分点→终点.) (3)21PP P P 不是线段的长度之比,而是有向线段的数量之比,这个比与过21P P 的有向直线无关; (4)在2 1PP P P 中,分子是由线段的起点1P 到分点P 的有向线段P P 1的数量,分母是由分点P 到终点2P 的有向线段2PP 的数量. 请思考,点P 分21P P 所成的比和点P 分12P P 所成的比有何关系. 3.练习:如图,求点B 分AC ,点B 分CA ,点C 分AB ,点C 分BA ,点A

分BC ,点A 分CB 所成的比.(23,32,25-,5 2-,53-,35-) 由此回答:(1)P 分21P P 的比与P 分12P P 的比互为倒数;(2)λ的符号与点P 的位置有关. 4.小结:若点P 在线段21P P 上,点P 叫做21P P 的内分点,此时0>λ;若点P 在线段12P P 或21P P 的延长线上,点P 叫做21P P 的外分点,此时0<λ. 三、解几的基础是坐标系、点的坐标,那么我们怎样求定比分点的坐标呢? 问题:设21P P 的两个端点分别为),(111y x P 和),(222y x P ,点P 分21P P 所成的比为λ(1-≠λ),求分点P 的坐标),(y x . 分析:过点1P 、2P 、P 分别作x 轴的垂线11M P 、22M P 、PM ,则垂足分别是)0,(11x M 、)0,(22x M 、)0,(x M .根据平行线分线段成比例定理,得 2121MM M M PP P P =. 如果点P 在线段21P P 上,那么点M 也在线段21M M 上;如果点P 在线段21P P 或12P P 的延长线上,那么点M 也在线段21M M 或12M M 的延长线上.因此2 1PP P P 与21MM M M 的符号相同,所以21PP P P =21MM M M . ∵11x x M M -=,x x MM -=22,∴x x x x --=21λ, 即21)1(x x x λλ+=+,当1-≠λ时,得λ λ++= 121x x x . 同理可以求得y y y y --=21λ,λλ++=121y y y . 因此,当已知两个端点为),(111y x P 、),(222y x P ,点),(y x P 分21P P 所成的比为λ时,点P 的坐标是

向量公式大全83580

向量公式大全 『ps.加粗字母表示向量』1.向量加法 AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 AB-AC=CB 即“共同起点,指向被减” 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』 实数λ 向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 1 当∣λ∣<1时,表示向量a的有向线段在原方向

(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积 定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0 |a?b|≤|a|?|b| 向量的数量积与实数运算的主要不同点『重要』 1、(a?b)?c≠a?(b?c) 例如:(a?b)2≠a2?b2 2、由a?b=a?c (a≠0),推不出b=c 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b 5、向量向量积 定义:两个向量a和b的向量积是一个向量,记作a 2 ×b.若a、b不共线,则a×b的模是:∣a×b∣

相关文档
最新文档