控制论论文

控制论论文
控制论论文

最优控制理论简单研究

姓名:学号:

内容摘要

最优控制理论(optimal control theory),是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。其所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多。因此最优控制理论对于解决实际问题和促进科学的发展具有重要的意义和作用。

关键字:最优控制;状态方程;稳定性

引言

控制工程领域早期的经典控制方法和技术早已被工程师们所熟知并进行广泛的应用。一般而言经典控制非常适合解决单输入单输出线性定长系统的控制器设计问题。然而对于高阶系统或多输入多输出系统,采用经典控制方法很难获得令人满意的控制性能。在这种情况下,控制学者于20世纪60年代初开始研究状态空间方法,并依此发展出现代控制的理论框架。其中最优控制则是现代控制理论的主要分支,解决最优控制问题的主要方法有变分法、极值原理和动态规划。从数学的观点来看,最优控制研究的问题是求解一类带有约束条件的泛函极值问题,属于变分学的范畴,但它只能解决一类简单的最优控制问题,因为它只对无约束或开集性约束是有效的,而无法解决工程实际中经常碰到的容许控制属于闭集的一类最优控制问题。这就促使了控制学者们开辟求解最优控制问题的新途径。苏

联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用,而这两种理论则被称作是最优控制理论的两大基石,它们对现代控制理论的发展起了重要的推动作用。

理论形成阶段:

自动控制联合会(IFAC)第一届世界大会于1960年召开,卡尔曼(Kalman )、贝尔曼(R.Bellman )和庞特里亚金(Pontryagin )分别在会上作了“控制系统的一般理论”、“动态规划”和“最优控制理论”的报告,宣告了最优控制理论的诞生,人们也称这三个工作是现代控制理论的三个里程碑。

1953-1957年,贝尔曼(R.E.Bellman)创立“动态规划”原理。

为了解决多阶段决策过程逐步创立的,依据最优化原理,用一组基本的递推关系式使过程连续地最优转移。“动态规划”对于研究最优控制理论的重要性,表现于可得出离散时间系统的理论结果和迭代算法。

1956-1958年,庞特里亚金创立“极小值原理”。它是最优控制理论的主要组成部分和该理论发展史上的一个里程碑。对于“最大值原理”,由于放宽了有关条件的使得许多古典变分法和动态规划方法无法解决的工程技术问题得到解决,所以它是解决最优控制问题的一种最普遍的有效的方法。同时,庞特里亚金在《最优过程的数学理论》著作中已经把最优控制理论初步形成了一个完整的体系。

此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有不等式约束条件下的非线性最优必要条件(库恩—图克定理)以及卡尔曼的关于随机控制系统最优滤波器等。

最优控制问题的描述

1、系统的状态方程。

对连续系统,其状态方程为: 对离散系统,其状态方程为:

X(k+1)=f( X(k), u(k), k )

系统状态方程给出了系统内部状态随系统控制输入的变化关系,或者说是内部状态的一种约束关系,或者说是系统状态在整个控制过程的转移约束关系。

2、系统状态的始端和终端条件。

始端和终端条件给出了系统状态在系统控制开始和结束时刻的约束条件。

端点条件一般有三种类型:固定端、自由端和可变端。

固定端就是时间和状态值都是固定的端点。例如初始时间t 0及其初始状态X(t 0)都固定就称始端固定条件,而终端时间t 1及其终端状态X(t 1)都固定就称终端固定条件。一般来说,两端固定是最简单的情况。

自由端是指端点时间固定,但端点状态值不受任何限制的端点。有始端自由和终端自由两种。 可变端就是端点时间及其状态值都可变的端点。但一般它满足一定条件,如满足C(t 1)=0,或N[X(t 1), t 1]=0。

3、系统控制域。

在实际控制系统中,控制输入u (t )往往是受限制地任意取值的,例如作为作为汽车控制的发动机,其输出功率就有最大功率的限制。所以在许多最优控制问题中,需要规定一个)),(),((t t u t X f X

允许的控制域,即控制允许取值的范围,在此范围取值的控制称为允许控制。

如果系统目标泛函只取式中的第一项,即:

或 则称为终端型或迈耶(Mayer )型。

如果系统目标泛函只取式中的第二部分,即 或 则称为积分型或拉格朗日(Lagrange)型。 最优控制问题就是在满足上述1、2、3点的条件下,找到一个控制u (t ),使得系统目标泛函J 达到最大或最小。这样的控制u (t )就称系统的最优控制u *(t ),将u *(t )代入系统状态方程就可解得系统的状态轨迹X(t ),称之为最优状态轨迹X*(t )。

一个最优控制问题的复杂程度,或者说其求解和实现的难易程度是由上述四方面的具体规定,特别是系统的性能指标的具体形式来决定的。一般来说,两端固定的线性系统,其控制不受限制,且系统性能指标为积分型时,最优控制问题是比较简单的。 结论

常见的实际物理系统,性能指标的提法合理则一般存在最优解,而且在一定的范围内有唯一解。但是,对于一个比较复杂的问题,最优控制问题解的存在性和唯一性的判定是比较复杂的,有时甚至是不可能的。现在的研究一般都假定是有唯一解的最优控制问题,即可以求出一个最优的解来。

我们还应该了解,我们希望找到的是“整体”的最优控制,也就是在允许的范围内,寻找的控制作用使动态系统的性能指标达到最小或者最大。但是,在实际情况中除二次型性能指标的最优控制问题外,一般是很难用定量方法求得整体最优控制的,因此常常是求出许多局部最优控制,再挑选整体最优控制。

21世纪是科技迅猛发展的时代,各门学术都将有令人耳目一新的成就出现。而最优控制仍是一个十分活跃的研究领域,在理论和实践两方面都得到了充分的发展,为科学的发展和人类的进步作出了巨大的贡献。

参考文献:

[1]胡寿松,王执铨,胡维礼. 最优控制理论与应用[M].北京:科学出本社,2005.

[2]王青,陈宇. 最优控制--理论、方法与应用[M]. 北京:高等教育出版社,2011.

[3]孙文瑜,徐成贤. 最优化方法,高等教育出版社[M],2004

[4]王孝武. 现代控制理论基础,(第二版),机械工业出版社[M],2006

[5]顾立钧.最优控制系统[M].北京:水利电力出版社,1993.

