2011年高三数学复习(第8章 圆锥曲线):8.10 向量在解析几何中的应用

2011年高三数学复习(第8章 圆锥曲线):8.10 向量在解析几何中的应用
2011年高三数学复习(第8章 圆锥曲线):8.10 向量在解析几何中的应用

1.△ABC中,A(2,3),B(4,6),C(3,﹣1),点D满足.

(1)求点D的轨迹;

(2)求的最小值.

解答:(1)解:设点D(x,y),∵点D满足

∴(﹣1,4)?(x﹣3,y+1)=(x﹣3,y+1)?(1,

∴3﹣x+4y+4=x﹣3+7y+7,即2x+3y﹣3=0.∴点D的轨

迹是一条直线.

(2)解:设A(2,3)关于点D的轨迹(直线)的对称

点A′(a,b),则有:

=,即3a﹣2b=0 ①,又AA′的中点(

)在直线2x+3y﹣3=0上,

∴2?+3?﹣3=0,即2a+3b+7=0 ②,由①②可解

得点A′(﹣,﹣),

∴=|DA′|+|DB|≥|A′B|=

=,

∴的最小值为.

2.如图,点F(a,0)(a>0),点P在y轴上运动,点M在x轴上运动,点N为动点,且

(1)求点N的轨迹C;(2)过点F(a,0)的直线l(不与x轴垂直)与曲线C交于A、B两

点,设K(﹣a,0),的夹角为θ,求证.

解答:解:(1)设N(x,y)∵

∴M(﹣x,0),P(0,)=(﹣X,﹣),=(

﹣)

∵∴=﹣ax+=0

∴y2=4ax

(2)设A(x1,y1),B(x2,y2)

∴直线l:y=k(x﹣a)=(x1+a,y1)=(x2+a,

联立∴ky2﹣4ay﹣4ka2=0

∴,y1y2=﹣4a2,x1x2=a2,

∴=(x1+a)(x2+a)+y1y2=x1x2+a(x1+x2)+a2+y

=2a2+﹣4a2=﹣

2a2=2=>0

∴cosθ>0∵θ∈[0,π]∴θ∈(0,)

3.已知.

(1)求点P(x,y)的轨迹方程;

(2)若直线l:y=kx+m(km≠0)与曲线C交于A、B两点,D(0,﹣1)且,求

m的取值范围.

考点:直线与圆锥曲

线的综合问题;

平面向量数量

积的运算.

专题:计算题.

分析:(1)根据两个

向量垂直,代入

即可求得x和y

的关系式.则轨

迹方程可得.

(2)设有一点D

在轨迹C上运

动,过点D的切

线与y轴交于

(0,m),m取

极值时,有过点

D的切线

⊥AD.先看D

在x轴上方设切

点为

(a,b),则仅

当D与A点重

合时满足条件,

考虑M、N为不

同的两点,可知

m的范围;在看

D在x轴上方设

切点为(a,b),

则切线方程可

得,与y轴交点

为m,进而可求

得直线AD的斜

率表达式,根据

切线⊥AD推断

出:k1×k2=﹣1,

进而求得m的

范围.最后综合

可得答案.

解答:解:(1)

∴(x+,

y)(x﹣,

y)=0

∴x2﹣3+3y2=0

整理得:

即点Q(x,y)

的轨迹C是椭

(2):设有一点

D在轨迹C上运

动,过点D的切

线与y轴交于

(0,m),

m取极值时,有

过点D的切线

⊥AD.

①D在x轴下方

显然仅当D与A

点重合时满足

条件,考虑M、

N为不同的两

点,可知m>﹣

1

②D在x轴上方

设切点为(a,

b),则有切线方

程:+by=1,

其斜率为k1=

﹣,与y轴交

点为m=.

直线AD的斜率

k2=

由切线⊥AD:

k1×k2=﹣1

即(﹣)

=﹣1

解得:b=

则:m==2

∴m≤2

综上述:﹣1<

m≤2

点评:本题主要考查

了直线与圆锥

曲线的综合问

题.考查了学生

综合分析问题

的能力.

