clontech公司RACE试剂盒说明书

clontech公司RACE试剂盒说明书
clontech公司RACE试剂盒说明书

SMARTer? RACE

cDNA Amplification Kit User Manual

Cat. Nos. 634923 & 634924

United States/Canada 800.662.2566Asia Paci?c

+1.650.919.7300Europe

+33.(0)1.3904.6880Japan

+81.(0)77.543.6116U s e r M a n u a l

SMART er? RACE cDNA Amplification Kit User Manual

T able of Contents

I. List of Components (3)

II. Additional Materials Required (4)

III. Introduction & Protocol Overview (5)

IV. Primer Design (8)

A. Primer Sequence (8)

B. Location of Primer Sequences within Genes (9)

C. T ouchdown PCR (9)

D. Nested Primers (9)

V. Generating RACE-Ready cDNA (10)

A. General Considerations (10)

B. Preparation & Handling of Total and Poly A+ RNA (10)

C. Assessing the Quality of the RNA Template (11)

D. PRoToCoL: First-Strand cDNA Synthesis (12)

VI. Rapid Amplification of cDNA Ends (RACE) (14)

A. Things You Should Know Before Starting RACE PCR Reactions (14)

B. PRoToCoL: Positive Control RACE PCR Experiment (14)

C. Control PCR Reactions (16)

D. PRoToCoL: Rapid Amplification of cDNA Ends (RACE) (17)

VII. Characterization of RACE Products (20)

A. Comparison of RACE Products obtained with GSPs & NGSPs (20)

B. Southern Blot Analysis (20)

C. PRoToCoL: NucleoT rap? Gel Extraction (21)

D. Cloning & Sequencing RACE Products (22)

VIII. T roubleshooting Guide (23)

IX. References (27)

Appendix A: Detailed Flow Chart of 5’ RACE (28)

Appendix B: Detailed Flow Chart of 3’ RACE (29)

Appendix C: Suppression PCR and Step-Out PCR (30)

Appendix D: 5’-RACE cDNA Amplification with Random Primers (32)

List of Figures

Figure 1. Mechanism of SMARTer cDNA synthesis (5)

Figure 2. overview of the SMARTer RACE procedure. (6)

Figure 3. The relationship of gene-specific primers to the cDNA template. (8)

Figure 4. 5’- and 3’-RACE sample results (16)

Figure 5. Detailed mechanism of the 5’-RACE reactions. (28)

Figure 6. Detailed mechanism of the 3’-RACE reactions. (29)

Figure 7. Mechanisms of suppression PCR and step-out PCR (31)

List of T ables

Table I: Additional 5’-RACE Sequence obtained with SMART Technology (5)

Table II: SMARTer RACE Protocol overview (7)

Table III: Setting Up the Positive Control RACE Experiment (15)

Table IV: Setting Up the 5’-RACE PCR Reactions (17)

Table V: Setting Up the 3’-RACE PCR Reactions (18)

Table VI: T roubleshooting Guide (23)

SMART er? RACE cDNA Amplification Kit User Manual I. List of Components

Cat. No. Cat. No.

634923 634924

10 rxns 20 rxns

First-Strand cDNA Synthesis

? SMART er II A Oligonucleotide (12 μM)

10 μl 2x10 μl

5'–AAGCAGTGGTATCAACGCAGAGTACXXXXX–3'

(X = undisclosed base in the proprietary SMARTer oligo sequence)? 3'-RACE CDS Primer A (3'-CDS; 12 μM)

10 μl 20 μl

5'–AAGCAGTGGTATCAACGCAGAGTAC(T)30 V N–3'

(N = A, C, G, or T; V = A, G, or C)

10 μl 20 μl

? 5'-RACE CDS Primer A (5'-CDS; 12 μM)

V N–3'

5'–(T)

25

(N = A, C, G, or T; V = A, G, or C)

? 10X Random Primer Mix (N-15) (20 μM)

10 μl 20 μl

? 5X First-Strand Buffer (RNAse-Free)

40 μl 80 μl

250 mM T ris-HCl (pH 8.3)

375 mM KCl

30 mM MgCl

2

? Dithiothreitol (DTT; 20 mM)

20 μl 40 μl

? Deionized H

1 ml 1 ml

O

2

10 μl 10 μl

? RNase Inhibitor (40 U/μl)

? SMARTScribe? Reverse T ranscriptase (100 U/μl)