))((1t X J Φ=))((l X J Φ=?=10)),(),((t t dt t t u t X F J ∑

-==1)),(),((l h

k k k u k X F J

科学方法论

1.1.1科学方法论 科学”概念的基本内涵 科学是一种基于理性的知识体系,其内涵主要包括三个方面: (1)科学是客观的知识。也就是说科学所研究的对象,包括自然界、人类社会在内的一切事物都是有客观实在性的,不是以人的意志为转移的。科学研究必须从这些客观现实出发,科学知识就是对客观世界的过去、现在与未来的一种正确认识,是对客观事物及其规律的反映,是具有客观性的一种认识形态。 (2)科学是理论化的知识。科学应该是认识的概括、抽象,因而是一种理论化的知识形态。 (3)科学是一种不断发展的知识形态。正如罗素所说的,“科学总是一支未完成的交响曲”。由于人们总是受到特定的历史条件和认识水平限制,作为人类认识结晶的科学只能逐渐逼近真理,近似地反映客观实在。 “科学方法论”的界定 在“科学方法论”的语言结构中,“科学”只是个限定词,是对主词“方法论”的内涵和外延的规范。因此可以将“科学方法论”理解为:对客观事物本质和规律进行证实和证伪的一般认识原则或理论学问。一般而言,科学认识又包括两个层次,即经验认识层次和理论认识层次。所谓经验认识层次是指对事实的积累以及概括、综合、分析,从而获得适用于实际目的的经验规律的阶段。所谓理论认识层次是实现知识的系统化并形成具体领域理论体系的阶段。 科学方法论的发展历程 根据各个历史时期的不同特点,可以将其发展历程划分为四个阶段: (1)自然哲学时期。16世纪以前,以直接观察,直觉猜测和形式逻辑推理为主要方法阶段。也可以称之为直觉观察时期。该时期的代表人物有古希腊数学家、哲学家毕达哥拉斯、得谟克里特、柏拉图、亚里士多德、伊璧鸩鲁等等。这一时期的科学方法基本属于经验方法范畴。 (2)分析方法为主阶段。16~19世纪,各门学科开始从哲学中分离出来,并各自形成独立的学科和自己的研究方法。1620年,弗朗西斯·培根的《新工具》一书问世,给当时的科学形成和发展产生了巨大影响,他在书中着重探讨了经验归纳法。与此同时,笛卡尔在《谈方法》一书中,从唯理性的演绎论出发,强调理性的推理和分析。 从而奠定了当时以分析为总体特征的科学方法论。这一时期的代表人物还有伽利略、牛顿、休谟等。 (3)辩证方法为主时期。19世纪40年代至20世纪中叶,由于细胞学、能量守恒与转化论和进化论的出现,自然科学已经逐步发展成为一种关注过程以及各种过程的整体性联系的科学,这一时期人们对世界的认识方法开始采取辩证方法,在研究中将对象的各个部分、要素结合起来,动态地考察对象整体的性质和功能,这一方法进一步得到了微观物理学、量子力学、相对论以及天体演化学等现代前沿科学成果的证

机械控制工程基础课后答案董玉红徐莉萍主编

机械控制工程课后答案 1-1机械工程控制论的研究对象与任务就是什么? 解机械工程控制论实质上就是研究机械一r_程技术中广义系统的动力学问题。具体地讲,机械工程控制论就是研究机械工程广义系统在一定的外界条件作用下,从系统的一定初始条件出发,所经历的由内部的固有特性所决定的整个动态历程;研究这一系统及其输入、输出二者之间的动态关系。 机械工程控制论的任务可以分为以下五个方面: (1)当已知系统与输人时,求出系统的输出(响应),即系统分析。 (2)当已知系统与系统的理想输出,设计输入,即最优控制。 (3)当已知输入与理想输出,设计系统,即最优设计。 (4)当系统的输人与输出己知,求系统的结构与参数,即系统辨识。 (5)输出已知,确定系统,以识别输入或输入中的有关信息,即滤波与预测。 1、2 什么就是反馈?什么就是外反馈与内反馈? 所谓反馈就是指将系统的输出全部或部分地返送回系统的输入端,并与输人信号共同作用于系统的过程,称为反馈或信息反馈。 所谓外反馈就是指人们利用反馈控制原理在机械系统或过程中加上一个人为的反馈,构成一个自动控制系统。 所谓内反馈就是指许多机械系统或过程中存在的相互藕合作用,形成非人为的“内在”反馈,从而构成一个闭环系统。 1、3 反馈控制的概念就是什么?为什么要进行反馈控制? 所谓反馈控制就就是利用反馈信号对系统进行控制。 在实际中,控制系统可能会受到各种无法预计的干扰。为了提高控制系统的精度,增强系统抗干扰能力,人们必须利用反馈原理对系统进行控制,以实现控制系统的任务。 1、4闭环控制系统的基本工作原理就是什么? 闭环控制系统的基本工作原理如下: (1)检测被控制量或输出量的实际值; (2)将实际值与给定值进行比较得出偏差值; (3)用偏差值产生控制调节作用去消除偏差。 这种基于反馈原理,通过检测偏差再纠正偏差的系统称为闭环控制系统。通常闭环控制系统至少具备测量、比较与执行三个基本功能。 1、5对控制系统的基本要求就是什么? 对控制系统的基本要求就是稳定性、准确性与快速性。 稳定性就是保证控制系统正常工作的首要条件。稳定性就就是指系统动态过程的振荡倾向及其恢复平衡状态的能力。 准确性就是衡量控制系统性能的重要指标。准确性就是指控制系统的控制精度,一般用稳态误差来衡量。 快速性就是指当系统的输出量与输入量之间产生偏差时,系统消除这种偏差的快慢程度。 2-1