4.(2010?马鞍山模拟)已知H(﹣3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足.

(1)当点P在y轴上移动时,求点M的轨迹C;

(2)过点T(﹣1,0)作直线l与轨迹C交于A、B两点,若在x轴上存在一点E(x0,0),使得△ABE是等边三角形,求x0的值.

考点:椭圆的应用;平

面向量数量积

的运算;轨迹方

程.

专题:计算题.

分析:(1)设出M的

坐标,利用题意

向量的关系,求

得x和y的关

系,进而求得M

的轨迹C.

(2)设直线l

的方程,代入抛

物线方程,设出

A,B的坐标,

利用韦达定理

表示出x1+x2和

x1x2,则线段AB

中点坐标以及

AB的中垂线的

方程可得,把

y=0代入方程,

最后利用

△ABE为正三

角形,利用正三

角的性质推断E

到直线AB的距

离的关系式求

得k,则x0可求.解答:解(1)设点M

的坐标为(x,

y),

.得

由,

所以y2=4x由点

Q在x轴的正半

轴上,得x>0,

所以,动点M的

轨迹C是以(0,

0)为顶点,以

(1,0)为焦点

的抛物线,除去

原点.

(2)设直线l:

y=k(x+1),其中k≠0代入

y2=4x,得

k2x2+2(k2﹣2)x+k2=0①

设A(x1,y1),B(x2,y2),则x1,x2是方程①的两个实数根,由韦达定理得

所以,线段AB 的中点坐标为

,线段AB的垂直平分线方程

,所以,点E的坐标为

因为△ABE为正三角形,所以,点

E

到直线AB的距离等于|AB|,而

|AB|=

所以,

解得,

所以.

点评:本题主要考查

了椭圆的应用,

向量的基本性

质.考查了学生

分析问题和解

决问题的能力.

5.△ABC中,A、B两点的坐标分别为(﹣4,2)、(3,1),O为坐标原点.已知

||=,且直线的方向向量为=(1,2),求顶点C的坐标.

考点:平行向量与共

线向量;向量的

模.

分析:据角平分线定

理得CD为角平

分线,据点关于

直线对称中点

在对称轴上;两

点连线与对称

轴斜率乘积为

﹣1求对称点坐

标,据两点式求

直线BC方程,

据三点共线充

要条件求CD方

程,求两直线交

点即点C.

解答:解:

∵||=

∵,

∴A,B,D三

点共线,D在线

段AB上,且

∴CD为∠ACB

的角平分线

∴O,C,D共

线

∴直线DC的方

程为y=2x

设点A(﹣4,2)

关于CD的对称

点A′(x,y)

则有

解得即

A′(4,﹣2)

∵A′在直线

BC上

∴直线BC的方

程为3x+y﹣

10=0

得C(2,4)

答:点C的坐标

为(2,4)

点评:本题考查角平

分线定理;点关

于直线的对称

点的求法;直线

方程的求法;交

点坐标等.

6.已知,为坐标原点,动点M满足

(1)求动点M的轨迹C;

(2)若点P、Q是曲线C上的任意两点,且,求的值.

考点:椭圆的应用.

专题:计算题.

分析:(1)

>6,∴动点M

的轨迹C是焦

点在x轴,c=3,

a=5的椭圆.

(2)采用特殊

值法,设P(m,

m),Q(﹣m,

m),能够快速求

解.

解答:解:(1)

>6.

∴动点M的轨

迹C是焦点在x

轴,c=3,a=5

的椭圆,

∴动点M的轨

迹C的轨迹方

程是

(2)由题意可

知,取Q(0,4),

P(5,0),则

∴=

=.

点评:本题考查椭圆

的性质及应用,

解题时注意特

殊值法的运用,

能够简化运用.

7.已知:过点A(0,1)且方向向量为的直线l与⊙C:(x﹣2)2+(y﹣3)2=1相交于M、N两点.

