材料的冲击试验实验报告

材料的冲击试验实验报告
材料的冲击试验实验报告

材料的冲击试验

实验内容及目的

1、测定低碳钢、铸铁和中碳钢的冲击性能指标;冲击韧度a k

2、比较低碳钢与铸铁的冲击性能指标和破坏情况

3、掌握冲击实验方法及冲击试验机的使用

实验材料和设备

低碳钢、中碳钢、铸铁、冲击试验机、游标卡尺

试样的制备

按照国家标准GB/T229—1994《金属夏比缺口冲击试验方法》,金属冲击试验所采用的标准冲击试样为并开有或深的形缺口的冲击试样(图1)以及张角深的形缺口冲击试样(图2)。如不能制成标准试样,则可采用宽度为或等小尺寸试样,其它尺寸与相应缺口的标准试样相同,缺口应开在试样的窄面上。冲击试样的底部应光滑,试样的公差、表面粗糙度等加工技术要求参见国家标准GB/T229—1994。

(a)(b)图1 夏比U形冲击试样

(a)深度为mm

2;(

b)深度为mm

5

图2 夏比V形冲击试样

实验原理

实验室将试样放在试验机支座上,缺口位于冲击相背方向,并使缺口位于支座中间,然后将具有一定重量的摆锤举至一定的高度H1,使其获得一定的位能mgH1,释放摆锤冲断试样,摆锤的剩余能量为mgH2,则摆锤冲断试样失去的势能为mgH1-mgH2。如果忽略空气阻力等各种能量损失,则冲断试样所消耗的能量(即试样的冲击吸收功)为:

A k=mg(H1-H2)。

A k的具体数值可直接从冲击试验机的表盘上读出,其单位为J,将冲击吸收功A k除以试样缺口底部的横截面积SN(cm2),即可得到试样的冲击韧性值a k。

(a)(b)

图3 冲击实验的原理图

(a)冲击试验机的结构图(b)冲击试样与支座的安放图

实验过程

1、了解冲击试验机的操作规程和注意事项。

2、测量试样的尺寸

3、按“取摆”按钮,摆锤抬起到最高处,并销住摆锤,同时将试样安放好

4、按“退销”按钮,安全销撤掉。

5、按“冲击”按钮,摆锤下落冲击试样。

6、记录冲断试样所需要的能量,取出被冲断的试样。

实验数据的记录与计算

(1)数据记录与结果

思考题

1、为什么冲击试样要有切槽?

答:试件中间的可刻槽处有应力集中,并处于不利的三向拉应力状态,呈脆性断裂破坏。目的是模拟工程中实际构件有截面变化、沟槽、螺纹、螺孔等承受冲击的不利情况。

2、比较低碳钢与灰铸铁的冲击破坏特点。

答:低碳钢和铸铁在冲击荷载作用下表现的性能和破坏特征:

1)低碳钢的拉伸过程可以分为弹性变形、屈服、强化和缩颈断裂四个阶段;

而铸铁在断裂之前只发生弹性变形。

2)低碳钢的拉伸断口可分为纤维区、放射区和剪切唇三部分组成,而铸铁

的拉伸断口为正断。

3)低碳钢和铸铁相比较,试样尺寸相同,但低碳钢的冲击吸收功远远大于

铸铁。

材料分析方法实验报告

篇一:材料分析方法实验报告 篇二:材料分析方法课程设计报告 材料分析测试方法 课程设计(论文) 题目:磁控溅射c/w多层膜成分及微观分析 学院材料科学与工程 专业材料化学 班级材化082 学生王维娜 学号 3080101296 指导教师陈迪春 起止时间 2010.12.27-2011.1.1 年 材料分析测试方法课程设计任务书 课程设计内容要求: 掌握高分辨透射电子显微镜样品制备方法,学习并了解真空镀膜 技术-磁控溅射技术,多层膜制备过程,以及其微观结构分析,成分 分析所用仪器和原理。 学生(签名) 月日 材料分析测试方法课程设计评语 指导教师(签名) 年日 目录 材料分析测试方法 ............................................................................. .. (1) 1.1 磁控溅射 ............................................................................. (5) 1.2 x射线衍射仪 ............................................................................. . (5) 1.3 透射电子显微镜 ............................................................................. (6) 1.4 x射线光电子能谱仪(xps) ........................................................................ (7) 第二章实验方法 ............................................................................. .. (9) 2.1 tem样品的制备方法 .............................................................................

常温下材料的冲击试验

实验三、常温下材料的冲击试验 一、实验目的 1、了解冲击实验原理和冲击实验机的主要结构 2、掌握金属材料常温下冲击韧度的测量方法 3、了解脆性材料和塑性材料冲击断裂断口宏观形貌特征。 二、实验原理 金属构件在实际工程应用中,不仅承受静载荷作用,有时还要在短时间内承受突然施加的载荷的作用,即受到冲击载荷的作用。材料受冲击载荷时的力学性能与静载荷时显著不同。为了评定材料承受冲击载荷的能力,揭示材料在冲击载荷下的力学行为,需要进行冲击实验 冲击实验是把要实验的材料制成规定形状和尺寸的试样,在冲击实验机上一次冲断,根据冲断试样所消耗的功或试样断口形貌特点,得到材料的冲击韧度和冲击吸收功。这些冲击性能指标对材料的韧脆程度及冶金质量、内部缺陷等情况非常敏感,因此可用冲击实验来评定材料的韧脆程度并检查材料的冶金质量和热加工产品质量。 实验室普遍采用的冲击实验为一次摆锤冲击实验。如图所示。实验时将材料制成带缺口 的标准试样,如图所示。试样水平放在实验机支座上,缺口位于冲击相背方向。然后将具有一定质量G 的摆锤举至一定高度H ,使其具有一定的势能GH 1。释放摆锤冲断试样摆锤的剩余能量为GH 2,则摆锤冲断试样失去的能量为GH 1- GH 2,此即为试样变形和断裂所吸收的功,称为冲击功,用A k 表示,单位为J ,用试样断口处单位面积上所消耗的冲击吸收功大小来衡量材料的冲击韧度,即 αK =Ak/F=G (H 1-H 2)/F 本实验分别以低碳钢和铸铁为原料制成缺口冲击试样,测定其在相同冲击能量下的冲击韧度的大小,从而评定这两种材料的韧脆程度并区别其断口宏观形貌。 三、冲击试样尺寸 按照国家标准GB /T229—1994《金属夏比缺口冲击试验方法》,金属冲击试验所采用的标准冲击试样为m m 55m m 10m m 10??并开有mm 2或mm 5深的U 形缺口的冲击试样(图1-8)以及 45张角mm 2深的V 形缺口冲击试样(图1-9)。 夏比U 形冲击试样 (a )深度为mm 2;(b )深度为mm 5

