黄铁矿,黄铜矿,自然金矿的区别

黄铁矿,黄铜矿,自然金矿的区别
黄铁矿,黄铜矿,自然金矿的区别

黄铁矿

黄铁矿属等轴晶系的硫化物矿物,因其浅黄铜的颜色和明亮的金属光泽,常被误认为是黄金,故又称为“愚人金”。

化学成分FeS2,

硬度6-6.5,

比重4.9-5.2

晶系:属等轴晶系

产地:西班牙里奥廷托、捷克、斯洛伐克和美国;中国著名产地有广东英德和云浮、安徽马鞍山、甘肃白银厂等。

黄铁矿成分中通常含钴、镍和硒,具有NaCl型晶体结构。常有完好的晶形,呈立方体、八面体、五角十二面体及其聚形。立方体晶面上有与晶棱平行的条纹,各晶面上的条纹相互垂直。集合体呈致密块状、粒状或结核状。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口,在地表条件下易风化为褐铁矿。

黄铁矿是分布最广泛的硫化物矿物,在各类岩石中都可出现。黄铁矿是提取硫和制造硫酸的主要原料。

黄铜矿

黄铜矿是提炼铜的主要矿物之一,是仅次于黄铁矿的最常见的硫化物之一,也是最常见的铜矿物。

化学成分是CuFeS2,

晶系四方晶系

硬度3~4,

比重4.1~4.3

黄铜矿单个晶体很少见,集合体常为不规则的粒状或致密块状。黄铜色,表面常有斑驳的蓝、紫、褐色的锖色膜,条痕绿黑色,金属光泽。断口参差状或贝壳状,无解理,摩氏。黄铜矿易被误认为黄铁矿和自然金,但以其更黄的颜色和较低的硬度与黄铁矿相区别,以其绿黑色的条痕、性脆及溶于硝酸与自然金相区别。在地表风化作用下,黄铜矿常变为绿色的孔雀石和蓝色的蓝铜矿。

世界著名产地是西班牙的里奥廷托、德国的曼斯菲尔德、瑞典的法赫伦、美国的亚利桑那和田纳西州、智利的丘基卡马塔等。中国的黄铜矿分布较广,著名产地有甘肃白银厂、山西中条山、长江中下游的湖北安徽和西藏高原等。

毒砂-晶体呈柱状,集合体成粒状或致密块状。锡白色,金属光泽,莫氏硬度5.5~6,比重6.2。敲击时发出蒜臭味。

黄铁矿-具有金黄或浅黄铜色,密度4.9―5.2。在白瓷板上划出的条痕是绿黑色的。

黄铜矿-其致密块体有时与黄铁矿相似,但其颜色较黄铁矿深,且硬度较黄铁矿低。

黄铜矿、黄铁矿和自然金矿石的区别

黄铜矿、黄铁矿和自然金矿石非常容易误认,尤其是黄铁矿又被称为“愚人金”。鉴别它们的方法其实很简单。

黄铜矿以更黄的颜色和较低的硬度而与黄铁矿相区别;黄铜矿颜色更“黄”,硬度更低“软”,质量“轻”

黄铁矿以绿黑色的条痕、性脆及可溶于HNO3而与自然金相区别。

用矿石在不带釉的白瓷板上划一下,自然金矿石划出的条痕(即留在白瓷板上的粉末)是金黄色的,黄铁矿的条疫是绿黑色的。另外,还可以用手掂一下,手感特别重的是自然金矿石,因为其密度比黄铁矿、黄铜矿的要大得多。

鉴定特征:黄铁矿为浅铜黄色,黄铜矿常带绿色调,而自然金常带红色调;

黄铜矿的硬度比金略高,而小于黄铁矿;三者的比重,黄铜矿最小(4.1-4.3),黄铁矿其次(4.9-5.2),(自然)金最大(19.3)。

黄铁矿,黄铜矿,自然金矿的区别

黄铁矿 黄铁矿属等轴晶系的硫化物矿物,因其浅黄铜的颜色和明亮的金属光泽,常被误认为是黄金,故又称为“愚人金”。 化学成分FeS2, 硬度6-6.5, 比重4.9-5.2 晶系:属等轴晶系 产地:西班牙里奥廷托、捷克、斯洛伐克和美国;中国著名产地有广东英德和云浮、安徽马鞍山、甘肃白银厂等。 黄铁矿成分中通常含钴、镍和硒,具有NaCl型晶体结构。常有完好的晶形,呈立方体、八面体、五角十二面体及其聚形。立方体晶面上有与晶棱平行的条纹,各晶面上的条纹相互垂直。集合体呈致密块状、粒状或结核状。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口,在地表条件下易风化为褐铁矿。 黄铁矿是分布最广泛的硫化物矿物,在各类岩石中都可出现。黄铁矿是提取硫和制造硫酸的主要原料。 黄铜矿 黄铜矿是提炼铜的主要矿物之一,是仅次于黄铁矿的最常见的硫化物之一,也是最常见的铜矿物。 化学成分是CuFeS2, 晶系四方晶系 硬度3~4, 比重4.1~4.3 黄铜矿单个晶体很少见,集合体常为不规则的粒状或致密块状。黄铜色,表面常有斑驳的蓝、紫、褐色的锖色膜,条痕绿黑色,金属光泽。断口参差状或贝壳状,无解理,摩氏。黄铜矿易被误认为黄铁矿和自然金,但以其更黄的颜色和较低的硬度与黄铁矿相区别,以其绿黑色的条痕、性脆及溶于硝酸与自然金相区别。在地表风化作用下,黄铜矿常变为绿色的孔雀石和蓝色的蓝铜矿。 世界著名产地是西班牙的里奥廷托、德国的曼斯菲尔德、瑞典的法赫伦、美国的亚利桑那和田纳西州、智利的丘基卡马塔等。中国的黄铜矿分布较广,著名产地有甘肃白银厂、山西中条山、长江中下游的湖北安徽和西藏高原等。 毒砂-晶体呈柱状,集合体成粒状或致密块状。锡白色,金属光泽,莫氏硬度5.5~6,比重6.2。敲击时发出蒜臭味。 黄铁矿-具有金黄或浅黄铜色,密度4.9―5.2。在白瓷板上划出的条痕是绿黑色的。 黄铜矿-其致密块体有时与黄铁矿相似,但其颜色较黄铁矿深,且硬度较黄铁矿低。