(1)求实数k的取值范围;

(2)求证:=定值.

考点:直线与圆的位

置关系;平面向

量数量积的运

算;向量在几何

中的应用.

分析:(1)只要求出

在极限情况,即

相切时k的值为

多少即可.(2)

有切割弦定理

可求数量积的

值.

解答:解:(1)可设直

线l的方程为

y=kx+1,与圆的

方程:(x﹣2)

2+(y﹣3)2=1

它的圆心(2,3)

半径是1.

直线与圆相切

时有

,解得

k=或

所以,

(2)点A(0,

1)在圆外,直

线l与⊙C:(x

﹣2)2+(y﹣3)

2=1相交于M、

N两点,

=|AM||A

N|cos0°=|AM||A

N|,过A引一切

线,切点为T,

|有切割弦定理

可知:

|AM||AN|=|AT|2

是定值.

点评:本题考查圆心

到直线的距离,

直线方程,在

(1)中注意k

的范围的问题,

容易出错,(2)

中的切割弦定

理容易疏忽.

8.已知:O为坐标原点,点F、T、M、P1满足,

,.

(1)当t变化时,求点P1的轨迹C;

(2)若P2是轨迹C上不同于P1的另一点,且存在非零实数λ,使得,求证:

考点:轨迹方程;平面

向量的综合题.

专题:计算题;证明

题.

分析:(1)设P1(x,

y),根据题设的

条件建立关于

点P1的坐标x,

y的等式.

(2)设过P1

(x1,y1),P2

(x2,y2)两点

的直线P1P2的

方程为:y=k(x

﹣1)代入y2=4x

得到关于x的一

元二次方程,利

用根系关系得

到x的一元二次

方程,利用根系

关系得到两根

之和与两根之

差.解出两线段

长度的倒数和,

解得其值为定

值.

解答:解:(1)设P1

(x,y),则由:

得M是

线段FT的中

点,得M(0,)

∴=(﹣x,

﹣y)

=(﹣2,t),

=(﹣1﹣x,

t﹣y)

∵⊥∴2

x+t(﹣y)=0

∵∥

∴(﹣1﹣x)?0+

(t﹣y)?1=0化

简得:t=y ②

由①、②得:

y2=4x

这里用了参数

方程的思想求

轨迹方程;②也

可以利用向量

的几何意义,利

用抛物线的定

义判断轨迹为

抛物线,从而求

解.)

(2)易知F(1,

0)是抛物线

y2=4x的焦点,

得(x1,y1),P2

(x2

设过P1(x1,y1),

P2(x2,y2)两

点的直线P1P2

的方程为:y=k

(x﹣1)代入

y2=4x

得k2x2﹣2

(k2+2)x+k2=0

则x1x2=1,

x1+x2=

=

=

=1.

点评:考查用参数法

求轨迹方程与

直线与圆的位

置关系,本题两

个题运算量都

较大,解题过程

较长,要严谨做

题.

9.设平面内两向量满足:,点M(x,y)的坐标满足:

与互相垂直.求证:平面内存在两个定点A、B,使对满足条件的任意一点M均有|等于定值.

考点:平面向量的综

合题.

专题:证明题.

分析:由已知可得

,把已知条件代

入整理可得M

的轨迹是双曲

线,由双曲线的

定义可知,满足

条件的点即为

双曲线的两焦

点,而定值即为

双曲线的实轴

长2a

解答:证明:∵,

垂直,且

整理可得

M(x,y)的轨

迹是以(0,)

(0,﹣)为

焦点的双曲线

由双曲线的定

义可知当A,B

分别为该双曲

线的焦点时,

||MA|﹣|MB||=4 点评:本题以向量垂

直为切入点,综

合考查双曲线

的定义的应用,

灵活熟练的推

理论证及对基

本知识的掌握

是解决本题的

关键.

10.已知,(O为坐标原点),的夹角为60°,A、O、B 顺时针排列,点E、F满足,点G满足.