经典控制理论和现代控制理论的区别和联系

1.经典控制理论和现代控制理论的区别和联系 区别: (1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。严格的说,理想的线性系统在实际中并不存在。实际的物理系统,由于组成系统的非线性元件的存在,可以说都是非线性系统。但是,在系统非线性不严重的情况时,某些条件下可以近似成线性。所以,实际中很多的系统都能用经典控制系统来研究。所以,经典控制理论在系统的分析研究中发挥着巨大的作用。 现代控制理论相对于经典控制理论,应用的范围更广。现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统;不仅可以分析定常系统,还可以分析时变系统。 (2)数学建模方面:微分方程(适用于连续系统)和差分方程(适用于离散系统)是描述和分析控制系统的基本方法。然而,求解高阶和复杂的微分和差分方程较为繁琐,甚至难以求出具体的系统表达式。所以,通过其它的数学模型来描述系统。 经典控制理论是频域的方法,主要以根轨迹法和频域分析法为主要的分析、设计工具。因此,经典控制理论是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析和设计。然而对于多信号、非线性和时变系统,传递函数这种数学模型就无能为力了。传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。 现代控制理论则主要状态空间为描述系统的模型。状态空间模型是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,是对系统的一种完全描述。状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。另外状态空间分析法还可以用计算机分析系统。 (3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似看为线性定常系统,所以经典控制理论应用的比较广泛。 现代控制理论是在经典控制理论基础上发展而来的,对于研究复杂系统较为方便。并且现代控制理论可以借助计算机分析和设计系统,所以有其独特的优越性。 联系:(1)虽然现代控制理论的适用范围更多,但并不能定性的说现代控制理论更优于经典控制理论。我们要根据具体研究对象,选择合适的理论进行分析,这样才能是分析的更简便,工作量较小 (2)两种控制理论在工业生产、环境保护、航空航天等领域发挥着巨大的作用。 (3)两种理论有其各自的特点,所以在对系统进行分析与设计时,要根据系统的特征选取

学习机械控制论的作用

学机械工程控制论的作用 机械工程控制是研究控制论在机械工程中的应用科学。它是一门跨机械制造技术和控制理论的新型学科。随着工业生产和科学技术的不断向前发展,机械工程控制作为一门新的学科越来越为人们所重视。原因是它不仅能满足今天自动化技术高度发展的需要,同时也与信息科学和系统科学紧密相关,更重要的是它提供了辩证的系统分析方法,即不但从局部,而且从总体上认识和分析机械系统,改进和完善机械系统,以满足科技发展和工业生产的实际需要。各种控制理论更是不断发展。 控制论强调: 1)所研究的对象是一个系统; 2)系统在不断地运动(经历动态历程、包括内部状态和外部行为);3)产生运动的条件是外因(外界的作用:输入、干 扰) 4)产生运动的根据是内因(系统的固有特性)控制有温度控制,生铁成分控制,厚度控制,张力控制,等等。 自动控制: 在没有人直接参与的情况下,利用外加的设备或装置(称为控制装置或控制器),使机器、设备或生产过程(通称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。 例.典型控制系统:数控机床、机车、船舶及飞机自动驾驶、导弹制导等。所谓自动控制指的是在没有人直接参与的情况下,利用控制器自动调节和控制机器设备或生产过程的工作状态,使之保持不变或按预定的规律变化这样一种现象,叫做自动控 制。 控制理论的应用 (1)在机械制造过程自动化方面现代生产向机械制造过程的自动化提出了越来越多、越来越高的要求:一方面是所采用的生产设备与控制系统越来越复杂;另一方面是所要求的技术经济指标要求越来越高。这就必然导致“自动化”与“最优化”、“可靠性”

的结合,从而使得机械制造过程的自动化技术从一般的自动机床、 自动生产线发展到数控机床、多微计算机控制设备、柔性自动生产线、无人化车间乃至设计、制造、管理一体化的计算机集成制造系 统CIMS。还可以预期,伴随着制造理论、计算机网络技术和智能技 术以及管理科学的发展,还将发展到网络环境下的智能制造系统, 包括网络化的制造系统的组织与控制,当然也包括智能机器人、智 能机床,以及其中的智能控制,乃至于发展到全球化制 造。 (2)在对加工过程的研究方面现代生产一方面是生产效率越 来越高,例如,高速切削、强力切削、高速空程等日益获得广泛应用;另一方面是加工质量特别是加工精度越来越高,0.1微米精度级、0.01微米精度级乃至纳米精度级的相继出现,使得加工过程中 的“动态效应”不容忽视。这就要求把加工过程如实地作为一个动 态系统加以研究。 (3)在产品与设备的设计方面同上述两点密切相关,正在突破 而且还在不断突破以往的经验设计、试凑设计、类比设计的束缚, 在充分考虑产品与设备的动态特性的条件下,密切结合其工作过程,探索建立它们的数学模型,采用计算机及其网络进行优化设计,甚 至采用人机交互对话的亦即人机信息相互反馈的人工智能专家系统 进行设计。 (4)在动态过程或参数的测试方面以往的测量一般是建 立在静止基础上的,而现在以控制理论作为基础与信息技术作为手 段的动态测试技术发展十分迅速。动态误差、动态位移、振动、噪声、动态力与动态温度等动态物理量的测量,从基本概念、测试方法、测试手段到测试数据的处理方法无不同控制论息息相关。 总之,控制理论、计算机技术,尤其是信息技术,同机械制造技术 的结合,将促使机械制造领域中的构思、研究、试验、设计、制造、诊断、监控、维修、组织、销售、服务、回收、管理等各方面发生 巨大的乃至根本性的变化,目前的这种变化还只是开始不久而已。

控制理论及智能控制论的发展与现状

控制理论及智能控制论的发展与现状 【摘要】控制论涉及面很广,研究许多不同领域对象的控制问题,也用了各种比较高深的数学工具,文章拟以通俗的语言,简明的介绍了控制理论及其智能控制论的基本思想、基本问题和主要方法,系统的叙述了控制论和智能控制论的发展历程并讨论了其未来的发展前景。 关键词:控制论;智能控制论;神经网络;系统辨识 1 引言 控制理论经过数十年世界范围的发展,研究成果十分丰富,其中一些研究经过不断发展完善已经成为成熟的独立学科,还有一些研究经过一段时间的繁荣昌盛,大大促进了控制理论的发展,完成了历史的使命,现在看其本身的理论及应用价值却是有限的。当前,控制理论已渗透到几乎所有工程技术领域,新的问题、专题及学科分支大量涌现,五彩缤纷。但也会使人有目不暇接,无所适从之感。当前,高新技术的发展提出了形形色色的新问题,难度大,急待解决.面对这些新问题,现有的控制理论常常显得无能为力,使得一些问题甚至等不及理论上的准备及指点,已在实际中用各种技术手段着手加以解决。 在这样的形势下,本文对控制理论的发展及现状进行了系统性的分析与探讨,了解主线索及脉络,以便在对未来的发展做探索时能有所帮助。 2 “控制理论”产生的历史背景及其核心内容 在20世纪中叶,各学科正处于交叉渗透时期,而且各门学科的边缘区域及其交叉点,正是等待开垦的科学领域。恰如控制论创始人维纳(N.Wiener)所讲的:“在科学发展上可以得到最大收获的领域是各种建立起来的部门之间的被忽视的无人区。”正是基于这种思想,维纳与信息论创始人申农、计算机创始人图灵以及神经学家等进行多次讨论、交流、合作,于1948年发表了《控制论—关于在动物和机器中控制和通讯科学》的著作。论述了控制论的一般方法,推广了反馈的概念,为控制理论这门学科奠定了坚实的基础。 从维纳的控制论中,可以总结出3个最基本而又重要的概念:信息、反馈和控制,此即为控制论的三要素。 反馈的概念是于1920年首先出现在贝尔电话实验室的文献中,后经维纳的引入,逐渐推