磁铁矿、黄铜矿和磁黄铁矿的分选研究

磁铁矿、黄铜矿和磁黄铁矿的分选研究 某铁矿石主要金属矿物有磁铁矿、黄铜矿和磁黄铁矿等,脉石矿物主要有石英、方解石、白云石、云母等,有用矿物的崁布粒度 0.15—0.02mm。 磁黄铁矿(Fe1-x S):矿石中磁黄铁矿含量少,主要以他形粒状与黄铁矿、黄铜矿等金属硫化物共生。磁黄铁矿粒度大小不一,但边界清楚、圆滑,嵌布关系简单,单体解离较易。磁黄铁矿同属强磁性矿物,在弱磁场中(71.6~95.5 KA/m)很容易与其它矿物分离,磁黄铁矿是容易被抑制和较难浮的硫化铁矿物。 磁铁矿(Fe3O4):磁铁矿主要以他形一半自形粒状、粒状集合体嵌布于脉石中,粒度大小不均。和磁黄铁矿一样具有强磁性,在弱磁场中(71.6~95.5 KA/m)很容易与其它矿物分离,而磁铁矿与磁黄铁矿之间的磁选分离几乎是不可能的。 黄铜矿(CuFeS):黄铜矿为矿石中主要铜矿物,约占矿石中矿物总量的1.7%,主要呈不规则粒状集合体成大片分布,和闪锌矿紧密共生,嵌布关系复杂。黄铜矿粒状集合体与脉石矿物接触界线圆滑,但其中常有磁铁矿、磁赤铁矿、闪锌矿包裹体,包裹体粒度大小不一,通过细磨大部分可以解离。 方案一: 因为磁铁矿与磁黄铁矿同属强磁性矿物,在弱磁场中(71.6~95.5 KA/m)很容易与其它矿物分离,而磁铁矿与磁黄铁矿之间的磁选分离几乎是不可能的。故先采用磁选,选出磁铁矿跟磁黄铁矿,然后再

进行浮选分离。流程图如下: 选别流程示意图 药剂制度: 磁铁矿反浮选脱硫试验使用药剂:新型活化剂:MHH-1,捕收剂:丁黄药,起泡剂:柴油、2#油,调整剂:H2SO4; 黄铜矿浮选实验使用药剂:黄药作为捕收剂,MIBC作为起泡,六偏磷酸钠作为分散剂,水玻璃、石灰作为抑制剂。 主要仪器和设备:实验用破碎机、实验用球磨机、实验用磁选机、实验用浮选机; 结论:(1)采用马鞍山矿山研究院研制的MHH-1 新型活化剂,其脱硫效果明显优于CuSO4等活化剂。 (2 )MHH-1 活化剂具有用量少、成本低等优点,能有效解决目前许多矿山因铁矿石中含有磁黄铁矿而使精矿硫含量较高的问题,为矿山提铁降硫提供了新途径。 方案二: 黄铜矿为矿石中主要铜矿物,嵌布复杂,只有通过细磨才可以解

中国典型金矿山金矿床

中国典型金矿山(金矿床) 1.吉林省夹皮沟金矿 (产于太古宙—古元古代变中基性火山沉积杂岩中的金矿,即绿岩带型金矿中的石英脉型亚类)夹皮沟是一个有150多年开采历史的老矿山,1820 年开始采砂金,1845年开始采岩金。日本侵华时,曾进行掠夺性开采,生产黄金数吨。建国后,通过勘查在这先后发现大中型矿床7处,小型金矿5处,构成了夹皮沟金矿田。 夹皮沟金矿位于桦甸县,处于中朝古陆东北缘,辉发河深大断裂带东南侧。北西西向的夹皮沟-大石砬子构造带控制着矿田内各矿床的分布。该矿带长50km,宽1~3km(图3.18.2)。 图3.18.2夹皮沟金矿田地质略图

E.第三系;K.白垩系;J.侏罗系;P.二叠系;D.泥盆系;Pt.元古宇;Ar3.鞍山群三道沟组;Ar2.鞍山群杨家店组;Ar1 .鞍山群四道砬子河组;γ25.燕山期花岗岩;γ34.海西晚期花岗岩;δ34.闪长岩;β.基性岩类;γ1-2.前寒武纪花岗岩;1 .金矿床;2.冲断层;3.挤压片理、片麻理带;4.钾交代带 区内出露地层以太古宇鞍山群为主,自下而上该群分为四道砬子河组(混合岩及奥长花岗岩,厚度3196m)、杨家店组(石榴紫苏辉石麻粒岩等,厚3500m)和三道沟组(厚2339~3038m)。金矿床赋存于其中的三道沟组中。 三道沟组分上下两个含铁层。上含铁层为绿泥片岩相,产有大型鞍山式含铁石英岩型铁矿。下含铁层为角闪岩相,以角闪斜长片麻岩、黑云母斜长片麻岩、斜长角闪岩等为主。含金石英脉产于斜长角闪岩与角闪斜长片麻岩中,矿脉与岩层产状基本一致。矿体呈似层状、透镜状、复脉带、脉状等,大小不一。矿脉长100~700m,延伸200~600多m,厚0.5~17 m。矿脉有分支复合、膨缩现象。 矿化类型有含金石英脉、含金硅化带、含金断裂带、含金片理化带等。全区绝大部分储量赋存于盲矿体中(图3.18.3)。 图3.18.3某盲矿体地质剖面图

野外识别黄铁矿

野外辨识黄铁矿含金性的理论依据 黄铁矿是金矿中最常见的金属矿物,几乎在所有类型的金矿床中均有出现。它不仅与金矿化有密切的关系,而且是主要的载金矿物。因此,对黄铁矿含金性的研究,一向为野外工作者和学院派所共同热衷。后者因为具有良好的理论水平和研究设备条件,所以从黄铁矿的晶型、反射率、显微硬度、晶胞参数、热电性,甚或穆斯堡尔效应、红外光谱及微量元素特征等方面,对不同标型特征的黄铁矿的含金性都进行了深入的研究,得出了理论依据充分的结论。但由于野外工作条件所限,许多理论成果难以为野外实践所用,无异于纸上谈兵;而前者,则主要依靠野外肉眼(放大镜下)观察黄铁矿的颜色、粒度、晶形以及矿物组合、围岩蚀变等,结合对照化验分析结果,得出经验性的判断,其实践的准确性也很高。但往往知其然不知其所以然,遇到好学者问起理论依据时,不免失语或支吾其词。在综合因素过多时,只依据一两项判别指标所做出的判断,往往面对分析结果会大跌眼镜。本人作为从事金矿工作多年的野外地质工作者就深有体会。因此,在实践为主,理论服务于实践的前提下,对野外实践认识和经验,力图将其上升到理论认识的基础水平上,辨证地使用。于是,查阅有关教科书和文献资料,对有关问题阐释如下: 一、黄铁矿化与金矿化的关系:为什么金矿化与黄铁矿化密切相关?为什么黄铁矿会成为主要载金矿物? 金是铜族元素,具有很大的单质稳定性,在地球化学性质上具有较强的亲硫性,又具有亲铁性。金元素在含矿热液中常以硫(S)、氯(Cl)、硅(Si)的络合物形式迁移。当热液中有黄铁矿晶体生长时,周围硫的浓度会大为降低(黄铁矿是复硫化物)。则金的络合物趋向于向黄铁矿结晶体附近运动,释出硫分,使金附着于生长中的黄铁矿晶体内。 实际上,毒砂富集金的能力要比黄铁矿更强,因为金可以呈机械混入物形式进入毒砂中,只是毒砂矿物一般含量低,相对少见,所以黄铁矿得以成为主要的载金矿物。 二、黄铁矿晶型与含金性的关系:为什么五角十二面体晶型的黄铁矿比立方体晶型的黄铁矿含金性好? 黄铁矿在金矿床中最常见的单晶是立方体{100}和五角十二面体{210}晶型,两者及其聚形约占金矿床中黄铁矿总量的90%以上,其他的还有八面体{111}晶型以及半自形、它形集合体,亦有烟尘状微细侵染状集合体。 无论野外经验还是室内研究,普遍的认识都是五角十二面体晶型的黄铁矿比立方体晶型的黄铁矿含金性好,原因何在? 研究成果认为,这与黄铁矿结晶时的物理化学环境有关:若热液温度较高,矿质析出不多,供应不足,硫逸度较低时,黄铁矿结晶的晶体趋于简单,晶面少,颗粒粗大。也就是说,多形成粒度粗大的立方体晶型的黄铁矿。这种情况下,一方面金的络合物在高温下难以解离使金沉淀(金矿多在中低温条件下形成也是这个道理),另一方面,粒度粗大的立方体晶型相对而言比表面积小,也不利于吸附金,所以,立方体晶型的黄铁矿一般含金性差。若热液温度适中,则矿质析出多,供应充足,硫逸度大时,黄铁矿结晶的晶体趋于复杂,晶面增多,粒度变小,多形成中细粒五角十二面体晶型的黄铁矿及复杂聚形,晶体比表面积增大,有利于金的吸附,因而含金性变好。 三、黄铁矿颜色与含金性的关系:为什么较深色的黄铁矿比浅色的黄铁矿含金性好? 黄铁矿的理论分子式是FeS2,但在自然界,常有钴(Co)、镍(Ni)类质同像代替铁Fe,当钴(Co)、镍(Ni)类质同像代替铁(Fe)含量大为增加时,则使黄铁矿晶体晶胞增大、硬度降低,表观则反映出颜色变浅。而钴(Co)、镍(Ni)类质同像大量代替铁Fe多发生在热液温度较高时(温度升高有利于矿物中类质同象代替,温度下降则类质同象代替较弱),所生成的黄铁矿导电类型为电子导型(N型),也指示热液中硫逸度较低,金也难以析出,所以一般情况下,金(Au)与钴(Co)、镍(Ni)往往呈反相关关系。于是不难理解为何浅色