材料分析方法课后答案(更新至第十章)

材料分析方法课后练习题参考答案 2015-1-4 BY:二专业の学渣 材料科学与工程学院

3.讨论下列各组概念的关系 答案之一 (1)同一物质的吸收谱和发射谱; 答:λk吸收〈λkβ发射〈λkα发射 (2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:λkβ发射(靶)〈λk吸收(滤波片)〈λkα发射(靶)。任何材料对X射线的吸收都有一个Kα线和Kβ线。如Ni 的吸收限为0.14869 nm。也就是说它对0.14869nm波长及稍短波长的X射线有强烈的吸收。而对比0.14869稍长的X射线吸收很小。Cu靶X射线:Kα=0.15418nm Kβ=0.13922nm。 (3)X射线管靶材的发射谱与被照射试样的吸收谱。 答:Z靶≤Z样品+1 或Z靶>>Z样品 X射线管靶材的发射谱稍大于被照射试样的吸收谱,或X射线管靶材的发射谱大大小于被照射试样的吸收谱。在进行衍射分析时,总希望试样对X射线应尽可能少被吸收,获得高的衍射强度和低的背底。 答案之二 1)同一物质的吸收谱和发射谱; 答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。 2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:可以选择λK刚好位于辐射源的Kα和Kβ之间的金属薄片作为滤光片,放在X射线源和试样之间。这时滤光片对Kβ射线强烈吸收,而对Kα吸收却少。 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、非相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。

材料的冲击试验实验报告

材料的冲击试验 实验内容及目的 1、测定低碳钢、铸铁和中碳钢的冲击性能指标;冲击韧度a k 2、比较低碳钢与铸铁的冲击性能指标和破坏情况 3、掌握冲击实验方法及冲击试验机的使用 实验材料和设备 低碳钢、中碳钢、铸铁、冲击试验机、游标卡尺 试样的制备 按照国家标准GB/T229—1994《金属夏比缺口冲击试验方法》,金属冲击试验所采用的标准冲击试样为并开有或深的形缺口的冲击试样(图1)以及张角深的形缺口冲击试样(图2)。如不能制成标准试样,则可采用宽度为或等小尺寸试样,其它尺寸与相应缺口的标准试样相同,缺口应开在试样的窄面上。冲击试样的底部应光滑,试样的公差、表面粗糙度等加工技术要求参见国家标准GB/T229—1994。 (a)(b)图1 夏比U形冲击试样 (a)深度为mm 2;( b)深度为mm 5 图2 夏比V形冲击试样

实验原理 实验室将试样放在试验机支座上,缺口位于冲击相背方向,并使缺口位于支座中间,然后将具有一定重量的摆锤举至一定的高度H1,使其获得一定的位能mgH1,释放摆锤冲断试样,摆锤的剩余能量为mgH2,则摆锤冲断试样失去的势能为mgH1-mgH2。如果忽略空气阻力等各种能量损失,则冲断试样所消耗的能量(即试样的冲击吸收功)为: A k=mg(H1-H2)。 A k的具体数值可直接从冲击试验机的表盘上读出,其单位为J,将冲击吸收功A k除以试样缺口底部的横截面积SN(cm2),即可得到试样的冲击韧性值a k。 (a)(b) 图3 冲击实验的原理图 (a)冲击试验机的结构图(b)冲击试样与支座的安放图 实验过程 1、了解冲击试验机的操作规程和注意事项。 2、测量试样的尺寸 3、按“取摆”按钮,摆锤抬起到最高处,并销住摆锤,同时将试样安放好 4、按“退销”按钮,安全销撤掉。 5、按“冲击”按钮,摆锤下落冲击试样。 6、记录冲断试样所需要的能量,取出被冲断的试样。 实验数据的记录与计算 (1)数据记录与结果

JJG 145摆锤冲击试验机检定规程

JJG145-2007《摆锤式冲击试验机》 检定规程实施要点分析 摘要:为更好执行JJG145-2007摆锤式冲击试验机检定规程要求,本文对摆锤式冲击试验机的工作原理,重要的检定方法以及具体措施,对影响冲击试验的关键问题进行重点的论述。在检定校准过程中“直接检定方法”与“标准冲击样品的间接检定方法”都是重要的,采用“标准冲击样品的间接检定方法”是对冲击试验机综合性能检定,是必需的、可行的、简便的。 一、摆锤式冲击试验机工作原理 摆锤式冲击试验机是用规定高度的摆锤对处于冲击试验机砧座上的冲击试样进行一次性打击,测量试样弯折时的冲击吸收功。摆锤是以冲击试验机摆轴为中心,在处于预仰角 位置时释放摆锤,以一定速度冲击试验机砧座上的冲击试样。 见图1。 图1 摆锤式冲击试验机工作原理图