控制论简介

作者:刘文江来源:中国大百科全书发表时间:2006-03-12 浏览次数:623 字号:大中小【汉语拼音】kongzhilun 【中文词条】控制论 【外文词条】cybernetics 【作者】刘文江 研究生命体﹑机器和组织的内部或彼此之间的控制和通信的科学。控制论的建立是20世纪最伟大的科学成就之一﹐现代社会的许多新概念和新技术往往与控制论有着密切的联系。控制论的奠基人美国数学家维纳﹐N.1948年为控制论所下定义是:“研究动物和机器中控制和通信的科学”。70年代以来﹐电子数字计算机得到广泛的应用﹐控制论的应用范围逐渐扩大到社会经济系统﹐控制论的定义也因之扩展。苏联和东欧各国学者认为控制论是研究系统中共同的控制规律的科学﹐把控制论的定义又作了进一步的扩展。英文cybernetics(控制论)一词来源于希腊文﹐原意为“掌舵人”﹐转意是“管理人的艺术”。1947年﹐维纳选用cybernetics这个词来命名这门新兴的边缘科学有两个用意﹕一方面想藉此纪念麦克斯韦1868年发表《论调速器》一文﹐因为governor(调速器)一词是从希腊文“掌舵人”一词讹传而来的﹔另一方面船舶上的操舵机的确是早期反馈机构的一种通用的形式。 控制论的诞生和发展20世纪30~40年代人们对信息和反馈有了比较深刻的认识﹐一些著名科学家环绕信息和反馈进行了大量的研究工作。英国统计学家R.A.费希尔从古典统计理论的角度研究信息理论﹐提出单位信息量的问题。美国电信工程师香农﹐C.E.从通信工程的角度研究信息量的问题﹐提出信息熵的公式。美国数学家维纳则从控制的观点研究有噪声的信号处理问题﹐建立了维纳滤波理论﹐并分析了信息的概念﹐提出测定信息量的公式和信息的实质问题。他们几乎在同一个时候解决了信息的度量问题。这一时期﹐人们逐渐深入了解反馈控制系统的工作原理。1932年美国通信工程师奈奎斯特﹐H.发现负反馈放大器的稳定性条件﹐即著名的奈奎斯特稳定判据。1945年维纳把反馈概念推广到一切控制系统﹐把反馈理解为从受控对象的输出中提取一部分信息作为下一步输入﹐从而对再输出发生影响的过程。巴甫洛夫条件反射学说证明了生命体中也存在着信息和反馈问题。 维纳在改进防空武器时发现﹐动物和机器中控制和通信的核心问题是信息﹑信息传输和信息处理。维纳与墨西哥神经生理学家A.罗森布卢埃特合作对这个课题进行了长达10多年(1934~1947)的研究。参加这一研究工作的还有数学家﹑逻辑学家﹑物理学家﹑电信工程师﹑控制工程师﹑计算机设计师﹑神经解剖学家﹑神经生理学家﹑心理学家﹑医学家﹑人类学家和社会学家。他们进行了生理学﹑病理学和心理学方面的许多实验﹐吸收来自火力控制系统﹑远程通信网络和电子数字计算机的设计经验﹐以及对预测和滤波理论等数学统计理论的研究﹐终于找到了控制论的核心问题。1942年5月梅西基金会举行的关于大脑抑制问题的科学讨论会提出﹐通信工程和控制工程领域内已经研究成熟的信息和反馈的概念和方法﹐可能有助于神经生理学的研究。这时控制论的思想已经形成﹐但还没有正式命名。1943年末到1944年初在普林斯顿召开了一次控制论思想的科学讨论会﹐进一步确认了控制论思想﹐认为在不同领域的工作者之间存在着共同的思想基础﹐一个科学领域可以运用另一个科学领域发展得比较成熟的概念和方法。1946~1953年间梅西基金会发起一系列关于反馈问题的科学讨论会﹐对于控制论的发展产生很大的推动作用。 1948年维纳发表奠基性著作《控制论》﹐这本书的副标题是“关于动物和机器中控制和通信的科学”﹐控制论的名称因此而定。维纳抓住了一切通信和控制系统的共同特点﹐即它们都包含着一个信息传输和信息处理的过程。维纳指出﹕一个通信系统总是根据人们的需要传输各种不同的思想内容的信息﹐一个自动控制系统必须根据周围环境的变化﹐自己调整自己的运动﹐具有一定的灵活性和适应性。通信和控制系统接收的信息带有某种随机性质﹐具有一定的统计分布﹐通信和控制系统本身的结构也必须适应这种统计性质﹐能对一类在统计上预期要收到的输入作出统计上令人满意的动作。