黄铜矿

黄铜矿 黄铜矿(chalcopyrite)是一种铜铁硫化物。化学式:cufes2,常含微量的金、银等。正方,晶体相对少见,为四面体状;多呈不规则粒状及致密块状,也有肾状、状集合体。黄铜黄色,时有斑状锖色。为微带绿的黑色。黄铜矿是一种较常见的铜矿物,几乎可形成于不同的环境下。但主要是热液作用和的产物,常可形成具一定规模的。遍布世界各地。在工业上,它是炼钢的主要原料。在宝石学领域,它很少被单独利用,偶而用作黄铁矿的代用品。另它常参与一些、砚石和玉石的组成。 目录 展开 化学性质 晶体化学:理论组成(wB%):Cu 34.56,Fe 30.52,S 34.92。通常含有、、、、,大多为机械混入物;有时含、、、Se、、、族元素等。 结构与形态:,a0=0.524nm,c0=1.032nm;Z=4。晶体

黄铜矿 结构与、黝矿(Cu2FeSnS4)相似。黄、黝锡矿相当于闪锌矿单位晶胞的两倍,构成四方。在三种的配位四面体中心都分布着S,在角顶则分布着不同的阳离子。由于三者的结构相似,因而在高温下可以互溶;而当温度降低时,由于离子半径相差较大,固溶体发生离溶。故常在闪锌矿中发现黄铜矿和黝锡矿小包裹体。 四方偏三角面体晶类,D2d-42m (Li42L22P)。晶体较少见。常见单形:四方四面体p{112}、-p 、r{332}、d{118},四方双锥z{201}。以(112)为双晶面或以[112]为双晶轴成简单双晶。可与黝锡矿或闪锌矿规则连生。主要呈致密块状或粒状。 用途:在冶炼铜矿过程中存在重要反应 2CuFeS2+O2=Cu2S+2FeS+SO2 2Cu2S+3O2=2Cu2O+2SO2↑ 2Cu2O+Cu2S=6Cu+SO2↑ 物理性质 物理性质:黄铜黄色,表面常有蓝、紫褐色的斑状锖色。绿黑色。,不透明。∥{112}、{101}不完全。3~4。性脆。相对密度4.1~4.3。 产状与组合:分布较广。型,产于与基性、有关的铜镍硫化物中,与磁黄铁矿、密切共生。接触交代型,与、黄铁矿、磁黄铁矿等共 黄铜矿 生;亦可与或方铅矿、闪锌矿等共生。热液型,常呈中温热液充填或交代脉状,与黄铁矿、方铅矿、闪锌矿、、辉钼矿及方解石、等共生。在风化

卡林型金矿的主要特点

卡林型金矿的主要特点 卡林型金矿(Carlin-Type Gold Deposit),也叫微细浸染型金矿床。该类型金矿床具有品位低、规模大、矿体与围岩界线不明显,金主要呈显微-次显微形式分散产出,普遍发育中低温热液矿物组合以及Au、As、Hg等微量元素组合。世界上已知卡林型金矿主要分布于美国内华达州、犹他州和中国的滇黔桂、川陕甘两个金三角内。 卡林型金矿的主要特点 1.大地构造环境为陆内裂谷带和弧后盆地内。 2.容矿围岩主要为海相沉积岩,岩性主要为不纯的碳酸盐岩和细碎屑岩等,富含炭质。 3.矿区中酸性岩脉发育。 4.矿区金、砷、锑、汞、铊、钡的地球化学异常特征显著 5.矿体主要受高角度断层控制。通常产于岩脉的一侧或附近。 6.金矿床品位低、规模大。 7.矿体与围岩界线不清楚。形成3种不同的矿化类型(1)砂质碳酸盐岩层中的层控交代矿体;(2)脉状矿体,矿石品位较高,金矿化和相关的蚀变局限于断裂构造中;(3)矿化为网脉状,矿化形成于构造交叉部位,含矿岩石强烈变形和破碎,矿石具有浸染状构造。 8. 金主要呈显微-次显微形式分散产出,主要存在于含砷高的黄铁矿及毒砂中,其赋存方式可能是以固溶体为主,少数为显微的包裹金。 9.围岩蚀变有去碳酸盐化、硅化、泥化和重晶石化等。一般去碳酸盐化和硅化与金矿化时间接近,矿化在晚期去碳酸盐化和硅化的岩石中最强烈。矿石普遍具白色细网脉状方解石化和碳泥化,裂面上常见黑色碳质被膜。 10. 普遍发育中低温热液矿物组合。常见矿石矿物包括黄铁矿、毒砂、辉锑矿、雄黄、雌黄及辰砂等并以缺少其他贱金属硫化物为特点。脉石矿物以石英、方解石为主。次为重晶石、伊利石、高岭石、蒙脱石、绢云母、明矾石等粘土矿物。 11.矿石中具有典型的Au-As-Hg-Sb(-Tl)元素组合。 12.流体包裹体研究表明,金是以羟基二硫络合物的形式搬运。含金流体是高度演化的大气降水与岩浆水的混合流体。流体盐度低(1-7wt% NaCl),富H 2 S 和CO 2。H 2 S 的富集度有助于硫化作用和含金黄铁矿的沉淀,CO 2 的富集意味着卡 林型金矿形成于4.4±2.0km范围的深度,成矿温度为180-245℃。成矿物质主要来自矿源层,部分来自岩浆,成矿热液水主要来自大气降水。 13.该类型金矿的选矿技术难点,在于如何将包裹在黄铁矿和毒砂中的微细粒金(大多小于1μm)释放出来。较为规范的处理流程中,除了氧化矿石之外,原生矿石需要经历粗破碎(颚形破碎机)、细破碎(球磨、半自磨,至200目粒度)、浮选(获得精矿粉),然后使用生物氧化或者高温焙烧,使黄铁矿和毒砂的晶体结构被破坏,微细粒金方可在后续浸出流程中被获取。