二、摆锤式冲击试验机检定方案分析 根据摆锤式冲击试验机的工作原理分析,主要由三大部分组成: a. 冲击试验机主机架; b. 冲击摆锤; c. 冲击试样砧座与支座。 基本保障是:冲击试验机应安装在具有质量足够的地基上。 最终综合技术指标是:冲击能量——J焦耳。这一能量的表现形式是对冲击试样的冲击吸收能量。它指示了冲击试验机冲击试样的能量,以及冲击试验机的能量传递给冲击试样准确的程度。 为此,对摆锤式冲击试验机的检定,最为重要的是:考核整机性能、整机刚度、安装质量(地基的合理性)。 摆锤式冲击试验机的检定 按JJG145要求,冲击试验机的检定分为首次检定,其中包括直接检定与间接检定,后续检定及使用中检验,详见规程中的表8。本文主要介绍间接检定方法。 间接检定方法 间接检定法是指使用标准冲击样品进行冲击能量的检定方法,即示值检定法。间接检定方法可保证冲击试验机示值的准确性。使用标准样品的间接检定,实质上是对试验机的综合性能的检定以及冲击能量示值准确性的检定。 1. 标准冲击样品的应用 标准冲击样品的标准能量值应在下列之一的范围内: 低能量(L)级:标准能量值<30J 中能量(M)级:30J≤标准能量值<110J 高能量(H)级:110J≤标准能量值<220J 超高能量(UH)级:标准能量值≥220J 标准冲击样品技术要求见表1 目前使用的标准冲击样品冲击后不撕裂分离,可以准确的保留每一次冲击后样品的印痕,通过对印痕的分析会快速、清楚的发现试样砧座、冲击刀刃的当前状态。从而对冲击试验机冲击试验数据的分散、能量超标等问题迅速做出判定。 我国自主研制的标准冲击样品,经过多年国内外实验室的验证考核,其性能是稳定可靠的。标准冲击样品是国家标准化管理委员会批准的国家级标准样品。国家标准样品编号为GSB 03-2040(2041、2042、2043)-2006 使用标准冲击样品可以应用于冲击试验机的检定;实验室设备的期间核查;实验室之间设备比对;实验室内部操作员考核;试验仪器的不确定度评定;发现异常试验数据时对试验机的检查。 2. 使用标准冲击样品进行间接检定(示值检定) 使用标准冲击样品进行间接检定时,试验机示值误差和重复性应符合表2规定

(完整版)材料分析测试技术部分课后答案

材料分析测试技术部分课后答案 太原理工大学材料物理0901 除夕月 1-1 计算0.071nm(MoKα)和0.154nm(CuKα)的X-射线的振动频率和能量。 ν=c/λ=3*108/(0.071*10-9)=4.23*1018S-1 E=hν=6.63*10-34*4.23*1018=2.8*10-15 J ν=c/λ=3*108/(0. 154*10-9)=1.95*1018S-1 E=hν=6.63*10-34*2.8*1018=1.29*10-15 J 1-2 计算当管电压为50kV时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能. E=eV=1.602*10-19*50*103=8.01*10-15 J λ=1.24/50=0.0248 nm E=8.01*10-15 J(全部转化为光子的能量) V=(2eV/m)1/2=(2*8.01*10-15/9.1*10-31)1/2=1.32*108m/s 1-3分析下列荧光辐射产生的可能性,为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射;

(3)用CuKαX射线激发CuLα荧光辐射。 答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子,他们有一定的能量。最内层能量最低,向外能量依次增加。 根据能量关系,M、K层之间的能量差大于L、K成之间的能量差,K、L层之间的能量差大于M、L层能量差。由于释放的特征谱线的能量等于壳层间的能量差,所以K?的能量大于Ka 的能量,Ka能量大于La的能量。 因此在不考虑能量损失的情况下: CuKa能激发CuKa荧光辐射;(能量相同) CuK?能激发CuKa荧光辐射;(K?>Ka) CuKa能激发CuLa荧光辐射;(Ka>la) 1-4 以铅为吸收体,利用MoKα、RhKα、AgKαX射线画图,用图解法证明式(1-16)的正确性。(铅对于上述Ⅹ射线的质量吸收系数分别为122.8,84.13,66.14 cm2/g)。再由曲线求出铅对应于管电压为30 kv条件下所发出的最短波长时质量吸收系数。 解:查表得 以铅为吸收体即Z=82 Kαλ3 λ3Z3 μm Mo 0.714 0.364 200698 122.8 Rh 0.615 0.233 128469 84.13 Ag 0.567 0.182 100349 66.14 画以μm为纵坐标,以λ3Z3为横坐标曲线得K≈8.49×10-4,可见下图 铅发射最短波长λ0=1.24×103/V=0.0413nm λ3Z3=38.844×103 μm = 33 cm3/g 1-5. 计算空气对CrKα的质量吸收系数和线吸收系数(假设空气中只有质量分数80%的氮和质量分数20%的氧,空气的密度为1.29×10-3g/cm3)。 解:μm=0.8×27.7+0.2×40.1=22.16+8.02=30.18(cm2/g) μ=μm×ρ=30.18×1.29×10-3=3.89×10-2 cm-1 1-6. 为使CuKα线的强度衰减1/2,需要多厚的Ni滤波片?(Ni的密度为8.90g/cm3)。1-7. CuKα1和CuKα2的强度比在入射时为2:1,利用算得的Ni滤波片之后其比值会有什么变化? 解:设滤波片的厚度为t 根据公式I/ I0=e-Umρt;查表得铁对CuKα的μm=49.3(cm2/g),有:1/2=exp(-μmρt) 即t=-(ln0.5)/ μmρ=0.00158cm 根据公式:μm=Kλ3Z3,CuKα1和CuKα2的波长分别为:0.154051和0.154433nm ,所以μm=K