控制论的发展

EA 产业市场业界&市场 32 | 电气时代2005年第11期 科学史上,一个简洁明了的基本原理,常常需要长期的实践和积累,历经千百次的失败和成功,从而达到某一升华的阶段,才能形成自己的理论体系,然后渗透到其他学科中去。自动化技术与其基础理论——控制论之间的关系也是这样的。开环控制的基础理论相对来说比较简单,闭环控制比较复杂,至今仍处迅速发展时期,吸引了众多学者关注。虽然有形形色色的数学理论被应用到控制论中来,但它的基本原理只有3个:扰动控制、负反馈控制和复合控制。经过长达数千年的发展,直到20世纪中叶,人们才从众多的自动化技术中概括出这3大基本原理,然后主观能动地应用它们去建造各式各样的自动化装置,以此实现办公自动化、无人工厂、农业自动化和家务劳动自动化等等,才形成今天强大的社会生产力,把人类推进到一个崭新的时代——自动化时代。可以说没有控制论的建立和发展,就没有今天发达的自动化技术。 指南车、调速器 早在发明指南针之前的公元1020年,我们的祖先用木质齿轮系制造了一部车子,车上设一“仙人”。开车前,把“仙人”的手指方向调为指南。开车后,不管车身怎样转弯抹角,“仙人”的指南方向始终不变,这是一项伟大的发明。但是它的工作原理是什么?没有概括出来,就失传了,没能对当时的社会做出更大的贡献。直到20世纪60年代,自动化技术发展到相当高水平之后,人们才知道它的工作原理是扰动控制原理。原理简单,但很实用,许多小型发电机常常用它来设计电压自动调压器,结构简洁,运行可靠。  1788年瓦特研制出蒸汽机离心式调速器,它能保持蒸汽机转速基本不变,才有工业应用价值。但是历经70多年的不断改进,不但没有达到人们预料的结果,反而“晃动”起来,令人费解。因为根据当时的科技发展水平,人们尚不理解有一定的内“摩擦”,正是一个系统能够稳定工作的充要条件。“晃动”震撼了新生的资产阶级社会,吸引了很多著名的工程 师、物理学家和数学家的兴趣。但是只有理论基础极为雄厚扎实的英国物理学家,也是创立电磁波理论的科学家J.C.麦克斯韦尔(Maxwell)才能把蒸汽机晃动现象变成线性微分方程来研究,这是人类第一次把自动化技术中出现的晃动问题变成数学问题来研究。经1877年英国人E?劳斯(Routh)和1895年德国人A?霍维茨(Horwitz)两人各自独立的研究,把特征方程的系数排成一系列不等式,并指出只要满足这些不等式,该系统就是稳定的。不需要去解特征方程的根了,终于形成了现在任何一本自动控制原理课本都要讲的基本理论,代数稳定判据。 从发现问题到解决问题,前后20多年,科学理论的建立是非常艰巨的。 从瓦特蒸汽机出现的晃动问题中形成的代数稳定判据,不仅解决了蒸汽机稳定问题,而且适用于分析所有低价线性微分方程描述的系统的稳定性问题。即特殊性中含有普遍性,普遍性也必然寄寓在特殊性中。从局部出现的问题,再扩展到其他领域,就形成了社会生产力,代数稳定判据的建立,稳定并促进了资本主义的发展。 电子管放大器和奈奎斯特频率法 1915年,美国贝尔电话实验室为了敷设从纽约到旧金山的长途电话线,遇到大量的技术困难,其中最为关键的技术是长距离输送电话信号时,伴随出现信号衰减和畸变两个问题。这是两个相互关联而且又必须同时加以解决的技术关键。1927~1932年,在该实验工作的H?布莱克(Black)和他的同事们,应用负反馈原理基本上解决了非线性畸变,但又出现另一个问题—振荡,即输出信号忽强忽弱。1932年,同在该实验室工作的H?奈奎斯特(Nyquist)成功地解决这一关键技术,创立了奈奎斯特频率法,奠定了自控原理最基础的工作。频率法的出现是和电力工业的发展分不开的,因为电力工业需要对正弦函数的电信号进行网络计算,建立了复数运算和复变函数论,这就为频率法的建立准备了数学工具。 奈奎斯特的频率法的重要贡献在于, 不用解微分方程,它可以利用物理上可以测量的开环系统频率持性来判别闭环系统的稳定 控制论的发展 □项国波

《控制论和科学方法论》2018学习笔记

《控制论和科学方法论》 笔记 金观涛华国凡著 大龙在这里呢 2018-01-26

目录 序言 (4) 第一章控制和反馈 (4) 1.1.可能性空间 (4) 1.2.人通过选择改造世界 (5) 1.3.控制能力 (5) 1.4.随机控制 (5) 1.5.有记忆的控制 (6) 1.6.共轭控制 (6) 1.7.负反馈调节 (7) 1.8.负反馈如何扩大了控制能力 (7) 1.9.正反馈与恶性循环 (7) 第二章信息、思维和组织 (8) 2.1.什么是知道 (8) 2.2.信息的传递 (8) 2.3.信息是一种客体吗 (8) 2.4.通道容量 (9) 2.5.滤波:去伪存真的研究 (9)

2.6.信息的储存 (10) 2.7.信息加工和思维 (10) 2.8.信息和组织 (11)

序言 控制论思想的源流由三条支流汇成。 一条是数学和物理的发展。(吉布斯)统计力学,量子力学的建立。不少科学家认为:与其说我们这个世界是建立在必然性之上的,倒不如说是建立在偶然性之上的,许多物理定律仅仅是大量事件统计平均的结果。科学的发展迫使人们回答必然性和偶然性之间的关系。于是,确定性与非确定性以及它们之间关系的研究就成为科学界最热门的课题。概率论的成熟,热力学中的熵直至信息概念的提出,就是这一研究的逐步深入。 另一条支流是生物学和生命科学的进展。科学家早就发现,生物界不是一个充满必然性的机械世界,生物个体行为也不能用统计力学和量子力学所用的纯或然语言来刻画。生命的活动既有或然性,也有必然性。生命是怎样把必然与偶然统一起来的?科学家对生命的机制发生了浓厚兴趣。直到提出“内稳定”概念,才将认识推进到新的阶段,为控制论诞生奠定了基础。 第三条支流是人类对思维规律的探讨。它集中地反映在计算机制造和数理逻辑的进展。数学家特别是计算机的研制者们企图用数学语言来模拟人的思维过程。计算机的制造成为控制论成熟的前奏。 1947年,维纳发表《控制论》。 第一章控制和反馈 1.1. 可能性空间 共性:1.被控制的对象必须存在多种发展的可能性。 2.人可以在这些可能性中通过一定的手段进行选择,才谈得上控制。 我们将事物发展变化中面临的各种可能性集合称为这个事物的可能性空间。它是控制论中最基本的概念。