12 μl 25 μl

5'- & 3'-RACE PCR

? 10X Universal Primer A Mix (UPM)

400 μl 800 μl

Long (0.4 μM):

5'–CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT–3'

Short (2 μM): 5'–CTAATACGACTCACTATAGGGC–3'

? Nested Universal Primer A (NUP; 10 μM)

50 μl 100 μl

5'–AAGCAGTGGTATCAACGCAGAGT–3'Control Reagents

? Control Mouse Heart T otal RNA (1 μg/μl)

5 μl 5 μl

? Control 5'-RACE TFR Primer (10 μM)

25 μl 50 μl

? Control 3'-RACE TFR Primer (10 μM)

25 μl 50 μl

General Reagents

? dNTP Mix (dATP, dCTP, dGTP, and dTTP, each at 10 mM)

100 μl 200 μl

? T ricine-EDTA Buffer

2x1 ml 2x1 ml

10 mM T ricine-KOH (pH 8.5)

1.0 mM EDTA

SMART er? RACE cDNA Amplification Kit User Manual

I. List of Components, continued

Cat. No. Cat. No.

634923 634924

10 rxns 20 rxns

NucleoT rap? Gel Extraction Kit

? NucleoT rap Suspension

100 μl 2x100 μl

? Buffer NT1

6 ml 2x6 ml

? Buffer NT2

6 ml 2x6 ml

? Buffer NT3 (concentrate)

7 ml 2x7 ml

? Buffer NE

5 ml 2x5 ml

Storage Conditions

Store Control Mouse Heart T otal RNA and SMARTer II A Oligonucleotide at –70°C.

?

?

Store the NucleoTrap Gel Extraction Kit at room temperature.

?

Store all other reagents at –20°C.

II. Additional Materials Required

The SMART er RACE cDNA Amplification Kit does not include a PCR polymerase.

We recommend that you perform your SMART er RACE PCR reactions using the following kit

or polymerase mix:

Advantage

? ? 2 PCR Kit (Cat. Nos. 639206 & 639207)

? (Cat. Nos. 639201 & 639202)

Advantage 2 Polymerase Mix

Advantage 2 is comprised of T ITANIUM?T aq DNA Polymerase—a nuclease-deficient N-terminal de-

letion of Taq DNA polymerase plus T aqStart? Antibody to provide automatic hot-start PCR (Kellogg et

al., 1994)—and a minor amount of a proofreading polymerase. Advantage 2 technology enables you

to perform long distance PCR (LD PCR) reactions with confidence that your products will have high

fidelity to the original sequences (Barnes, 1994; Cheng et al., 1994).

The following reagents are optional:

For efficient amplification of GC-rich templates, we recommend:

? (Cat. Nos. 639119 & 639120)

Advantage GC 2 PCR Kit

For applications in which the highest fidelity product is desired, we recommend:

? (Cat. Nos. 639123 & 639124)

Advantage HF 2 PCR Kit

If your RNA template is from a non-eukaryotic organism and lacks a polyadenylated tail, you can add

one prior to first-strand cDNA synthesis using the following enzyme:

? (Takara Bio Cat. No. 2180A)

Poly(A) Polymerase

SMART er? RACE cDNA Amplification Kit User Manual

III. Introduction & Protocol Overview

The SMART er? RACE cDNA Amplification Kit provides a method for performing both 5’- and 3’-rapid amplification of cDNA ends (RACE). The SMARTer RACE cDNA Amplification Kit is an improved version of our original SMART RACE Kit, with a new, SMARTer II A oligonucleotide and SMARTScribe? Reverse T ranscriptase included; it provides better sensitivity, less background and higher specificity. This powerful system allows you to isolate the complete 5’ sequence of your target transcript from as little as 10 ng of total RNA. T he cornerstone of the SMARTer RACE cDNA Amplification Kit is SMART technology, which eliminates the need for problematic adaptor ligation and lets you use first-strand cDNA directly in RACE PCR, a benefit that makes RACE far less complex and much faster (Chenchik et al ., 1998). Additionally, the SMARTer RACE Kit exploits Clontech’s patented suppression PCR & step-out PCR to increase the sensitivity and reduce the background of the RACE reactions. As a result you can use either poly A + or total RNA as starting material for constructing full-length cDNAs of even very rare transcripts.