黄铁矿结构

黄铁矿(Pyrite) Fe[S2] 【化学组成】成分中常见Co、Ni等元素呈类质同像置换Fe,并常见Au、Ag呈机械混入物。 【晶体结构】等轴晶系; 6 h T-Pa3;a 0=0.542 nm;Z=4。黄铁矿是NaCl型结构的衍生结 构(图L-26),晶体结构与方铅矿相似,即哑铃状对硫离子[S2]2-代替了方铅矿结构中简单硫离子的位置,Fe2+代替了Pb2+的位置。但由于哑铃状对硫离子的伸长方向在结构中交错配置,使各方向键力相近,因而黄铁矿解理极不完全,而且硬度显着增大。 图L-26 黄铁矿晶体 (引自潘兆橹等,1993) 【形态】常见完好晶形,呈立方体{100}、五角十二面体{210}或八面体{111}。在立方体晶面上常能见到3组相互垂直的晶面条纹,这种条纹的方向在两相邻晶面上相互垂直,和所属对称型相符合(图L-27(a))。此外,还可形成穿插双晶,称铁十字(见图L-27(e))集合体常成致密块状、分散粒状及结核状等(图L-28)。 图L-27 黄铁矿晶体 (引自潘兆橹等,1993) 立方体:a{100};五角十二面体:e{210};八面体:o{111}

图L-28黄铁矿晶体集合体 【物理性质】浅铜黄色,表面带有黄褐的锖色;条痕绿黑色;强金属光泽,不透明。无解理;断口参差状。硬度6~6.5。相对密度4.9~5.2。性脆。 【成因及产状】黄铁矿是地壳分布最广的硫化物,形成于多种不同地质条件下。 (1) 产于铜镍硫化物岩浆矿床中,以富含Ni为特征。 (2) 产于接触交代矿床中,常含有Co。 (3) 产于多金属热液矿床中,黄铁矿成分中Cu、Zn、Pb、Ag等含量有所增高。 (4) 与火山作用有关的矿床中,黄铁矿成分中As、Se含量有所增多。 (5) 外生成因的黄铁矿见于沉积岩、沉积矿床和煤层中,往往成结核状和团块状。 在地表氧化条件下,黄铁矿易于分解而形成各种铁的硫酸盐和氢氧化物。铁的硫酸盐中以黄钾铁矾为最常见;铁的氢氧化物中以针铁矿最为常见,它是构成褐铁矿的主要矿物成分。褐铁矿有时呈黄铁矿假象。 【鉴定特征】据其晶形、晶面条纹、颜色、硬度等特征可与相似的黄铜矿、磁黄铁矿相区别。 【主要用途】为制造硫酸的主要矿物原料,也可用于提炼硫磺。当含Au、Ag或Co、Ni 较高时可综合利用。

金矿的常见分类

书山有路勤为径,学海无涯苦作舟 金矿的常见分类 近期,金价飙升,黄金行业似乎呈现复苏的景象,不少人给我打电话,询问黄金的选别方法,大致问法是这样的:我最近买了点矿石,请了某某厂的老浮选工,租了个选厂,但是指标不太好,能帮我想想办法吗?但是当我问及原矿性质时,却只能告诉我,金大致是3-4g/t,至于脉石是啥,成矿矿物是啥,有害元素是啥一概不知。而这些老浮选工调整黄药、黑药、二号油、石灰等药剂也并不能改善最终指标。那么原因在哪里?作为多年从事黄金矿山技术服务的选矿工作人员,我想从我的切身体会来给大家介绍一下黄金选矿的基本知识,大致从矿床的基本分类、常见的选矿工艺、复杂选矿工艺、常见难选金矿、自身实践案例以及最新试验成果等方面来说,一来让更多投资者了解黄金,避免盲目投资,二来与业内前辈加强交流,帮助我把这项工作做得更好。系列一金矿的常见分类 说到黄金选矿,我们首先考察的应该是其形态和成因,虽然学选矿的大都不研究地质和矿物学,但是地质和矿物学的一些常识却是制定选矿试验方案的一个基础条件。自然界的金多以单质形式存在,少量与两性金属化合物,如硒、碲、銻化物等,罕见金属化合物,如金汞膏、铜金矿等,非金属化合物应该是没有的。金矿床主要分类,每个科研院所根据其擅长的研究方法来分形成了不同的体系,但从直观来分,我们通常把他分为沙(砂)金矿和岩金矿。 砂金矿本质上是一些大型金矿矿脉长时间经受水蚀、风蚀在下游沉积形成的,我们根据区域不同可分为重力砂、流水砂、冰川砂、滨海(湖)砂,砂金的选矿主要以重选富集为主,我国的金砂多呈片状,或者说由于采砂历史久远,剩下的都是片状的细粒了。易选的砂金矿应该是砂多泥少,砂粗金细,反之则视为难选。

黄铜矿

黄铜矿 [图片] ?转载自莫言 铟、摩斯硬度计、开滦煤田、重晶石、愚人金、银矿、非晶质矿物、金属光泽、歙石、铁铀云母、银金矿、深红银矿、沁水煤田、稀散金属、萤石矿、球土、原煤、洗煤、石煤、光泽、鸡血石、黄铜矿、有色金属矿床、化学风化、流纹岩、碲金矿、白矿物、银矿、金属光泽、歙石、银金矿、稀散金属、稀土、有色金属矿床、脉石矿物、查干淖尔镇、海底黑烟囱、铅锌矿、针