控制工程作业第一章

1.1 工程控制理论的研究对象和任务是什么? 答:机械工程控制论的研究对象及任务:工程控制论实质是研究工程技术中广义系统的动力学问题。具体说,它研究的是工程技术中的广义系统在一定的外界条件作用下,从系统的一定初始条件出发,所经历的由其内部的固有特性所决定的整个动态历程;研究这一系统及其输入、输出三者之间的关系。 1.2 组成典型闭环控制系统的主要环节有哪些?它们各起到什么作用? 答:典型闭环控制系统的主要环节: 给定环节、测量环节、比较环节、放大及运算环节、执行环节。 作用: 给定环节:给出与系统输出量希望值相对应的系统输入量。 测量环节:测量系统输出量的实际值,并把输出量的量纲转化与输入量相同。 比较环节:比较系统的输入量和反馈信号,并给出两者之间的偏差。 放大环节:对微弱的偏差信号进行放大和变换,使之具有足够的幅值和功率,以适应执行元件动作的要求。 执行环节:根据放大后的偏差信号产生控制、动作,操作系统的输出量,使之按照输入量的变化规律而变化。 1.3 自动控制系统按照输出变化规律如何分类?按照反馈规律分为哪几类 答:按输出变化规律分类:自动调节环节、随动系统、程序控制系统。 按反馈情况分类:开环系统、闭环系统、半闭环系统。 1.4 什么是反馈控制?日常生活种有许多闭环和开环系统,请举例说明。 答:反馈控制是将系统的输出信号通过一定的检测元件变送返回到系统的输入端,并和系统的输入信号进行比较的过程。 举例: 开环系统:洗衣机、电烤箱、交通红绿灯和简易数控机床。 闭环系统:数控机床的进给系统。 1.5 分析比较开环系统与闭环系统的特征、优缺点和应用场合的不同之处。 答:开环系统:信号单向传递;系统输出量对输入没有影响的系统。 特征:作用信号单向传递。 优点:简单、调整方便、成本低、不会震荡。系统总能稳定工作。 缺点:开环控制系统精度不高,抗干扰能力差。 场合:在一些对控制精度要求不高、扰动作用不大的场合。 闭环系统:信号形成闭环回路;系统末端输出量对输入有影响的系统。 特征:作用信号按闭环传递 优点:闭环控制系统精度高 缺点:系统元件大、成本高、功率大、调试工作量大,应产生震荡。 场合:对控制精度要求较高的场合。 1.6 对控制系统的基本要求是什么? 答:对控制系统的基本要求是:系统的稳定性响应的快速性响应的准确性

罗杰斯《传播学史——一种传记式的方法》章节题库(诺伯特·维纳和控制论)【圣才出品】

罗杰斯《传播学史——一种传记式的方法》章节题库 第十章诺伯特·维纳和控制论 一、名词解释 1.反馈 答:反馈是指在控制论中,通过有关一个系统过去行为的信息来控制这个系统的未来行为。因此,它是借助于重新插入一个系统的过去行为的结果来控制该系统的一个手段。在一个传播系统中,反馈是一个接受者对于信源从前信息的回应,表明它的效果。 2.诺伯特·维纳 答:诺伯特·维纳是美国最著名的数学家,控制论之父,和香农一起发明了有关信息的熵度量法的思想,在某种程度上参与了和香农一起开创信息论的工作。维纳的理论对于传播学具有重要的影响,特别是对于由互动论的传播学者所组成的帕洛阿尔托学派具有重要的影响。维纳的代表作有《数学原理》、《控制论》,还有控制论的通俗读本畅销书《人类对人的使用:控制论和社会》,维纳的理论在若干方面对传播学产生了重要影响。 3.控制论 答:控制论是20世纪初由诺伯特·维纳提出的重要理论,是关于自我控制系统的理论,它以“反馈”概念为依据,其定义是通过关于一个系统以往运行情况的信息,来控制这个系统的未来行为。诺伯特·维纳的控制论已被有效地应用于广泛的跨学科的适用领域:大脑功能和神经生理学、人工智能、工厂自动化、假肢和国际传播。

4.受众[复旦大学2012.2007~2008年研;华东师范大学2005年研;华中师大2005年研] 答:受众是指大众传媒的信息接受者或传播对象。受众是一个集合概念,最直观地体现为作为大众传媒信息接受者的社会人群,例如书籍或报刊的读者、广播的听众或电影、电视的观众等。传播学家克劳斯认为,受众按其规模可以分成三个不同的层次:①特定国家或地区内能够接触到传媒信息的总人口,这是最大规模的受众;②对特定传媒或特定信息内容保持着定期接触的人,如报纸的定期读者或电视节目的稳定观众;③不但接触了媒介内容而且也在态度或行动上实际接受了媒介影响的人,对传媒而言这部分人属于有效受众,在他们身上体现了实质性的传播效果。 5.受众“碎片化”[人大2013年研] 答:“碎片化”,是描述当前中国社会传播语境的一个形象性的说法。“碎片化”,是指完整的东西破成诸多零块。随着社会经济的发展,人们生活水平不断提高,消费选择不断扩大,生活方式及意识形态呈现多样化趋向。传统的社会关系、市场结构及社会观念的整一性瓦解了,代之以一个一个利益族群和“文化部落”的差异化诉求及社会成分的碎片化分割。 6.知情权/知晓权[北邮2008年研;北师2008年研;华中师大2008年研;中国传媒大学2006年研;南开大学2005年研;人大2005年研;上海大学2005年研]答:知情权是公民的一项基本政治权利,又称知晓权、了解权、获知权、知的权利等,从广义上讲,是指社会成员获得有关自身所处的环境和变化的信息、保障社会生活所需的各种有用信息的权利。在这个意义上,它也是人的生存权的基本内容之一。从狭义上说,是指公民对国家的立法、司法和行政等公共权力机构的活动所拥有的知情或知察的权利,这也意