(1)当λ变化时,求点G的轨迹方程;

(2)求的最小值.

考点:向量在几何中

的应用.

专题:计算题.

分析:(1)由题意写

出B点的坐标,

和E、F点的坐

标,由点G满足

,所以

G为EF的中点,

由中点坐标公

式可写出点G

的坐标,消去λ

得到x和y的关

系即为点G的

轨迹方程.

(2)将表

示为λ的函数,

利用基本不等

式求最值即可.

解答:解:(1)由

可得OA和x轴

正半轴的夹角

为30°,又因为

的夹角为60°,

所以

,所以

由点G满足

,所以

G为EF的中点,

所以G

( , ) ,

) 设G (x ,y ),则

,消去λ得

,消去λ得

,消去λ得

(2) = =

= = = =

当且仅当

,即

,即 时“=”成

时“=”成立. 成立.

故 的最小值为值为1 点评:

点评: 本题考查向量的坐标运算、向量的模、参数法求轨迹方程、基本不等式求最值等知识,综合性强,考查运算能力.

本题考查向量的坐标运算、向量的模、参数法求轨迹方程、基本不等式求最值等知识,综合性强,考查运算能力. 向量在几何中的应用. 专题: 计算题. 分析: (1)由题意写出B 点的坐标,和E 、F 点的坐标,由点G 满足

,所以G 为EF 的中点,由中点坐标公式可写出点G 的坐标,消去

λ得到x 和y 的关系即为点G 的轨迹方程.

专题:计算题.

分析:(1)由题意写出B 点的坐标,和E 、F 点的坐标,由点G 满足,

所以G 为EF 的中点,由中点坐标公式可写出点G 的坐标,消去λ得到x 和y 的关系即为点G 的轨迹方程.

专题: 计算题. 分析: (1)由题意写出B 点的坐标,和E 、F 点的坐标,由点G 满足

所以G 为EF 的中点,由中点坐标公式可写出点G 的坐标,消去λ得到x 和y 的关系即为点G 的轨迹方程.

计算题. 分析: (1)由题意写出B 点的坐标,和E 、F 点的坐标,由点G 满足

,所以G

为EF 的中点,由中点坐标公式可写出点G 的坐标,消去λ得到x 和y 的关系即为点G 的轨迹方程.

分析:(1)由题意写出B 点的坐标,和E 、F 点的坐标,由点G 满足,所以G 为EF 的中点,由中点坐标公式可写出点G 的坐标,消去λ得到x 和y 的关系即为点G 的轨迹方程.

分析: (1)由题意写出B 点的坐标,和E 、F 点的坐标,由点G 满足

,所以G 为EF 的中

点,由中点坐标公式可写出点G 的坐标,消去λ得到x 和y 的关系即为点G 的轨迹方程. (1)由题意写出B 点的坐标,和E 、F 点的坐标,由点G 满足

,所以G 为EF 的中点,由中

点坐标公式可写出点G 的坐标,消去λ得到x 和y 的关系即为点G 的轨迹方程. (2)将 表示为λ的函数,利用基本不等式求最值即可. 解答: 解:(1)由 可得OA 和

x 轴正半轴的夹角为30°,又因为

的夹角为60°,

解答:解:(1)由可得OA 和x 轴正半轴的夹角为30°,又因为的夹角为60°, 解答: 解:(1)由 可得OA 和x 轴正半轴的夹角为30°,又因为

的夹角为60°,

解:(1)由 可得OA 和x 轴正半轴的夹角为30°,又因为

的夹角为60°,

所以 ,所以

由点G 满足 ,所以G 为EF 的中点,所以G ( ,

设G (x ,y ),则

,消去λ得

(2) = =

当且仅当

,即 时“=”成立.

故 的最小值为1 点评: 本题考查向量的坐标运算、向量的模、参数法求轨迹方程、基本不等式求最值等知识,综合性强,考查运算能力.