SMART technology provides a mechanism for generating full-length cDNAs in reverse transcription reactions (Zhu et al ., 2001). This is made possible by the joint action of the SMARTer II A Oligonucleotide and SMARTScribe Reverse Transcriptase (a variant of MML V RT). The SMARTScribe RT , upon reaching the end of an RNA template, exhibits terminal transferase activity, adding 3–5 residues to the 3’ end of the first-strand cDNA (Figure 1). The SMARTer oligo contains a terminal stretch of modified bases that anneal to the extended cDNA tail, allowing the oligo to serve as a template for the RT . SMARTScribe R T switches templates from the mRNA molecule to the SMARTer oligo, generating a complete cDNA copy of the original RNA with the additional SMARTer sequence at the end. Since the template switching activity of the RT occurs only when the enzyme reaches the end of the RNA template, the SMARTer sequence is typically only incorporated into full-length, first-strand cDNAs. For more information about SMART technology, read "Generation and use of high-quality cDNA from small amounts of total RNA by SMART PCR" (Chenchik et al ., 1998). T his process guarantees that the use of high quality RNA will result in the formation of a set of cDNAs that have a maximum amount of 5’ sequence (Table I).

T able I: Additional 5’-RACE Sequence Obtained with SMART T echnology

Human gene

Size of mRNA

(kb)

Additional sequence (bp)*

Matches genomic sequences

Includes transcription start site

Transferrin receptor 5.0 +25yes yes Smooth muscle g-actin

1.28+31yes yes Vascular smooth muscle α-actin 1.33+17yes yes Cytoskeletal γ-actin 1.9+1yes yes 23 kDa HBP 0.67+9yes yes p53

2.6+4yes yes Interferon-γ receptor 2.06+14yes yes 14-3-3 protein 1.03+1n/a n/a Interferon-α receptor

2.75

+17

yes

yes

n/a = not available

* Compared to GenBank cDNA sequence.

5'First-strand synthesis coupled with tailing by

SMARTScribe RT

Poly A + RNA

polyA 3'

SMARTer II A Oligonucleotide

Template switching and extension by

SMARTScribe RT

XXXXX 5'

X X X X X 5'

X X X

X 5'

XXXXX

X X X X

Figure 1. Mechanism of SMART er cDNA synthesis. First-strand synthesis is primed using a modified oligo(dT) primer. After SMARTScribe Reverse Transcriptase (RT) reaches the end of the mRNA template, it adds several nontemplate residues. T he SMARTer II A Oligonucleotide anneals to the tail of the cDNA and serves as an extend-ed template for SMARTScribe RT .

SMART er? RACE cDNA Amplification Kit User Manual

III. Introduction & Protocol Overview, continued

Following reverse transcription, SMART technology allows first-strand cDNA to be used directly in 5’- and 3’-RACE PCR reactions. Incorporation of universal primer binding sites in a single-step during first-strand cDNA synthesis eliminates the need for tedious second-strand synthesis and adaptor ligation. This simple and highly efficient SMARTer cDNA synthesis method ensures higher specificity in amplifying your target cDNA. Suppression PCR & step-out PCR techniques (described in detail in Appendix C) are used in combi-nation with SMARTer technology to decrease background amplification in RACE PCR.

The only requirement for SMARTer RACE cDNA amplification is that you know at least 23–28 nucleotides (nt) of sequence information in order to design gene-specific primers (GSPs) for the 5’- and 3’-RACE reactions. (Additional sequence information will facilitate analysis of your RACE products.) This limited requirement makes SMARTer RACE ideal for characterizing genes identified through diverse methods, including cDNA subtraction, differential display, RNA fingerprinting, ESTs, library screening, and more.

SMARTer RACE cDNA amplification is a flexible tool—many researchers use this kit in place of conventional kits to amplify just the 5’ or 3’ end of a particular cDNA. Others perform both 5’- and 3’-RACE, and many then go on to clone full-length cDNAs using one of the two methods described in the latter part of this protocol. In

many cases, researchers obtain full-length cDNAs without ever constructing or screening a cDNA library.

Poly A + or Total RNA

1–2Days

Figure 2. Overview of the SMART er RACE procedure. Detailed flow charts of the SMARTer RACE mechanisms can be found in Appendices A & B. Note that with the cloned RACE fragments you can use a restriction site in an overlapping region to construct a full-length cDNA by subcloning. Alternatively, you can sequence the 5' end of the 5' product and the 3' end of the 3' product to obtain the sequences of the extreme ends of the transcript. Using this information, you can design 5' and 3' gene-specific primers to use in LD PCR with the 5'-RACE-Ready cDNA as template to generate the full-length cDNA.