机械控制工程基础课后答案

1-1机械工程控制论的研究对象与任务是什么? 解机械工程控制论实质上是研究机械一r_程技术中广义系统的动力学问题。具体地讲,机械工程控制论是研究机械工程广义系统在一定的外界条件作用下,从系统的一定初始条件出发,所经历的由内部的固有特性所决定的整个动态历程;研究这一系统及其输入、输出二者之间的动态关系。 机械工程控制论的任务可以分为以下五个方面: (1)当已知系统和输人时,求出系统的输出(响应),即系统分析。 (2)当已知系统和系统的理想输出,设计输入,即最优控制。 (3)当已知输入和理想输出,设计系统,即最优设计。 (4)当系统的输人和输出己知,求系统的结构与参数,即系统辨识。 (5)输出已知,确定系统,以识别输入或输入中的有关信息,即滤波与预测。 1.2 什么是反馈?什么是外反馈和内反馈? 所谓反馈是指将系统的输出全部或部分地返送回系统的输入端,并与输人信号共同作用于系统的过程,称为反馈或信息反馈。 所谓外反馈是指人们利用反馈控制原理在机械系统或过程中加上一个人为的反馈,构成一个自动控制系统。 所谓内反馈是指许多机械系统或过程中存在的相互藕合作用,形成非人为的“内在”反馈,从而构成一个闭环系统。 1.3 反馈控制的概念是什么?为什么要进行反馈控制? 所谓反馈控制就是利用反馈信号对系统进行控制。 在实际中,控制系统可能会受到各种无法预计的干扰。为了提高控制系统的精度,增强系统抗干扰能力,人们必须利用反馈原理对系统进行控制,以实现控制系统的任务。 1.4闭环控制系统的基本工作原理是什么? 闭环控制系统的基本工作原理如下: (1)检测被控制量或输出量的实际值; (2)将实际值与给定值进行比较得出偏差值; (3)用偏差值产生控制调节作用去消除偏差。 这种基于反馈原理,通过检测偏差再纠正偏差的系统称为闭环控制系统。通常闭环控制系统至少具备测量、比较和执行三个基本功能。 1.5对控制系统的基本要求是什么? 对控制系统的基本要求是稳定性、准确性和快速性。 稳定性是保证控制系统正常工作的首要条件。稳定性就是指系统动态过程的振荡倾向及其恢复平衡状态的能力。 准确性是衡量控制系统性能的重要指标。准确性是指控制系统的控制精度,一般用稳态误差来衡量。 快速性是指当系统的输出量与输入量之间产生偏差时,系统消除这种偏差的快慢程度。

ENGINEERING CYBERNETICS(工程控制论—钱学森)

ENGINEERING CYBERNETICS(工程控制论) 钱学森Preface (vii) CHAPTER 01. Introduction (1) CHAPTER 02. Method of laplace transform (7) CHAPTER 03. Input,output,and transfer function (12) CHAPTER 04. Feedback servomechanism (34) CHAPTER 05. Noninteraction controls (53) CHAPTER 06. Alternating-current servomechanism and oscillating control servomechanism (70) CHAPTER 07. Sampling servomechanism (83) CHAPTER 08. Linear systems with tim lag (94) CHAPTER 09. Linear systems with stationary random inputs (111) CHAPTER 10. Relay servomechanism (136) CHAPTER 11. Nonlinear systems (160) CHAPTER 12. Linear systems with variablecoefficients (168) CHAPTER 13. Control design by perturbation theory (178) CHAPTER 14. Control design with specified criteria (198) CHAPTER 15. Optimalizing control (214) CHAPTER 16. Filtering of noise (231) CHAPTER 17. Ultrastability and multistability (253) CHAPTER 18. Control of error (268) Index (285) http://202.117.24.24/html/xjtu/qxs/gckzl/gckzl.htm

机械控制工程基础总结

机械控制工程基础总结 机械工程控制论的基本含义 机械控制工程是研究控制论在机械工程中应用的科学。它是一门跨控制论和机械工程的边缘学科。随着工业生产和科学技术的不断向前发展,机械工程控制论这门新兴学科越来越为人们所重视。原因是它不仅能满足今天自动化技术高度发展的需要,同时也与信息科学和系统科学紧密相关,更重要的是它提供了辩证的系统分析方法,即不但从局部,而且从整体上认识和分析机械系统,改进和完善机械系统,以满足科技发展和工业生产的实际需要。 机械工程控制论的研究对象与任务 机械工程控制论的研究对象是机械工程技术中广义系统的动力学问题。具体地讲,机械工程控制论是研究系统及其输入、输出三者之间的动态关系,也就是研究机械工程广义系统在一定的外界条件作用下,从系统的一定初始条件出发,所经历由内部的固有特性所决定的整个动态历程。例如,在机床数控技术中,调整到一定状态的数控机床就是系统,数控指令就是输入,数控机床的加工运动就是输出。这里系统是由相互联系、相互作用的若干部分构成且有一定运动规律的一个有机整体。输入是外界对系统的作用,输出是系统对外界的作用。通常机械工程控制论简称为机械控制工程,其所研究的系统可大可小、可繁可简,完全由研究的需要而定,因而称之为广义系统。由此可见,就系统及其输入、输出三者之间的动态关系而言,机械工程控制论的任务 主要研究解决以下几个方面的问题: 1.当系统已定,输入已知时,求出系统的输出(响应),并通过输出来研究系统本身的有关问题,称系统分析。2.当系统已定,系统的输出也已给定时,要确定系统的输入,使输出尽可能符合给定的最佳要求,称系统的最优控制。3.当输入和输出均已知时,求系统的结构与参数,即建立系统的数学模型,称系统辨识或系统识别。4.当系统已定输出已知时,要识别输入或输入中的有关信息,称滤波与预测反馈及反馈控制 反馈及反馈控制 控制论的核心内容是:通过信息的传递、加工处理和反馈来进行控制。控制论把一切能表达一定含义的信号、符号、密码和消息等统称为信息。所谓信息传递,是指信息在系统及过程中以某种关系动态地传递,亦称转换。例如,对于机床加工工艺系统,要研究机床的加工精度问题,可将工件尺寸作为信息,通过工艺过程的转换,对加工前后工件尺寸的分布情况,运用信息处理的理论和方法来