点评:本题考查向量的坐标运算、向量的模、参数法求轨迹方程、基本不等式求最值等知识,综合性强,考查运算能力.

点评: 本题考查向量的坐标运算、向量的模、参数法求轨迹方程、基本不等式求最值等知识,综合性强,考查运算能力.

本题考查向量的坐标运算、向量的模、参数法求轨迹方程、基本不等式求最值等知识,综合性强,考查运算能力.

参与本试卷答题和审题的老师有:wsj1012;wdnah;caoqz;xintrl;吕静;zlzhan;wdlxh;zhwsd;qiss(排名不分先后)

菁优网

2014年1月18日

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

高等数学空间解析几何与向量代数.docx

第七章空间解析几何与向量代数 第一节空间直角坐标系 教学目的:将学生的思维由平面引导到空间,使学生明确学习空 间解析几何的意义和目的。 教学重点: 1.空间直角坐标系的概念 2.空间两点间的距离公式 教学难点:空间思想的建立 教学内容: 一、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系 (三维)如图7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指 从正向x 轴以角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2 间直角坐标系共有八个卦限,各轴名称分别为:轴、y 轴、轴,坐标面分别为xoy 面、yoz面、zox 面。坐标面以及卦限的划分如图7-2 所示。图7-1 右手规则演示图 7-2 空间直角坐标系图图 7-3空间两点M1M 2的距离图3.空间点M ( x, y, z) 的坐标表示方法。通过坐标把空间的点与一个有序数组 一一对应起来。 注意:特殊点的表示 a)在原点、坐标轴、坐标面上的点; b) 关于坐标轴、坐标面、原点对称点的表示法。4.空间两点间的距离。若M 1 ( x1 , y1 , z1 ) 、 M 2 (x2 , y2 , z2 ) 为空间任意两点,则 M 1M 2的距离(见图7- 3),利用直角三角形勾股定理为: d 2 222 M1M 2M1NNM 2 222 M 1 p pNNM 2

而 M 1 P x 2 x 1 PN y 2 y 1 NM 2 z 2 z 1 所以 d M 1M 2 (x 2 x 1 ) 2 ( y 2 y 1 )2 (z 2 z 1 )2 特殊地:若两点分别为 M ( x, y, z) , o(0,0,0) d oM x 2 y 2 z 2 例 1:求证以 M 1(4,3,1) 、 M 2 (7,1,2) 、 M 3 (5,2,3) 三点为顶点的三角形是一个 等腰三角形。 2 ( 4 7) 2 (3 1) 2 (1 2) 2 14 证明 : M 1M 2 M 2M 3 2 7) 2 (2 1)2 (3 2)2 6 (5 2 4) 2 (2 3) 2 (3 1) 2 6 M 3M 1(5 由于 M 2M 3 M 3 M 1 ,原结论成立。 例 2:设 P 在 x 轴上,它到 P (0, 2 ,3) 的距离为到点 P 2 (0,1, 1) 的距离的两倍, 1 求点 P 的坐标。 解:因为 P 在 x 轴上,设 P 点坐标为 ( x,0,0) PP 1 x 2 2 PP 2 x 2 1 2 x 2 11 32 2 x 2 2 12 PP 1 2 PP 2 x 2 11 2 x 2 2 x 1

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2 222 =+y x 在空间解析几何中表示的图形为 [ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141:1+=+=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3 π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3)

5.将xoz 坐标面上的抛物线x z 42 =绕z 轴旋转一 周,所得旋转曲面方程是[B ] A. ) (42y x z += B. 2 2 2 4y x z +±= C. x z y 422 =+ D. x z y 422 ±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是 [B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程 222 22 x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知 a ?={0, 3, 4}, b ?={2, 1, -2},则 = b proj a ?ρ[ C ]