SMART er? RACE cDNA Amplification Kit User Manual III. Introduction & Protocol Overview, continued

The table below describes the major steps necessary to generate RACE-ready cDNA, perform 5’ & 3’ RACE PCR reactions, and characterize the final RACE products using the SMARTer RACE cDNA Amplification Kit. Please refer to the specified sections for details on performing each step. Detailed mechanisms of the RACE reactions are provided in Appendices A & B.

SMART er? RACE cDNA Amplification Kit User Manual

IV . Primer Design

A. Primer Sequence

Gene-Specific Primers (GSPs) should be:

23–28 nt ? 50–70% GC

? T ? m ≥65°C; best results are obtained if T m >70°C (enables the use of touchdown PCR)not complementary to the 3’-end of the Universal Primer Mix ? specific to your gene of interest

? The relationship of the primers used in the SMARTer RACE reactions to the template and resulting RACE products is shown in detail in Figure 3. For the complete SMARTer RACE protocol, you will need at least two GSPs: an antisense primer for the 5’-RACE PCR and a sense primer for the 3’-RACE PCR. If you are do-ing only 5’- or 3’-RACE, you will only need one GSP . All primers should be 23–28 nt long; there is generally no advantage to using primers longer than 30 nt. The primers shown in Figure 3 will create overlapping 5’- and 3’-RACE products. If a suitable restriction site is located in the region of overlap, the fragments can subsequently be joined by restriction digestion and ligation to create the full-length cDNA. By designing primers that give a 100–200-bp overlap in the RACE products, you will also be able to use the primers to-gether as a positive control for the PCR reactions. However, it is not absolutely necessary to use primers that give overlapping fragments. In the case of large and/or rare cDNAs, it may be better to use primers that are closer to the ends of the cDNA and therefore do not create overlapping fragments. Additionally, the primers themselves can overlap (i.e., be complementary).

GSPs should have a GC content of 50–70% and a T m of at least 65°C; whenever possible the T m should be greater than 70°C, as determined by nearest neighbor analysis (Freier et al., 1986; we use the Primer Pre-mier software to calculate T m ’s). In our experience, longer primers with annealing temperatures above 70°C give more robust amplification in RACE, particularly from difficult samples. T m ’s over 70°C allow you to use “touchdown PCR” (Section C below). Additionally, designing GSP1 and GSP2 so that they have similar T m ’s will facilitate their use in the SMARTer RACE protocol. T m ’s of GSP1 and GSP2 can be calculated or determined experimentally by performing PCR at different temperatures. Avoid using self-complementary primer sequences, which can fold back and form intramolecular hydrogen bonds.

Figure 3. The relationship of gene-specific primers to the cDNA template. This diagram shows a generalized first-strand cDNA template. This RNA/DNA hybrid does not precisely represent either the 5’-RACE-Ready or 3’-RACE-Ready cDNAs. For a detailed look at those struc-tures, see Appendices A & B. Note that the gene-specific primers designed here produce overlapping RACE products. T his overlap permits the use of the primers together in a control PCR reaction. Additionally, if a suitable restriction site is located within this region, it will be possible to construct the full-length cDNA by subcloning.

– 3'– 5'

Generalized ?rst-strand cDNA

SMART er? RACE cDNA Amplification Kit User Manual IV. Primer Design, continued

B. Location of Primer Sequences within Genes

We have had good success using the SMARTer RACE Kit to amplify 5’ and 3’ cDNA fragments that extend

up to 6.5 kb from the GSP binding sites. Nevertheless, for optimum results we recommend choosing your

primers so that the 5’- and 3’-RACE products will be 2 kb or less.

C. T ouchdown PCR

We have found that touchdown PCR (Don et al., 1991; Roux, 1995) significantly improves the specificity of

SMARTer RACE amplification. T ouchdown PCR uses an annealing temperature during the initial PCR cycles

that is higher than the T

m of the Universal Primer. If the T

m

of your GSP is >70°C, only gene-specific syn-

thesis occurs during these cycles, allowing a critical amount of gene-specific product to accumulate. The annealing temperature is then reduced to a level compatible with the UPM, permitting efficient, exponential amplification of the gene-specific template. (See Appendices A–C for more details.)

As noted above, we recommend using primers with T

m ’s >70°C to allow you to use the touchdown cycling

programs in the protocol. (Non-touchdown cycling programs are also included for use with primers with T

m

’s <70°C.)