经济控制论

《经济控制论》课程教学大纲 课程编号: 总学时数:48 总学分数:3 课程性质:专业选修课 适用专业:信息与计算科学 一、课程的任务和基本要求: 本课程是为数理学院信息与计算科学专业运筹与控制方向开设的专业限选课程。本课程将系统地讲授现代控制理论的基本概念、原理和方法,包括系统的能控性、能观性和稳定性分析,变分法与最大值原理、动态规划以及有关的数值计算问题;同时结合案例讲解控制理论在动态经济系统中的应用,例如人口预测、市场调节与价格波动、经济最优增长、投入产出结构优化、双头垄断竞争对策、生态平衡、可再生与不可再生资源最优利用、最优货币政策与财政税收政策设计、经济波动周期分析等。课程结合经济控制论的最新发展趋势讲解有关的控制论原理和相关应用。 基本要求: 通过本课程的学习,使学生掌握现代控制理论的基本概念、原理和方法,了解系统分析与控制的基本思想,学习如何将控制理论知识应用于管理学科,掌握动态经济系统的分析与控制技术。 二、基本内容和要求: 第一章系统的状态空间描述方法 第二章离散时间动态经济系统的运动分析和稳定性分析 了解离散时间函数及z变换;会进行离散时间系统运动分析;理解离散时间系统的稳定性分析。 第三章连续时间动态经济系统的运动分析和稳定性分析 了解连续时间函数及拉普拉斯变换;会进行连续时间系统运动分析和连续时间系统稳定性分析;了解连续时间系统与离散时间系统相互关系。 第四章动态经济系统的调节与控制 了解经济系统受控变量的目标跟踪;理解线性系统能控性及逼近目标的可能性;掌握线性动态系统的极点配置与系统逼近目标的速度和起伏等。 第五章线性系统鲁棒调节器和鲁棒经济策略 第六章连续时间动态经济系统优化与决策 了解变分法与泛函优化;理解动态系统最优控制;掌握极大值原理;能解决最小能量控制问题等。 第七章离散时间动态经济系统优化与决策 掌握离散时间动态系统极大值原理;理解宏观经济系统协调发展时的最优增长的“快车道”定理等。 第八章应用实例与发展趋势 三、实践环节和要求:无

机械控制工程复习与考试题(含答案)

机械控制工程复习 一、填空题 1.线性控制系统最重要的特性是可以应用叠加原理,而非线性控制系统则不能。 2.反馈控制系统是根据输入量和反馈量的偏差进行调节的控制系统。 3.根据自动控制系统是否设有反馈环节来分类,控制系统可分为__开环_控制系统、_闭环__控制系统。 4.根据系统输入量变化的规律,控制系统可分为恒值控制系统、随动控制系统和程序控制系统。 5.如果在系统中只有离散信号而没有连续信号,则称此系统为离散(数字)控制系统,其输入、输出关系常用差分方程来描述。 6.根据控制系统元件的特性,控制系统可分为__线性__控制系统、非线性_控制系统。 7.线性控制系统其输出量与输入量间的关系可以用线性微分方程来描述。 8.对于一个自动控制系统的性能要求可以概括为三个方面:稳定性、快速性和准确性。 9.在控制工程基础课程中描述系统的数学模型有微分方程、传递函数等。 10.传递函数的定义是对于线性定常系统,在零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比。 11.传递函数的组成与输入、输出信号无关,仅仅决定于系统本身的结构和参数,并且只适于零初始条件下的线性定常系统。 12.瞬态响应是系统受到外加作用激励后,从初始状态到最终稳定状态的响应过程。 13.脉冲信号可以用来反映系统的抗冲击能力。 14.单位斜坡函数t的拉氏变换为1/s2 15.单位阶跃信号的拉氏变换是1/s。 16.在单位斜坡输入信号作用下,0型系统的稳态误差ess= 19.决定二阶系统动态性能的两个重要参数是阻尼系数ξ和无阻尼固有频率ωn。 22.二阶系统的阻尼比ξ为0时,响应曲线为等幅振荡。 23.系统输出量的实际值与输出量的期望值之间的偏差称为误差。 24.系统的稳态误差与输入信号的形式及系统的结构和参数或系统的开环传递 函数有关。25.分析稳态误差时,将系统分为0型系统、I型系统、II型系统…, 这是按开环传递函数的积分环节数来分类的。 26.用频域法分析控制系统时,最常用的典型输入信号是正弦函数。 27.线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称为相频特性。 28.频率响应是系统对正弦输入稳态响应,频率特性包括幅频和相频两种特性。 29.用频率法研究控制系统时,采用的图示法分为极坐标图示法和__对数坐标_图示法。 30.积分环节的对数幅频特性曲线是一条直线,直线的斜率为-20dB/dec。31.0型系统对数幅频特性低频段渐近线的斜率为0dB/dec,高度为20lgKp。32.ω从0变化到+∞时,惯性环节的频率特性极坐标图在第四象限,形状为半

关于系统控制论的总结

最牛的系统论总结--系统论的数学模型 系统论的数学模型 系统论(Systemism)包括基本要素和高级要素(每个要素是一个系统(systems)). 基本要素: 系统(System)、结构(Structure)、事件(Event)、资源(Resource); 事件(Event)包括三个要素: 动作(Action)、过程(Procedure)、成本(Cost)。 系统论(Systemism)包括以下高级要素: 标准(Standard)、权力(Power); 标准(Standard)包括三个要素: 值(Value)、关系(Relation)和功能(Function)。 所有的要素都是在系统论(Systemism)中,而不是直接存在于世界(the World)或者能量(the Energy)之中。当然系统论(Systemism)是世界(the World)的一部分。系统论(Systemism)会使用这些要素(子系统)为你解释世界(the World)和能量(the Energy)。 ?.系统(System). 系统(System)是系统论(Systemism)中最基本的东西。。一个系统(System)指向世界(the World)中的一个对象(Object)。该对象(Object)可以被系统 论(Systemism)中的某些系统(System)利用某些标准(Standards)加以消 费(Consume )。 ?.系统名称(Name of System). 系统论(Systemism)使用一个名称(Name)标记一个系统(System)。这样当使用某个名称(Name)时我们指向某个系统(System),而该系统(System) 指向世界(the World)中的一个对象(Object)。名称(Name)将系统论(Systemism)中的系统(System)和世界(the World)的对象(Object)连接起来。[以下不再标出已出现名称的英文] 比如,世界当然是世界中最大的对象。一个系统论中的系统指向它并有一个保 留名称"系统论中的世界(the World in Systemism)" 以避免混淆;能量是世 界的基础,它的保留名称是"系统论中的能量(the Energy in Systemism)"; 系统论是世界的一部分,所以一个名称为"系统论中的系统论(Systemism in Systemism)"指向它。因为系统论已经存在与自身中,所以这个名称只是一个占位符,它直接指向系统论自身。 系统论使用系统将世界中的真实对象映射进来,同时使用一个名称来标记系统论中的系统。 我们看一个图来解释系统论的"对象-系统-名称映射"以及系统论的各种要素关 系:[Systemism graph]: ?.系统等式(System's equation).

相关文档
最新文档