高中数学:空间向量

空间向量 一、向量的基本概念与运算 1.定义:在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示.用同向且 等长的有向线段表示同一向量或相等的向量. 2.零向量:起点与终点重合的向量叫做零向量,记为0或0. 3.书写:在手写向量时,在字母上方加上箭头,如a ,AB . 4.模:表示向量a 的有向线段的长度叫做向量的长度或模,记作||a 5.方向:有向线段的方向表示向量的方向. 6.基线:有向线段所在的直线叫做向量的基线. 7.平行向量:如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平 行向量.a 平行于b 记为a b ∥. 8.向量运算:与平面向量类似; 二、空间向量的基本定理 1.共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =. 2.共面向量:通常我们把平行于同一平面的向量,叫做共面向量. 3.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是, 存在唯一的一对实数x ,y ,使c xa yb =+. 4.空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.

注:上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c , ,,其中a b c ,,都叫做基向量. 由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底. 三、向量的数量积 1.两个向量的夹角 已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b ??, .通常规定0πa b ??≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a ??=??, ,.如果90a b ??=,°,则称a 与b 互相垂直,记作a b ⊥. 2.两个向量的数量积 已知空间两个向量a ,b ,定义它们的数量积(或内积)为:||||cos a b a b a b ?=??, 空间两个向量的数量积具有如下性质: 1)||cos a e a a e ?=??,;(2)0a b a b ??=; (3)2||a a a =?;(4)a b a b ?||≤||||. 空间两个向量的数量积满足如下运算律: 1)()()a b a b λλ?=?;(2)a b b a ?=?;(3)()a b c a c b c +?=?+?. 四、空间向量的直角坐标运算 前提:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k ,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k ,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k ;, ,. 1.坐标 在空间直角坐标系中,已知任一向量a ,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++,1a i ,2a j ,3a k 分别叫做向量a 在i j k ,, 方向上的分量,有序实数组123()a a a ,,叫做向量a 在此直角坐标系中的坐标.上式可以简记作123()a a a a =,,. 若123()a a a a =, ,,123()b b b b =,,, 则:112233()a b a b a b a b +=+++, ,;112233()a b a b a b a b -=---,,;

向量与解析几何相结合专题复习

向量与解析几何相结合专题复习 平面向量与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算。或者考虑向量运算的几何意义,利用其几何意义解决有关问题。 一:将向量及其运算的几何意义转化为平面图形的位置关系或数量关系 【例1.】已知△ABC 中,A 、B 两点的坐标分别为(-4,2)、(3,1),O 为坐标原点。已知||=λ·||,||=λ·||,∥ = (1,2)求顶点C 的坐标。 【解】如图:∵||=λ·||,∴λ=0 | |>CB ∵||=λ·||,∴A 、D 、B 三点共线,D 且λ=0 | |>DB ∴||CB =||DB ∴CD 是△ABC 中∠C 的角平分线。 ∴A 、D 、B 三点共线∥∴O 、C 、D 三点共线,即直线CD 过原点。 ~ 又∵直线CD 的方向向量为=(1,2),∴直线CD 的斜率为2 ∴直线CD 的方程为:y =2x (注意:至此,以将题中的向量条件全部转化为平面解析几何条件,下面用解析几何的方法解决该题) 易得:点A (-4,2)关于直线y =2x 的对称点是A ’ (4,-2), (怎样求对称点) ∵A ’ (4,-2)在直线BC 上 ∴直线BC 的方程为:3x +y -10=0 由?? ?=-+=01032y x x y 得C (2,4) 【解题回顾】本题根据向量共线的条件将题设中的||=λ·||和∥转化