材料分析(SEM)实验报告

材料专业实验报告 题目:扫描电镜(SEM)物相分析实验学院:先进材料与纳米科技学院专业:材料物理与化学 姓名: 学号:1514122986 2016年6月30日

扫描电镜(SEM)物相分析实验 一.实验目的 1.了解扫描电镜的基本结构与原理 2.掌握扫描电镜样品的准备与制备方法 3.掌握扫描电镜的基本操作并上机操作拍摄二次电子像 4.了解扫描电镜图片的分析与描述方法 二.实验原理 1.扫描电镜的工作原理 扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。 本次实验中主要通过观察背散射电子像及二次电子像对样品进行分析表征。 1)背散射电子 背散射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。弹性背反射电子是指被样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。背反射电子的产生范围在100nm-1mm深度。背反射电子产额和二次电子产额与原子序数的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加,所以,利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬

常温冲击试验

实验四、常温下材料的冲击试验 一、实验目的 1、了解冲击实验原理和冲击实验机的主要结构 2、掌握金属材料常温下冲击韧度的测量方法 3、了解脆性材料和塑性材料冲击断裂断口宏观形貌特征。 二、实验原理 金属构件在实际工程应用中,不仅承受静载荷作用,有时还要在短时间内承受突然施加的载荷的作用,即受到冲击载荷的作用。材料受冲击载荷时的力学性能与静载荷时显著不同。为了评定材料承受冲击载荷的能力,揭示材料在冲击载荷下的力学行为,需要进行冲击实验 冲击实验是把要实验的材料制成规定形状和尺寸的试样,在冲击实验机上一次冲断,根据冲断试样所消耗的功或试样断口形貌特点,得到材料的冲击韧度和冲击吸收功。这些冲击性能指标对材料的韧脆程度及冶金质量、内部缺陷等情况非常敏感,因此可用冲击实验来评定材料的韧脆程度并检查材料的冶金质量和热加工产品质量。 实验室普遍采用的冲击实验为一次摆锤冲击实验。如图所示。实验时将材料制成带缺口 的标准试样,如图所示。试样水平放在实验机支座上,缺口位于冲击相背方向。然后将具有一定质量G 的摆锤举至一定高度H ,使其具有一定的势能GH 1。释放摆锤冲断试样摆锤的剩余能量为GH 2,则摆锤冲断试样失去的能量为GH 1- GH 2,此即为试样变形和断裂所吸收的功,称为冲击功,用A k 表示,单位为J ,用试样断口处单位面积上所消耗的冲击吸收功大小来衡量材料的冲击韧度,即 αK =Ak/F=G (H 1-H 2)/F 本实验分别以低碳钢和铸铁为原料制成缺口冲击试样,测定其在相同冲击能量下的冲击韧度的大小,从而评定这两种材料的韧脆程度并区别其断口宏观形貌。 三、冲击试样尺寸 按照国家标准GB /T229—1994《金属夏比缺口冲击试验方法》,金属冲击试验所采用的标准冲击试样为 mm 55mm 10mm 10??并开有mm 2或mm 5深的U 形缺口的冲击试样(图1-8)以及 45张角mm 2深的V 形缺口冲击试样(图1-9)。 夏比U 形冲击试样 (a )深度为mm 2;(b )深度为mm 5

冲击韧性试验报告

冲击韧性测定试验报告 一、 实验目的 1. 掌握冲击试验机的结构及工作原理 2. 掌握测定试样冲击性能的方法 二﹑实验内容 测定低碳钢和铸铁两种材料的冲击韧度,观察破坏情况,并进行比较。 三﹑实验设备 3. 冲击试验机 4. 游标卡尺 图1-1冲击试验机结构图 四﹑试样的制备 若冲击试样的类型和尺寸不同,则得出的实验结果不能直接比较和换算。本次试验采用U 型缺口冲击试样。其尺寸及偏差应根据GB/T229-1994规定,见图1-2。加工缺口试样时,应严格控制其形状﹑尺寸精度以及表面粗糙度。试样缺口底部应光滑﹑无与缺口轴线平行的明显划痕。 图1-2 冲击试样 五﹑实验原理 冲击试验利用的是能量守恒原理,即冲击试样消耗的能量是摆锤试验前后的势能差。试验时,把试样放在图1-2的B 处,将摆锤举至高度为H 的A 处自由落下, 冲断试样即可。 摆锤在A 处所具有的势能为: E=GH=GL(1-cos α) (1-1) 冲断试样后,摆锤在C 处所具有的势能为: E 1=Gh=GL(1-cos β)。 (1-2) 势能之差E-E 1,即为冲断试样所消耗的冲击功A K :

A K=E-E1=GL(cosβ-cosα) (1-3) 式中,G为摆锤重力(N);L为摆长(摆轴到摆锤重心的距离)(mm);α为冲断试样前摆锤扬起的最大角度;β为冲断试样后摆锤扬起的最大角度。 h L G H 图1-3冲击试验原理图 六﹑实验步骤 1.测量试样的几何尺寸及缺口处的横截面尺寸。 2.根据估计材料冲击韧性来选择试验机的摆锤和表盘。 3.安装试样。如图1-4所示。 图1-4冲击试验示意图 4.进行试验。将摆锤举起到高度为H处并锁住,然后释放摆锤,冲断试样后,待摆锤扬起 到最大高度,再回落时,立即刹车,使摆锤停住。 5.记录表盘上所示的冲击功A KU值.取下试样,观察断口。试验完毕,将试验机复原。 6. 冲击试验要特别注意人身的安全。 七﹑实验结果处理 1.计算冲击韧性值αKU. αKU =0 S A KU (J/cm2) (1-4)式中,A KU为U型缺口试样的冲击吸收功(J); S0为试样缺口处断面面积(cm2)。