黄铁矿因其浅黄铜的颜色和明亮的金属光泽,常被误认为是黄金,故又称为“愚人金”。 黄铁矿化学成分是FeS2,晶体属等轴晶系的硫化物矿物。成分中通常含钴、镍和硒,具有NaCl型晶体结构。常有完好的晶形,呈立方体、八面体、五角十二面体及其聚形。立方体晶面上有与晶棱平行的条纹,各晶面上的条纹相互垂直。集合体呈致密块状、粒状或结核状。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口。摩氏硬度较大,达6-6.5,小刀刻不动。比重4.9―5.2。在地表条件下易风化为褐铁矿。 如何识别“愚人金”和真正的黄金呢?只要拿它在不带釉的白瓷板上一划,一看划出的条痕(即留在白瓷板上的粉末),就会真假分明了。金矿的条痕是金黄色的,黄铁矿的条痕是绿黑色的。另外,用手掂一下,手感特别重的是黄金,因为自然金的比重是15.6―18.3,而黄铁矿只有4.9―5.2。 黄铁矿是分布最广泛的硫化物矿物,在各类岩石中都可出现。黄铁矿是提取硫和制造硫酸的主要原料,它还是一种非常廉价的古宝石。在英国维多利亚女王时代(公元1837—1901年),人们都喜欢饰用这种具有特殊形态和观赏价值的宝石。它除了用于磨制宝石外,还可以做珠宝玉器和其它工艺品的底座。世界著名产地有西班牙里奥廷托、捷克、斯洛伐克和美国。中国黄铁矿的储量居世界前列,著名产地有广东英德和云浮、安徽马鞍山、甘肃白银厂等。 [晶体化学] 理论组成(wB%):Fe 46.55,S 53.45。常有Co、Ni类质同像代替Fe,形成FeS2—CoS2和FeS2—NiS2系列。随Co、Ni代替Fe的含量增加,晶胞增大,硬度降低,颜色变浅。As、Se、Te可代替S。常含Sb、Cu、Au、Ag等的细分散混入物。亦可有微量Ge、In等元素。Au常以显微金、超显微金赋存于黄铁矿的解理面或晶格中。 [结构与形态] 等轴晶系,a0=0.5417nm;Z=4。黄铁矿型结构。Fe原子占据立方体晶胞的角顶和面心;S原子组成哑铃状的对硫[S2]2-,其中心位于晶胞棱的中心和体心,[S2]2-的轴向与相当晶胞1/8的小立方体的对角线方向相同,但彼此并不相交。S-S间距为0.210nm,共价键,小于两倍的硫离子半径之和0.35nm。偏方复十二面体晶类,Th-m3(3L24L33PC)。晶体完好,常呈立方体和五角十二面体,较少为八面体晶形。主要单形:立方体a,五角十二面体e,八面体o及偏方复十二面体。晶面上常见三组互相垂直的条纹,为立方体和五角十二面体的聚形纹。双晶主要依(110)和(111)形成,依(110)形成穿插双晶。集合体呈粒状、致密块状、浸染状或球状。隐晶质变胶体黄铁矿称胶黄铁矿。 [物理性质] 浅黄铜黄色,表面常具黄褐色锖色。条痕绿黑或褐黑。强金属光泽。不透明。解理、极不完全。硬度6~6.5。相对密度4.9~5.2。可具检波性。 黄铁矿是半导体矿物。由于不等价杂质组分代替,如Co3 、Ni3 代替Fe2 或[As]3 、[AsS]3 代替[S2]2-时,产生电子心(n型)或空穴心(p型)而具导电性。在热的作用下,所捕获的电子易于流动,并有方向

金矿自然类型的常见划分方法

金矿自然类型(氧化矿、混合矿和原生矿)的常见划分方法: 1. 通常在地质勘探过程中,矿体的原生带与氧化带的划分,首先利用矿物学方法大致了解矿石各自 然类型在宏观上分带的情况,然后按一定的间距采集物相分析样品,最后依据物相分析的结果圈定各带的界线。 在光片中,若绝大部分黄铁矿呈自形粒状结构,磨光性好,表面干净,保持完好的黄铁矿晶形(有应力作用者除外),未有褐铁矿交代现象;此时黄铁矿未有氧化,它所代表的就是原生带。 在光片中,若黄铁矿的结构发生变化,明显被褐铁矿交代,黄铁矿呈骸晶机构或者交代残余结构,此带为混合带。 在光片中,若黄铁矿被褐铁矿交代程度强烈,黄铁矿的结构被完全改造,呈假象结构;褐铁矿完全取代了黄铁矿,并存在于黄铁矿的假象之中,它所代表的则是氧化带。 2. 对于微细浸染型金矿床,有人用黄铁矿做为参照的指示矿物,研究黄铁矿的氧化程度,解决金矿 床的氧化带与原生带的划分问题。黄铁矿的氧化程度就是依据黄铁矿呈假象结构、骸晶结构、交代残余结构、交代环边结构的含量多少来确定。用公式表示为: 氧化程度(%)= 褐铁矿(黄铁矿骸晶)颗粒数 X 100% 褐铁矿(黄铁矿骸晶)颗粒数 + 黄铁矿颗粒数 氧化程度 > 30%,即为氧化带(氧化矿石) 10% < 氧化程度 <30%,即为混合带(混合矿石) 氧化程度 < 10%,即为原生带(原生矿石) 3. 通过岩芯编录结合其它工程来圈定完全氧化基准面和部分氧化基准面的方法: 位于完全氧化基准面之上的为氧化带(氧化矿),

位于完全氧化基准面和部分氧化基准面之间的为过渡带/混合带(混合矿),位于部分氧化基准面之下的部分为原生带(原生矿) 4. Fe元素在典型氧化物和硫化物中的含量比值法: 氧化率(%)= Fe(赤铁矿+褐铁矿) X 100% Fe(赤铁矿+褐铁矿) + Fe(黄铁矿) 氧化率 < 20%,为原生带(原生矿), 20% < 氧化率 < 80%,为混合带(混合矿), 氧化率 > 80%,为氧化带(氧化矿)。 5. 全铁和亚铁比值法: TFe/Fe2+< 2.7为原生矿,2.73.5为氧化矿;同时也得结合 物相分析作为辅助判断,而且采样要具有充分的代表性。 注意:以上各种方法中,成矿期之前已经形成的铁的氧化物不应考虑,比如赋存在含赤铁矿砂岩中的金矿床,其中的赤铁矿并不能代表矿石经受的氧化作用,而仅仅是成矿之前岩石(围岩/母岩)的特征。 同理,不能简单依靠矿石中出现铁的氧化物或铁的硫化物来划分氧化带及矿石自然类型。最佳的方案是选择与金成矿有关的、成矿期后的铁的氧化物和硫化物来进行研究。另外,矿床确定氧化带并划分出详细的矿石自然类型后,并不意味着一定要对不同自然类型的矿石采取不同的