为三点共线,实现了向量条件向平面位置关系的转化;而由λ=||CB =||DB ,实现了向量条件向平面图形的数量关系的转化,从而从整体上实现了由向量条件向平几及解条件的转化。 \ 【例2】.已知1OF =(-3,0),2OF =(3,0),(O 为坐标原点),动点M 满足:||1MF +||2MF =10。 (1)求动点M 的轨迹C ; (2)若点P 、O 是曲线C 上任意两点,且OP ·=0,求2 2 2 OQ OP ?的值 【解】(1)由||1MF +||2MF =10知: 动点M 到两定点F 1和F 2的距离之和为10 根据椭圆的第一定义:动点M 的轨迹为椭圆:116252 2=+y x \ (2)∵点P 、O 是1 16252 2=+y x 上任意两点 设P(ααsin 4,cos 5),Q(ββsin 4,cos 5) (注意 ∵OP ·=0 得:βαβαsin sin 16cos cos 25+=0 ① 而2 、2 2 ?都可以用α、β的三角函数表示,利用①可以解得: 2 2 2 PQ ?=40041 【例3.】在△ABC 中,A(2,3),B(4,6),C(3,-1),点D 满足:CA ·CD =CD ·CB (1)求点D 的轨迹方程; ~

空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、平行于向量)6,7,6(-=a 的单位向量为______________. 2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量. 3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为__ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、

向量代数与空间解析几何

第六章.向量代数与空间解析几何 本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。 向量。 向量可以说是几何的最为基本的概念。因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。 由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。 我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。基于向量的这种直观图象,可以定义向量的基本属性。 首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。 注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。 在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。 空间直角坐标系以及向量代数。 在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。 能够满足上面这两个基本要求的坐标系可以有很多的形式,我们经常使用的坐标系就是直角坐标系。 我们已经强调了一个向量的大小与方向是与它所处的空间位置没有关系的,换一个说法,就是一个向量在空间进行平移时,不影响它的大小与方向。那么在空间中,对任意一个向量的度量,都可以通过把这个向量平移到以坐标系的原点为起点的位置,再用它的终点的坐标来表征这个向量的大小与方向。显然,任意的一个向量,只要是通过平移而处于这种方式,就只会唯一的,而空间中的任意一点在一个这样的直角坐标系里的标度也是唯一的。因此这样决定的一个向量的坐标也就是唯一的。 本课程我们主要只考虑三维的情况,因此一个向量可以用一个唯一的坐标来表示,在直角坐标系里,也就是由三个实数组成的三元组:(a ,b ,c )。 基于上面对于唯一性的分析,可以得到坐标表示的向量的相等的含义,就是坐标三元组的分别相等。 进一步,为了更为方便地度量一般的向量,我们引入单位向量的概念,就是在坐标轴方向上具有单位 长度的向量,在直角坐标系当中,习惯的写法,就是 ,,,分别表示在X ,Y ,Z 轴上的单位向量。 按照坐标三元组的写法,就是 =(1,0,0); i r j r k r i r

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

第八章向量代数与空间解析几何教案(同济大学版高数)

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用 a 和 b 表示向量MA 、MB 、MC 和MD ,这里M 是平行 四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

向量代数与空间解析几何教案.doc

第八章向量代数与空间解析几何 第一节向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。教学重点: 1. 空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点: 1. 空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向 量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2.量的表示方法有: a 、i、F、 OM 等等。 3.向量相等a b :如果两个向量大小相等,方向相同,则说(即经过平移后能完全 重合的向量)。 4.量的模:向量的大小,记为 a 、OM。 模为 1 的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5.量平行a // b:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6.负向量:大小相等但方向相反的向量,记为 a 二、向量的线性运算 b c 1.加减法a b c:加法运算规律:平行四边形法则(有 时也称三角形法则),其满足的运算规律有交换率和结合率见图7 a -4