材料分析方法考试复习题

一、名词解释(30分,每题3分) 1)短波限: 连续X 射线谱的X 射线波长从一最小值向长波方向伸展,该波长最小值称为短波限。P7。 2)质量吸收系数 指X 射线通过单位面积上单位质量物质后强度的相对衰减量,这样就摆脱了密度的影响,成为反映物质本身对X 射线吸收性质的物质量。P12。 3)吸收限 吸收限是指对一定的吸收体,X 射线的波长越短,穿透能力越强,表现为质量吸收系数的下降,但随着波长的降低,质量吸收系数并非呈连续的变化,而是在某些波长位置上突然升高,出现了吸收限。每种物质都有它本身确定的一系列吸收限。P12。 4)X 射线标识谱 当加于X 射线管两端的电压增高到与阳极靶材相应的某一特定值k U 时,在连续谱的某些特定的波长位置上,会出现一系列强度很高、波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶有严格恒定的数值,此波长可作为阳极靶材的标志或特征,故称为X 射线标识谱。P9。 5)连续X 射线谱线 强度随波长连续变化的X 射线谱线称连续X 射线谱线。P7。 6)相干散射 当入射线与原子内受核束缚较紧的电子相遇,光量子不足以使原子电离,但电子可在X 射线交变电场作用下发生受迫振动,这样的电子就成为一个电磁波的发射源,向周围辐射与入射X 射线波长相同的辐射,因为各电子所散射的射线波长相同,有可能相互干涉,故称相干散射。P14。 7)闪烁计数器 闪烁计数器利用X 射线激发磷光体发射可见荧光,并通过光电管进行测量。P54。 8)标准投影图 对具有一定点阵结构的单晶体,选择某一个低指数的重要晶面作为投影面,将各晶面向此面所做的极射赤面投影图称为标准投影图。P99。 9)结构因数 在X 射线衍射工作中可测量到的衍射强度HKL I 与结构振幅2 HKL F 的平方成正比,结构振幅

编译原理实验报告材料(预测分析报告表方法)

预测分析表方法 一、实验目的 理解预测分析表方法的实现原理。 二、实验内容: 编写一通用的预测法分析程序,要求有一定的错误处理能力,出错后能够使程序继续运行下去,直到分析过程结束。可通过不同的文法(通过数据表现)进行测试。 三、实验步骤 1.算法数据构造: 构造终结符数组:char Vt[10][5]={“id”,”+”……}; 构造非终结符数组:char Vn[10]={ }; 构造follow集数组:char *follow[10][10]={ } (可将follow集与预测分析表合并存放) 数据构造示例(使用的预测分析表构造方法1): /*data1.h简单算术表达式数据*/ char VN[10][5]={"E","E'","T","T'","F"}; //非终结符表 int length_vn=5; //非终结符的个数 char VT[15][5]={"id","+","*","(",")","#"}; //终结符表 int length_vt=6; //终结符的个数 char Fa[15][10]={"TE'","+TE'","","FT'","*FT'","","(E)","id"}; //产生式表:0:E->TE' 1:E'->+TE' 2:E'->空 // 3:T->FT' 4:T'->*FT' 5:T'->空 6:F->(E) 7:F->id int analysis_table[10][11]={0,-1,-1,0,-2,-2,0,0,0,0,0, -1,1,-1,-1,2,2,0,0,0,0,0, 3,-2,-1,3,-2,-2,0,0,0,0,0, -1,5, 4,-1,5, 5,0,0,0,0,0, 7,-2,-2,6,-2,-2,0,0,0,0,0}; //预测分析表,-1表示出错,-2表示该行终结符的follow集合,用于错误处理,正数表示产生式在数组Fa 中的编号,0表示多余的列。 (1)预测分析表的构造方法1 给文法的正规式编号:存放在字符数组中,从0开始编号,正规式的编号即为该正规式在数组中对应的下标。如上述Fa数组表示存储产生式。 构造正规式数组:char P[10][10]={“E->TE’”,”E’->+TE’”,……..}; (正规式可只存储右半部分,如E->TE’可存储为TE’,正规式中的符号可替换,如可将E’改为M ) 构造预测分析表:int analyze_table[10][10]={ } //数组元素值存放正规式的编号,-1表示出错 (2)预测分析表的构造方法2 可使用三维数组 Char analyze_table[10][10][10]={ }

实验五 聚合物材料冲击强度的测定(定稿)