黄铁矿的标型特征及其在矿床中的应用

黄铁矿的标型特征及其在矿床中的应用 摘要:黄铁矿是硫化物矿床中的常见矿物,也是地壳中最重要和分布最广的硫化矿物之一。绝大多数原生金矿床和有色金属矿床均和黄铁矿关系密切[1-2],并且在不同的成矿环境中黄铁矿在成分含量及特征指数等方面均有差异;所以,黄铁矿最具有重要的研究价值。黄铁矿Fe[S2] 为等轴晶系,岛状NaCl 型结构衍生结构,其形态、结构、物理性质及化学成分等均具有成因意义。在不同物理—化学条件下产生的黄铁矿,其形态、结构和物理化学性质都存在着大小不同的差异。通过对黄铁矿标型特征的研究,不仅可以进行矿床成因分析,还可以作为一种找矿标志,指导找矿工作的进行。 矿物的标型特征是指在不同地质时期和不同地质作用条件下,形成于不同地质体中的同一种矿物在各种属性上所表现的差异,这些差异能够作为判断其形成条件的标志。 1黄铁矿的形态标型及在矿床中的应用 黄铁矿是地壳中最重要和分布最广泛的硫化矿物之一,绝大多数金属矿床中都有黄铁矿的产出,在不同成因形成的矿床中,其标型特征各不相同,其形态特征能够给出矿床成因和成矿远景方面的重要信息。沉积形成的黄铁矿大多为八面体{111}、立方体{100}晶面的聚形晶体。沉积形成的含铜砂岩铜矿石中的黄铁矿中五角十二面体{hk0}占90%,立方体{100}只占10%。东伙房金矿中黄铁矿{100}+ {321},{210}+ {321}及{100}+{210}+{111}3种聚形只出现在主成矿阶段,且主成矿阶段的{100}晶面上条纹较发育,有多种晶型连生现象,可作为一种找矿标志[1]。 2 黄铁矿的成分标型及在矿床中的应用 矿物的化学成分是矿物最本质的因素之一,它的变化和形成条件有密切关系,是信息量最大的标型特征。矿物成分标型的理论基础是:矿物的成分及其类质同象代替,同位素、包体成分等随着介质的物化条件而改变,因而可以利用成分的变化来判断形成矿物的介质的物化条件。 黄铁矿微量元素与成因关系中讨论最多的是Co、Ni含量及Co/Ni比值。沉积成因和层控型黄铁矿中Ni>Co,Co/ Ni<0.6,沉积成因黄铁矿中Co含量小于1×10-4;而热液矿床成因的Co/Ni=1~3,Co含量为4×10-4~2.4×10-4;火山成因黄铁矿中Co/Ni比值更大,为2.57~8.42。岩浆热液型矿床中的黄铁矿Co/Ni>1,岩浆型或沉积型硫化物矿床Co/Ni<1。浩列和尼克尔(Hawley & Nichol,1962)研究了热液铜矿、铜镍矿及金矿中黄铁矿Ni、Co 值及Co/Ni比值,得到表1。以铜镍矿床中Co、Ni值最大,热液铜矿中Co/Ni比值最大,金矿中Co/Ni比值最小。 表1 加拿大不同矿床中黄铁矿的Co、Ni特征 矿区黄铁矿样品数Co Ni Co/Ni 铜镍矿 肖德贝里8 1.33 0.25 5.3 5 1.05 0.10 10.3 1 0.18 0.20 0.9 铜矿 Fisnelon 3 0.088 0.0057 11.6 Ohibougaman 4 0.30 0.011 27.3 Quemont 4 0.084 0.0022 38.2

黄铜矿的解释及造句

黄铜矿的解释及造句 导读:黄铜矿拼音 【注音】:huangtongkuang 黄铜矿解释 【意思】:矿物,成分是硫化铁铜。多为粒状或块体。有近似黄铜的光泽和颜色,条痕黑带微绿,性脆。是炼铜的重要原料之一。 黄铜矿造句: 1、矿体包含黄铁矿,黄铜矿和闪锌矿。 2、石居里铜矿床矿石中主要矿石矿物由黄铜矿及黄铁矿等组成。 3、实践证明,以捕收剂CSU-A为特征的黄铜矿、黄铁矿快速浮选分离新技术,流程结构合理,工艺指标先进。 4、主要的载金矿物有黄铜矿、黄铁矿、叶碲铋矿,含金性最好的岩石类型为只云母钠长片岩。 5、吸附性相对最弱的是黄铜矿,吸附量仅为9%。 6、本文利用单矿物研究了腐植酸钠、次氯酸钙以及它们的组合和磁场对黄铁矿、黄铜矿浮选行为的影响。 7、照片10含黄铜矿乳滴的闪锌矿的相分析图。 8、黄铜矿:铜黄色,它形晶,呈细脉状及星点状产出,与上述矿物密切共生。 9、试验表明巯基乙酸对黄铁矿、方铅矿和黄铜矿有抑制作用,对毒砂和闪锌矿没有抑制作用。 10、在以黄铜矿为能源物质的培养体系中,S。

11、研究了新型抑制剂DPS对铜钼人工混合矿和铜钼混合精矿的分选性能,并探讨了它对黄铜矿的抑制与矿浆电位的关系。 12、结果表明,氯离子的加入并不能改变溶液体系电位,但对解决硫包裹具有显著作用,可以大大提高黄铜矿浸出速度。 13、某氰化尾渣金属矿物以黄铁矿为主,有极少量闪锌矿、方铅矿和黄铜矿,脉石矿物以石英为主。 14、研究了草分枝杆菌在黄铁矿、方铅矿、黄铜矿和闪锌矿表面的吸附情况。 15、本文给出了有、无硫化钠存在时,黄铜矿和黄铁矿的无捕收剂浮选行为。 16、本文叙述采用亚硫酸-石灰法分选黄铜矿与毒砂。 17、介绍了闪锌矿—黄铜矿固溶体出溶结构的特点,叙述了测定固溶体分解速度的原理、依据和方法。 18、对天然矿石验证试验表明,自诱导浮选技术能够有效分离黄铜矿和黄铁矿。 19、详细研究了聚丙烯酸钠对黄铜矿和方铅矿可浮性的影响; 20、以硫化铜矿物为研究对象,在添加氯盐的酸性体系中,开展了黄铜矿加温、加压预氧化浸出过程研究。 21、综合运用电化学和表面化学原理,开发了一种适应于硫化矿混合精矿中抑制黄铜矿的新药剂CD(带有SH,OH官能团)。 22、从热力学角度分析了酸性热压氧化预处理黄铜矿的可能性,并对其过程机理进行了动力学分析。

黄铜矿与黄铁矿区别

黄铜矿(Chalcopyrite)CuFeS2 化学组成:Cu 34.56%,S34.92%。当形成温度高于200℃时,其成分与理想化学式比较,S 不足,即(Cu+Fe):S>1。形成温度越高,缺S便越多。形成温度低于200℃ 时,其成分与理想化学式一致,即(Cu+Fe):S=1。混入物有Mn、Sb、Ag、 Zn、In、Bi等。 成因产状: 黄铜矿可形成于多种地质条件下。它出现于与基性岩有关的铜镍硫化物岩浆矿床中。它是斑岩铜矿中的主要矿物成分之一。接触交代矿床中的黄铜矿系后期热液作用的产物。在某些沉积成因(包括火山沉积成因)的层状铜矿中。 主要产地: 犹它州宾安、蒙大那州孤山、宾夕法尼亚州切斯特区、亚利桑那州、新墨西哥 州;安大略省、魁北克省;英格兰;瑞典;西班牙;墨西哥 名称来源:黄色,含铜的矿物。英文名chalcopyrite来自希腊语,chalkos指铜,pyrife指 火一般的。 也称铜质黄铁矿 图1.黄铜矿图2.黄铜矿图3.黄铜矿 晶体结构 对称特点: 四方晶系;点群42m。空间群I42d 晶胞参数:a o=5.24?;c o=10.32?;Z=4。 晶体结构: 晶体结构类似闪锌矿,即其单位晶脆好似由两个闪锌矿昌脆叠加而成。黄铜矿常呈四方四面体晶形。常见者为致密块状或粒状 晶体形态 单晶体不常见,晶形呈四方四面体、四方偏三角面体、四方双锥。 块大或紧凑;有时生有双晶 物理性质 硬度:3-4 比重: 4.1-4.3 解理:不良 断口:贝壳状至不整齐 颜色:黄铜色,但往往带有暗黄或斑状锖色 条痕:绿黑色 透明度:不透明 光泽:金属光泽