2.a b c 即 a ( b) c 3.向量与数的乘法 a :设是一个数,向量 a 与的乘积a规定为 (1) 0 时, a 与a 同向, | a | | a | (2) 0 时, a 0 (3) 0 时, a 与a反向,| a | | || a | 其满足的运算规律有:结合率、分配率。设 a 0表示与非零向量 a 同方向的单位向量,那么 a 0a a 定理 1:设向量,那么,向量 b 平行于 a 的充分必要条件是:存在唯一的实数 λ , a≠ 0 使b=a 例 1:在平行四边形ABCD中,设AB a ,AD b ,试用 a 和b表示向量 MA 、MB 、MC 和 MD ,这里M是平行四边形对角线的交点。(见图7-5)图 7- 4 解: a b AC 2 AM ,于是 MA 1 (a b) 2 由于 MC MA ,于是 MC 1 b) (a 2 1 (b a) 又由于 a b BD 2 MD ,于是 MD 1 (b 2 由于 MB MD ,于是 MB a) 2 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维) 如图 7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以角度 2 转向正向 y 轴时,大拇指的指向就是z 轴的正向。 2.间直角坐标系共有八个卦限,各轴名称分别为:x轴、y轴、z轴,坐标面分别 为 xoy 面、yoz面、zox面。坐标面以及卦限的划分如图7-2 所示。 图 图 7-1 右手规则演示 7- 2 空间直角坐标系图图7-3空间两点 M 1 M 2的距离图3.空间点M ( x, y, z)的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。注意:特殊点的表示

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

高三数学空间向量一轮复习

第十三章空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a +b =. (2) 加法结合律:(a +b )+c =. (3) 数乘分配律:λ(a +b )=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使. 基础过关 知识网络 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使. 4.共面向量 (1) 共面向量:平行于的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论:. 5.空间向量基本定理 (1) 空间向量的基底:的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使. 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使. 6.空间向量的数量积 (1) 空间向量的夹角:. (2) 空间向量的长度或模:. (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b =. 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉=; (b) ?a ?2=; (c) a ⊥b ?. (4) 空间向量的数量积的运算律: (a ) 交换律a ·b =; (b ) 分配律a ·(b +c )=. ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0,2 1 =-∴==y x y x 变式训练1.在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A 1c ,则下列向量中与B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2.底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点, 求证:AB 1∥平面C 1BD. 证明:记,,,1c AA b AC a AB ===则 A B C D A 1 B 1

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

高考数学解析几何和向量的结合专题

解析几何与向量的结合问题专题 1.教学目标 1.1熟练掌握平面向量的三角形与平行四边形法则、数量积的相关概念以及它与解析几何的结合应用 2.2通过对解析几何中,与向量的结合问题,渗透从特殊到一般的思想、数形结合思想、空间想象能力、逻辑思维能力、推理论证能力以及运算求解能力; 3.3提高学生分析问题、自主探究和解决问题的能力,提升学生数学的核心素养。 2.教学重点、难点 2.1重点:利用数学基础知识与基本技能探究解析几何问题,并培养学生分析问题以及解决问题的能力; 2.2难点:如何找到解决解析几何问题的知识与能力的平衡点,并探寻合理的解决方法,进而培养学生的逻辑思维能力。 3.教学过程 喜欢学习解析几何问题的学生很多,喜欢动脑,非常好的事。但遇到解析几何问题,得分率又不高,细化汇总来看,在一些问题上还有待提高,其中错误率较高的问题都反映在什么地方呢?今天我们就一起来探讨一下。 试卷上刚做过得一题: 例1:已知双曲线C :),0,0(12 2 >>=-n m n y m x 21,F F 是双曲线C 的左、右焦点,直线l 与 双曲线C 交于A,B 两点,E 是A 关于y 轴的对称点。若1,1m n ==,(1,0)A -,直线l 与坐 标轴不垂直,点M 为直线BE 与y 轴的交点,且满足3ME EB =u u u r u u u r ,求直线l 的斜率; 3.1学生分析题目 站在学生角度分析: (1)学生看到32 ME EB =u u u r u u u r ,两个动M B 和, 无法下手。 (2)学生看到32 ME EB =u u u r u u u r ,第一步表示出E 标,由(1,0)A -关于y 轴对称写出(1,0)E , B 第二步:再求出点坐标,如何求B 点坐标呢? 设AB: (1)y k x =+,(,)B B B x y 然后我把直线AB: (1)y k x =+和双曲线方程2 2 1x y -=联立,用韦达定理

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

相关文档
最新文档