实验五聚合物材料冲击强度的测定 一、实验目的 1. 了解高分子材料的冲击性能; 2. 理解摆锤式抗冲击强度试验机的原理; 3. 掌握冲击强度的测试方法; 二、实验原理 冲击强度是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破坏的能力。通常定义为试样受冲击载荷而折断时单位面所吸收的能量。 ()=/K A bh α 式中,K α为冲击强度;单位为J/cm 2;A 为冲断试样所消耗的功;b 为试样宽度;h 为试样厚度。冲击强度的测试方法很多,应用较广的有以下三种: (1)摆锤式冲击试验; (2)落球法冲击试验; (3)高速拉伸试验。 本实验采用摆锤式冲击试验法。摆锤冲击试验,是将标准试样放在冲击机规定的位置上,然后让重锤自由落下冲击试样,测量摆锤冲断试样所消耗的功,根据上述公式计算试样的冲击强度。摆锤冲击试验机的基本构造有3部分:机架部分、摆锤冲击部分和指示系统部分。根据试样的按放方式,摆锤式冲击试验又分为简支梁型(Charpy 法)和悬臂梁型。前者试样两端固定,摆锤冲击试样的中部;后者试样一端固定,摆锤冲击自由端。如图1所示。 图1摆锤冲击试验中试样的安放方式 试样可采用带缺口和无缺口两种。采用带缺口试样的目的是使缺口处试样的截面积大为减小,受冲击时,试样断裂一定发生在这一薄弱处,所有的冲击能量都能在这局部的地方被吸收,从而提高试验的准确性。 测定时的温度对冲击强度有很大影响。温度越高,分子链运动的松弛过程进行越

快,冲击强度越高。相反,当温度低于脆化温度时,几乎所有的塑料都会失去抗冲击的能力。当然,结构不同的各种聚合物,其冲击强度对温度的依赖性也各不相同。湿度对有些塑料的冲击强度也有很大影响。如尼龙类塑料,特别是尼龙6、尼龙66等在湿度较大时,其冲击强度更主要表现为韧性的大大增加,在绝干状态下几乎完全丧失冲击韧性。这是因为水分在尼龙中起着增塑剂和润滑剂的作用。 试样尺寸和缺口的大小和形状对测试结果也有影响。用同—种配方,同一种成型条件而厚度不同的塑料作冲击试验时,会发现不同厚度的试样在同一跨度上作冲击试验,以及相同厚度在不同跨度上试验,其所得的冲击强度均不相同,且都不能进行比较和换算。而只有用相同厚度的试样在同一跨度上试验,其结果才能相互比较,因此在标准试验方法中规定了材料的厚度和跨度。缺口半径越小,即缺口越尖锐,则应力越易集中,冲击强度就越低。因此,同一种试样,加工的缺口尺寸和形状不同,所测得冲击强度数据也不——样。这在比较强度数据时应该注意。 三、实验仪器和材料 1、试验机 试验机为摆锤式(悬臂梁),并由摆锤、试样支座、能量指示机构和机体等主要构件组成。能指示试样破坏过程中所吸收的冲击能量。 2、摆体 摆体是试验机的核心部分,它包括旋转轴、摆杆、摆锤和冲击刀刃等部件。旋转轴心到摆锤打击中心的距离与旋转轴心至试样中心距离应一致。两者之差不应超过后者的±1%。冲击刀刃规定夹角为30士1o。端部圆弧半径为2.0士0.5 mm。摆锤下摆时,刀刃通过两支座问的中央偏差不得超过士0.2 mm,刀刃应与试样的冲击面接触。接触线应与试样长轴线相垂直,偏差不超过士2o。 3、试样支座 为两块安装牢固的支撑块,能使试样成水平,其偏差在1/20以内。在冲击瞬间应能使试样打击面平行于摆锤冲击刀刃,其偏差在1/200以内。支撑刃前角为 5o,后角为10士1o,端部圆弧半径为1mm。 4、能量指示机构 能量指示机构包括指示度盘和指针。应对能量度盘的摩擦、风阻损失和示值误差做准确的校正。 5、机体 机体为刚性良好的金属框架,并牢固地固定在质量至少为所用最重摆锤质量40倍的基础上。本试验采用带缺口试样。试样表面应平整、无气泡、裂纹、分 层和明显杂质。试样缺口处应无毛刺。

材料分析方法课后习题答案

第十四章 1、波谱仪和能谱仪各有什么优缺点 优点:1)能谱仪探测X射线的效率高。 2)在同一时间对分析点内所有元素X射线光子的能量进行测定和计数,在几分钟内可得到定性分析结果,而波谱仪只能逐个测量每种元素特征波长。 3)结构简单,稳定性和重现性都很好 4)不必聚焦,对样品表面无特殊要求,适于粗糙表面分析。 缺点:1)分辨率低。 2)能谱仪只能分析原子序数大于11的元素;而波谱仪可测定原子序数从4到92间的所有元素。 3)能谱仪的Si(Li)探头必须保持在低温态,因此必须时时用液氮冷却。 分析钢中碳化物成分可用能谱仪;分析基体中碳含量可用波谱仪。 2、举例说明电子探针的三种工作方式(点、线、面)在显微成分分析中的应用。 答:(1)、定点分析:将电子束固定在要分析的微区上用波谱仪分析时,改变分光晶体和探测器的位置,即可得到分析点的X射线谱线;

用能谱仪分析时,几分钟内即可直接从荧光屏(或计算机)上得到微区内全部元素的谱线。 (2)、线分析:将谱仪(波、能)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置把电子束沿着指定的方向作直线轨迹扫描,便可得到这一元素沿直线的浓度分布情况。改变位置可得到另一元素的浓度分布情况。 (3)、面分析:电子束在样品表面作光栅扫描,将谱仪(波、能)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置,此时,在荧光屏上得到该元素的面分布图像。改变位置可得到另一元素的浓度分布情况。也是用X射线调制图像的方法。 3、要在观察断口形貌的同时,分析断口上粒状夹杂物的化学成分,选用什么仪器用怎样的操作方式进行具体分析 答:(1)若观察断口形貌,用扫描电子显微镜来观察:而要分析夹杂物的化学成分,得选用能谱仪来分析其化学成分。 (2)A、用扫描电镜的断口分析观察其断口形貌:

材料现代分析方法实验报告

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

包装用缓冲材料动态压缩实验~实验报告

运输包装实验报告 (二)包装缓冲材料动态压缩试验 天津科技大学110611 一、 实验目的 通过缓冲材料动态冲击实验掌握材料动态冲击的 实验过程与方法,学习实验设备的构成、实验的 操作方法;掌握s m G σ-曲线的绘制及动态缓冲曲 线的使用。 二、 实验设备及材料 1. 包装冲击试验机DY-2 2. 电子分析天平 PB203-N 3. 实验纪录仪器与装置 4. 发泡缓冲材料EPE 三、 试验样品 试验样品的数量:5 厚度(压缩之前)的测量: A1组:48.62 mm A2组:49.96mm A3 组:48.44mm

A4组:48.26mm A5组:47.81mm A6组:52.55mm A7组:49.8mm 以A4组详述:测量标准的已知参量: d0=8.32mm d1=23.1mm d2=24.64mm 四角的厚度分别为: d1=9.33mm d2=7.87mm d3=9.70mm d4=8.47mm d均=(9.33+7.87+9.70+8.47)/4=8.84mm 压缩前试样的厚度为: T=23.1+24.64+8.84-8.32=48.26mm 压缩之后测量标准的已知参量: d0=8.32mm d1=29.12mm d2=24.0mm 四、试验方法 1.实验室的温湿度条件 实验室的温度:21摄氏度 实验室的湿度:35% 2.实验样品的预处理

将实验材料放置在试验温湿度条件下24小时以上3.实验步骤 (1)将试验样品放置在式烟机的底座上,并使其中心与重锤的中心在同一垂线上。适当 的固定试验样品,固定时应不使实验样品 产生变形。 (2)使试验机的重锤从预定的跌落高度(760mm)冲击实验样品,连续冲击五次, 每次冲击脉冲的间隔不小于一分钟。记录 每次冲击加速度-时间历程。实验过程中, 若未达到5次冲击时就已确认实验样品发 生损坏或丧失缓冲能力时则中断实验。4.冲击试验结束3分钟后,按原来方法测量试验样品的厚度作为材料动态压缩实验后的厚度 T实验步骤 d (1)将试验样品放置在式烟机的底座上,并使其中心与重锤的中心在同一垂线上。适当 的固定试验样品,固定时应不使实验样品

摆锤式冲击试验机

摆锤式冲击试验机 一、设备名称:摆锤式冲击试验机 二、型号:JBW-300B 三、摆锤式冲击试验机性能说明: 摆锤式冲击试验机主要用于测定金属材料在动负荷下抵抗冲击的性能进行检测,是冶金、机械制造等单位必备的检测仪器,也是科研单位进行新材料研究不可缺少的测试仪器,该系列机型也是目前市场上普遍的冲击试验机。 1.本机为微机屏显式半自动冲击试验机,采用PC微机控制,可实现扬摆→冲击→测 量→运算→屏幕数显→打印等微机化操作,工作效率高,测试精度高。在冲击试样后利用剩余能量自动扬摆,做好下次试验准备,操作简便,工作效率高。特别在连续做冲击试验的试验室和大量做冲击试验的冶金、机械制造等行业更能体现其优越性。计算机可计算和数显材料冲击吸收功、摆锤扬角及试验平均值。根据用户需要还可实现远程数据传输。 2.摆锤为U型摆体设计,保证了打击中心准确,摆锤力矩精确; 3.冲击刀采用螺钉安装固定,更换简单方便; 4.装有安全防护销,并且配备了安全防护网; 5.微机控制,按指令完成取摆、冲击、自动扬摆、再冲击多次试验的全过程。 6.试验机符合国标GB/T3803-2002《摆锤式冲击试验机的检验》,按国标 GB/T229-2007《金属夏比缺口冲击试验方法》对金属材料进行冲击试验

四、摆锤式冲击试验机主要技术指标: 1、冲击能量:150J、300J 2、摆锤预扬角:150° 3、摆轴中心至冲击点距离:750mm 4、冲击速度:5.2m/s 5、试样支座跨距:40mm 6、钳口圆角:R1-1.5mm 7、冲击刀刃圆角:R2-2.5mm R8mm 8、冲击刀厚度:16mm 9、角度准确度:±0.1° 10、试样尺寸:10(7.5、5)×10×55mm 11、外形尺寸:650mm×1960 mm×2100mm 12、试验机净重:约550Kg 13、电源:交流三相380V±10% 50HZ 5A 14、环境条件:周围环境中无腐蚀介质,无震动,无强电磁场干扰。 五、摆锤式冲击试验机设备主要配置: 1.300焦耳主机一台; 2.150J、300J 摆锤各一个 3.电机一台(装在主机上); 4.取摆传动装置一套(装在主机上); 5.自动挂摆装置一套(装在主机上); 6.保险机构一套(装在主机上); 7.防护网一套; 8.支座调校器一只; 9.试样对中器一只; 10.专用测量软件一套; 11.微机及打印机一台 12.摆锤拆卸器一件; 13.地脚螺钉四个; 14.调整斜铁四块; 15.内六角扳手一支;

材料分析与表征方法实验报告

材料分析与表征方法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用方法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙CaC2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min)0.1-100℃/min 天平灵敏度(μg)0.1μg 温度范围(°C)室温-1000℃ 五、操作条件

第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG 曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。 六、结果与讨论 含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每mo CaC2O4·H2O失掉1mol H2O,其热分解反应为: CaC2O4·H2O CaC2O4 + H2O 在400℃和500℃之间失重并开始呈现第三个平台,DTG曲线先升后降,在