发光性: ---- 折射率: ---- 其他性脆。能导电。溶于硝酸。 [鉴定特征] 黄铜矿与黄铁矿相似,但可以其更黄的颜色和较低的硬度加以区别。 在特定条件下,它转化成辉铜矿,靛铜矿,硅孔雀石和孔雀石。 黄铜矿 矿物名称:黄铜矿(含砷铂矿) Chalcopyrite(Sperrylite bearing) ::矿物概述 化学组成:CuFeS2,Cu铜34.56%,Fe30.52%,S34.92%。 鉴定特征:黄铜矿,可以从它的颜色和条痕当中鉴别出来;它和黄铁矿相像,但是硬度不如黄铁矿,黄铁矿的硬度是6-6.5;它和金类似,但是硬度比金高,也比金脆,金的硬度是 2.5-3;它和黄铁矿一样,在野外很容易被误会为黄金,因此被称为愚人金(Fool's Gold); 成因产状:黄铜矿分布很广,可在各种条件下形成;主要有以下几种类型:岩浆型:在与基性、超基性岩有关的铜镍硫化物或钒钛磁铁矿床中,形成的温度较高,与磁黄铁矿、镍黄铁矿密切共生;接触交代型:黄铜矿经常充填交代石榴子石或透灰矿等矿物,与磁铁矿、黄铁矿、磁黄铁矿等共生; 著名产地:世界主要产地有中国长江中下游地区、川滇地区、山西南部中条山地区、甘肃的河西走廊、西藏高原及智利、南非、赞比亚、澳大利亚和英国的Cornwall、瑞典的Falun、捷克的Schemnitz、德国Saxony的Freiberg、西班牙的RioTinto、美国Montana州的Butte、Utah州的Bingham、Tennessee州的Ducktown等地。 名称来源:来自希腊语χαλκοs,含有黄铜(brass)的黄铁矿; ::晶体形态 四方偏三角面体晶类。常见单形:平行双面c(001),四方四面体、四方柱m(110)、四方双锥。由于正、负四方四面体或四方双锥比较发育,使晶体多呈假四面体或八面体状。 ::

黄铁矿

黄铁矿因其浅黄铜的颜色和明亮的金属光泽,常被误认为是黄金,故又称为“愚人金”。 黄铁矿是铁的二硫化物。纯黄铁矿中含有46.67%的铁和53.33%的硫。一般将黄铁矿作为生产硫磺和硫酸的原料,而不是用作提炼铁的原料,因为提炼铁有更好的铁矿石。黄铁矿分布广泛,在很多矿石和岩石中包括煤中都可以见到它们的影子。一般为黄铜色立方体样子。黄铁矿风化后会变成褐铁矿或黄钾铁矾。 黄铁矿化学成分是FeS2,晶体属等轴晶系的硫化物矿物。成分中通常含钴、镍和硒,具有NaCl型晶体结构。常有完好的晶形,呈立方体、八面体、五角十二面体及其聚形。立方体晶面上有与晶棱平行的条纹,各晶面上的条纹相互垂直。集合体呈致密块状、粒状或结核状。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口。摩氏硬度较大,达6-6.5,小刀刻不动。比重4.9―5.2。在地表条件下易风化为褐铁矿。 如何识别“愚人金”和真正的黄金呢?只要拿它在不带釉的白瓷板上一划,一看划出的条痕(即留在白瓷板上的粉末),就会真假分明了。金矿的条痕是金黄色的,黄铁矿的条痕是绿黑色的。另外,用手掂一下,手感特别重的是黄金,因为自然金的比重是15.6―18.3,而黄铁矿只有4.9―5.2。 黄铁矿是分布最广泛的硫化物矿物,在各类岩石中都可出现。黄铁矿是提取硫和制造硫酸的主要原料,它还是一种非常廉价的古宝石。在英国维多利亚女王时代(公元1837—1901年),人们都喜欢饰用这种具有特殊形态和观赏价值的宝石。它除了用于磨制宝石外,还可以做珠宝玉器和其它工艺品的底座。世界著名产地有西班牙里奥廷托、捷克、斯洛伐克和美国。中国黄铁矿的储量居世界前列,著名产地有广东英德和云浮、安徽马鞍山、甘肃白银厂等。 晶体化学 理论组成(wB%):Fe 46.55,S 53.45。常有Co、Ni类质同像代替Fe,形成FeS2—CoS2和FeS2—NiS2系列。随Co、Ni代替Fe的含量增加,晶胞增大,硬度降低,颜

黄铁矿标型特征在金矿地质中的运用

黄铁矿标型特征在金矿地质中的运用 发表时间:2020-04-15T04:50:10.026Z 来源:《建设者》2020年1期作者:隋琨玉[导读] 对黄铁矿标型特征进行了分析,旨在为今后相关研究提供参考。 山东黄金矿业莱州有限公司三山岛金矿山东莱州 261442摘要:作为较为常见的金属矿物黄铁矿在成矿中发挥着十分重要的作用,文章对黄铁矿矿物学相关信息进行了阐述,对黄铁矿标型特征进行了分析,旨在为今后相关研究提供参考。关键词:黄铁矿;标型特征;金矿地质;运用 黄铁矿是一种载金矿物质,其不但是各类金矿床中散布范围最广阔的金属矿物,还包含了极为丰富的地质信息。在不同物理环境或化学环境下形成的黄铁矿,其物理形态或是化学成分都会或多或少地存在差别。有关人员应当合理运用现代化研究途径,对这种细微的差别进行深入探索,从而为评价矿床、扩大远景等问题提供科学的研究依据。 一、黄铁矿的形态标型及运用 晶形和含金性 黄铁矿的晶形能够用于评估含金性。从许多研究结果可以看出,五角十二面体与八面体的黄铁矿相对于立方体而言,具有更优秀的含金性。比如小秦岭金矿区的粗粒黄铁矿,其立方体晶形含金性约为 到 7.1ppm 左右,而八面体为 20ppm 左右,五角十二面体能达到 460ppm 以上。通常晶形完好的黄铁矿含金性较低,而反之则较高。 晶形和分带性 在金矿床的不同位置上,黄铁矿的晶形也有所差别。矿体的上方和外带大多是立方体黄铁矿,而内部大多是八面体与五角十二面体,分带较为明显。另外,一个矿体自浅层到深层,黄铁矿晶表面的生长线强度会越来越弱。因此,如果能把握好矿床中黄铁矿的形态和分带特点,就能够更容易地找矿并评估矿体剥蚀程度。 晶形和矿床建造 金矿床的种类不同时,黄铁矿的晶形也会随之产生差异。比如在高温石英 Au 构成的矿床内,黄铁矿会以立方体、八面体和五角十二面体这三种形式出现。而在中温 Au 硫化物构成的矿床内,最为多见的是立方体。中温到低温的石英矿床中,其多是立方体与五角十二面体。在变质金矿床中,黄铁矿通常会产生重结晶效用,从而构成五角十二面体。这时如果经过了热液交代,就能构成粗粒立方体形态。 晶体和构成环境 如果温度较高或是较低,且变化梯度较大,过饱和度低,就容易形成立方体晶形。比如矿脉上方、近矿围岩、构造破碎带部位等。在温度适中、温度变化梯度比较小的部位,多产生五角十二面的晶形。八面体晶形大多产生于矿床较浅的位置,比如新城、三山岛矿体等。 二、黄铁矿的成分标型及运用 主元素含量 黄铁矿中所含的主元素为Fe 与S,通常情况下比例为S/Fe=2,波动区间在 1.8 到 2.1 之间。高温环境中易构成黄铁矿亏硫。在沉积岩里,黄铁矿 S/Fe 的比例比较接近理论上的数值,有时候 S 会更多一些。通常而言,外生的黄铁矿含硫较多,而内生黄铁矿含硫较少。矿体上部的黄铁矿含硫较多,其下部含硫量则较少。 微量元素 在黄铁矿中,其所含的微量元素也具有比较关键的标型作用。其可以用于评估含金性火死金矿化的远景,以及展示矿床的工业重要性等,还可以给矿化环节分类,并检测自然金的成色和成矿温度。比如黑龙江某金矿床,其中的黄铁矿含有 87.04ppm 的 Au,其自然金成色为 948。而安徽沙溪的伴生金矿床黄铁矿中,含金性有 7.3ppm。当黄铁矿中含有较多 As 时,其 Au 含量也相对较高。 三、黄铁矿的物性标型及运用

卡林型金矿

卡林型金矿(Carlin-typegold deposit)又称卡林氏金矿,是一种以沉积岩为主要容矿岩石的金矿类型,属微粒型金矿。 其主要特征是:(1)分布于斑岩体周围的中酸性岩脉发育区;(2)容矿岩石为薄层状-纹层状和角砾状碳酸盐岩;(3)矿体主要受高角度断层控制。通常产于岩脉的一侧或附近;(4)矿石普遍具白色细网脉状方解石化和碳泥化,裂面上常见黑色碳质被膜;(5)金主要为次显微金;(6)成矿物质主要来自矿源层,部分来自岩浆,成矿热液水主要来自大气降水。 在世界范围内,主要集中分布在美国中西部和我国西南部地区。 以下为补充 卡林型金矿(Carlin-type gold deposit)是20世纪60年代初期在美国西部内华达州的卡林镇被发现而得名的,是一种主要产于碳酸盐岩建造中的微细浸染型金矿床。给类型金矿床具有品位低、规模大、矿体与围岩界线不明显,金主要呈显微-次显微形式分散产出,普遍发育中低温热液矿物组合以及Au、As、Hg等微量元素组合。卡林型金矿主要分布于美国内华达州、犹他州和中国的滇黔贵、川陕甘两个金三角内,在东南亚以及南美洲的秘鲁也有分布。 (一)成矿条件 1.大地构造环境 卡林型金矿主要形成于裂谷带和弧后盆地内。太平洋东海岸的卡林型金矿位于美国西部新生代的弧后盆岭式裂谷带内。我国目前发现的卡林型金矿大多数分布在扬子板块周缘的古裂谷带和弧后盆地。滇黔桂金三角区的卡林型金矿位于扬子板块西南边缘的晚加里东-海西期右江裂谷带;川甘陕金三角区的卡林型金矿玉扬子板块北西缘加里东-印支期秦岭陆间裂谷 带活动有关。 卡林型金矿(Carlin-typegold deposit)又称卡林氏金矿,是一种以沉积岩为主要容矿岩石的金矿类型,属微粒型金矿。 其主要特征是:(1)分布于斑岩体周围的中酸性岩脉发育区;(2)容矿岩石为薄层状-纹层状和角砾状碳酸盐岩;(3)矿体主要受高角度断层控制。通常产于岩脉的一侧或附近;(4)矿石普遍具白色细网脉状方解石化和碳泥化,裂面上常见黑色碳质被膜;(5)金主要为次显微金;(6)成矿物质主要来自矿源层,部分来自岩浆,成矿热液水主要来自大气降水。 在世界范围内,主要集中分布在美国中西部和我国西南部地区。 卡林型金矿(Carlin-type gold deposit)是20世纪60年代初期在美国西部内华达州的卡林镇被发现而得名的,是一种主要产于碳酸盐岩建造中的微细浸染型金矿床。给类型金矿床具有品位低、规模大、矿体与围岩界线不明显,金主要呈显微-次显微形式分散产出,普遍发育中低温热液矿物组合以及Au、As、Hg等微量元素组合。卡林型金矿主要分布于美国内华

黄铁矿 (Pyrite) FeS2

黄铁矿 (Pyrite) FeS2 黄铁矿化学成分是FeS2,晶体属等轴晶系的硫化物矿物。成分中通常含钴、镍和硒,具有NaCl型晶体结构。常有完好的晶形,呈立方体、八面体、五角十二面体及其聚形。立方体晶面上有与晶棱平行的条纹,各晶面上的条纹相互垂直。集合体呈致密块状、粒状或结核状。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口。摩氏硬度较大,达6-6.5,小刀刻不动。比重4.9―5.2。在地表条件下易风化为褐铁矿。 如何识别“愚人金”和真正的黄金呢?只要拿它在不带釉 的白瓷板上一划,一看划出的条痕(即留在白瓷板上的粉末),就会真假分明了。金矿的条痕是金黄色的,黄铁矿的条痕是绿黑色的。另外,用手掂一下,手感特别重的是黄金,因为自然金的比重是15.6―18.3,而黄铁矿只有4.9―5.2。 黄铁矿是分布最广泛的硫化物矿物,在各类岩石中都可出现。黄铁矿是提取硫和制造硫酸的主要原料,它还是一种非常廉价的古宝石。在英国维多利亚女王时代(公元1837—1901年),人们都喜欢饰用这种具有特殊形态和观赏价值的宝石。它除了用于磨制宝石外,还可以做珠宝玉器和其它工艺品的底座。世界著名产地有西班牙里奥廷托、捷克、斯洛伐克和美国。中国黄铁矿的储量居世界前列,著名产地有广东英德和云浮、安徽马鞍山、甘肃白银厂等。

品名:硫化亚铁 拼音:liuhuayatie 英文名称:ferroussulfide 说明:FeS深棕色或黑色晶体。成块状、条状或粉状。密度4.74。熔点1193℃。不溶于水,溶于酸时产生硫化氢。主要用以制取硫化氢。可将铁与硫共熔而得。 硫化亚铁为黑褐色六方晶体,难溶于水。可由硫和铁在高真空石英封管内共熔而得,这样制得的硫化亚铁作为化学试剂成本较高,而化学纯试剂硫化亚铁含杂质较多。 化学试剂的贮存纵然密封也要和空气接触,在空气中有微量水分存在下,硫化亚铁逐渐氧化成四氧化三铁和硫,化学方程式如下:12FeS+8O2水12S+4Fe3O4。用硫化亚铁与稀盐酸或稀硫酸反应制硫化氢气体时,由于是在启普发生器或其简易装置中制备,硫化亚铁固体表面的氧化层中的硫不与稀盐酸、稀硫酸反应,阻碍了硫化亚铁与酸液中的氢离子接触(即硫化亚铁虽然难溶,但毕竟能溶解一点点,溶解的部分完全电离出亚铁离子与硫的阴离子。)此时溶液中几乎无硫阴离子,与氢离子结合生成弱电解质硫化氢就很少。另一方面在常温下四氧化三铁与稀盐酸、稀硫酸反应比较慢,溶解四氧化三铁还会消耗较多的氢离子,使氢离子浓度下降,发生反应的化学方程式Fe(FeO2)2+8H+=Fe2++2Fe3++4H2O。

相关文档
最新文档