摆锤式冲击试验机操作规程

摆锤式冲击试验机操作 规程 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

摆锤式冲击试验机操作规程 名称:摆锤式冲击试验机;型号:XJJ-5;使用人:马涛涛 1.操作步骤: ①检查运行状态 试验前必须检查试验机是否处于正常状态,各运转部件及其紧固件必须安全可靠。 ②检查和调整拨针位置 当摆锤自由的处于铅锤位置时,拨转指针至读数盘的最大读数处,调整拨针使之上平面与指针小柱靠紧,然后旋转拨针上的紧固螺钉。 ③空击试验和检查 空击试验的目的是为了检查能量损失是否过大,操作时将摆锤升起至予扬角位置,手动指针拨至最大读数值,操纵手控盒“冲击”按钮,当完成一次冲击回落时,用手迅速地将指针拨回读数盘最大读数值处,待锤完成第二次冲击后,将其控制到“制动”位置(使脱摆轴勾住摆锤的调整套),读取指针指示值,将两次指示值(第一次应为0)之差除以2即为一次空击过程中的能量损失。对最大冲击能量为300焦耳的摆锤能量损失允许焦耳,对最大冲击能量为150焦耳的摆锤能量损失允许耳,如果超出允许值,则应检查弹性垫圈压力是否过大,拨针是否松动和位置准确与否,摆轴轴承是否灵活等,直到达到允许值要求。 ④安装试样 将摆锤控制到“制动”位置后,在试件长度中部的正面与背面分别测量试件的宽度取平均值记录,在其中部两边对应部位测量两点厚平均并记录,将试件置于摆锤冲击机的托板上,其正面对着摆锤,试件背面应于支撑刀刃靠紧。 ⑤冲击试验 将试件安装好后,再将指针拨至最大读数处,在确认好工作环境安全正常,按下释放按钮即可实现冲击。冲断试样后,将摆锤控制到“制动”位置,读取被动指针读数并记录。 2.试验机的维护保养 ①试验机若需搬动位置应将摆锤卸下,以免来回摆动使零件遭到损坏; ②对于易锈部位应涂防锈油; ③没有必要时,严禁拆卸或更换摆锤上的有关零件,以免摆锤力矩和打击中心距发生变化; ④使用前应检查摆锤、摆杆上的连接螺钉是否松动;

三种高低温摆锤冲击实验方法的比较说明

三种高低温摆锤冲击实验方法的比较说明 关于(高温)低温摆锤冲击实验方法,现世界上主要有三种方式。 1、目前世界上绝大多数用户的实验室所选用的传统方式:预先将样品在另一个(高)低温恒温箱中冷冻(加热)至所需温度,然后迅速取出后放置于夹具上快速冲击。误差取决于环境温度的散热及取出样品至冲击结束的时间。 2、专用冲击低温箱方式:将样品试验台(包括样品)一块儿冷冻(通常不能加热做高温试验),达到所需温度并且稳定后再打开低温箱开始冲击实验。误差取决于低温箱温度准确性、稳定性,样品及夹具稳定时间的长短以及打开低温箱后至冲击结束所需时间。 3、整体冷冻方式:将整个冲击仪密封在一个小型低温恒温室内或整个操作间低温恒温。由于小型恒温室价格昂贵,工作人员在低温环境中工作不便,此种方式很少使用。由于环境温度对冲击仪有较大影响,该方式不能做高温试验及很低的低温实验。误差取决于恒温室温度的稳定性、准确性以及仪器对环境温度变化的影响。 意大利ATS公司设计经理Mr. Segrio Martiotti(原CEAST公司的主设计师)是一位在该方面的资深专家。中国很多用户的RESIL25摆锤冲击仪都是他设计的,销售了十几年。经向Mr. Martiotti询问,他提出:设计一个摆锤低温箱是非常容易的,但ATS经过试验考察后,不采用该方案,原因是: 1、低温箱的温度稳定度及准确度在±1-2℃左右(摆锤冷冻箱设定与实际稳定温度差值为±2℃,需长时间稳定);而在低温状态下,0.1℃的温度误差即产生很大的冲击误差(根据不同材料的变化,测试值也不同。),其影响远远大于冲击仪自身的误差。 2、98年才开始设计生产的低温箱工艺材料等均不完全成熟,世界上生产类似摆锤低温箱的也很少。而目前世界上用旁边放低温柜,用迅速夹持冲击方法的占绝大多数。传统低温柜,世界上有近千家厂家,几百万台生产量。材料、工艺、性能均有保障。在低温冷冻箱基础上,为设备专门进行改动,使取样更方便和快速,温度精度0.1℃,稳定性0.2℃。除低温外,还可以做高温材料冲击实验和用于其它用途。 3、ATS的快速恒应力夹具加上设计取样方便的低温柜,使从取样到冲击完毕时间很快,约几秒至十几秒。样品只表面温度略有变化,对实质性影响不大,同用专用的摆锤冲击箱开箱后再冲击的时间基本是一样的;而平均样品误差值小于摆锤冲击箱(温度一致性比摆锤冲击箱好得多)。一般的冲击低温箱还需另外配一只低温柜,将样品深冷冻后再取出放在箱内冷冻,否则样品不能深冷冻,温度误差更大;增加了成本。 4、专用摆锤低温箱不实用。从做实验开始到恒定所需温度值需很长时间,每次样品间隔需长时间温度稳定,否则一致性很差。另外,消耗液氮也多,成本高。如果包括人工,则成本昂贵,因此意大利及欧洲乃至世界上很少用此种方式。 5、整体仪器冷冻方式由于仪器所处环境经常变化及温度波动性较大,并且造价昂贵、操作条件恶劣,因此也不是常用方式。

相关文档
最新文档