D. Nested Primers

We recommend that you do not use nested PCR in your initial experiments. T he UPM Primer and a GSP will usually generate a good RACE product with a low level of nonspecific background. However, Southern blotting with nested GSPs (NGSP1 and NGSP2) as probes is useful for characterizing your RACE products. Furthermore, nested PCR may be necessary in some cases where the level of background or nonspecific amplification in the 5’- or 3’-RACE reaction is too high with a single GSP. In nested PCR, a primary amplification is performed with the outer primers and, if a smear is produced, an aliquot of the primary PCR product is reamplified us-ing the inner primers. T he SMARTer RACE protocols include optional steps indicating where nested primers can be used. T he Nested Universal Primer A (provided with the kit) can be used for both 5’- and 3’-RACE. Nested gene specific primers should be designed according to the guidelines discussed above. If possible, nested primers should not overlap with the outer gene-specific primers; if they must overlap due to limited sequence information, the 3’ end of the inner primer should have as much unique sequence as possible.

SMART er? RACE cDNA Amplification Kit User Manual

V. Generating RACE-Ready cDNA

Please read the entire Protocol before starting

Use the following protocol for generating race-ready cdna using clontech’s simple and

highly efficient sMart er? technology. general considerations for safety, success & rna

handling are provided in sections a & b. detailed instructions for assessing the quality of your

rna template prior to first-strand cdna synthesis are provided in section c, followed by the

protocol for first-strand cdna synthesis in section d.

A. General Considerations

We recommend the T ricine-EDTA Buffer provided in the kit for resuspending and diluting your ?

cDNA samples throughout the protocols in this user manual. T ricine buffers maintain their pH at

high temperature better than T ris-based buffers. T ris-based buffers can lead to low pH conditions

that degrade DNA.

Resuspend pellets and mix reactions by gently pipetting the solution up and down or by flicking ?

the bottom of the tube. Always spin tubes briefly prior to opening to collect the contents at the

bottom of the tubes.

Perform all reactions on ice unless otherwise indicated.

?

Add enzymes to reaction mixtures last.

?

Use the recommended amounts of enzyme. T hese amounts have been carefully optimized for the ?

SMARTer RACE amplification protocol and reagents.

Ethidium bromide is a carcinogen. Use appropriate precautions when handling and disposing of ?

this reagent. For more information, see Molecular Cloning: A Laboratory Manual by Sambrook &

Russell (2001).

B. Preparation & Handling of T otal and Poly A+ RNA

General Precautions

The integrity and purity of your total or poly A+ RNA starting material is an important element in high-

quality cDNA synthesis. The following precautions will help you avoid contamination and degradation

of your RNA:

Wear gloves throughout to protect your RNA samples from nucleases.

?

Use freshly deionized (e.g., MilliQ-grade) H ?

2O directly, without treatment with DEPC (diethyl pyro-

carbonate).

Rinse all glassware with 0.5 N NaOH, followed by deionized H ?

2O. T hen bake the glassware at

160–180°C for 4–9 hr.

Use only single-use plastic pipettes and pipette tips.

?

RNA Isolation

Clontech offers several kits for isolating total or poly A+ RNA from a variety of sources. T he NucleoBond?RNA/DNA Kit (Cat. No. 740650) contains AX-R tips to isolate total RNA from tissue or cells without using phenol or chloroform. With the NucleoSpin? RNA II Kit (Cat. No. 740955.20), you can isolate highly pure total RNA from cells, tissues, or cell-free biological fluids without phenol chloroform extractions. The NucleoT rap? mRNA Mini Kit (Cat. No. 740665) combines a spin-column filter with oligo(dT)-latex bead technology to isolate high-quality mRNA from total RNA in less than 30 minutes. Many procedures are available for the isolation of poly A+ RNA (Farrell, 1993; Sambrook et al., 1989).

SMART er? RACE cDNA Amplification Kit User Manual V. Generating RACE-Ready cDNA, continued

RNA Purity

The purity of RNA is the key factor for successful cDNA synthesis and SMARTer RACE. T he presence

of residual organics, metal ions, salt or nucleases in your RNA sample could have a large impact

on downstream enzymatic applications by inhibiting enzymatic activity or degrading the RNA. We

strongly recommend checking the stability of your RNA to ensure that it is free of contaminants.

To test the stability of your RNA, incubate a small portion of it at 37°C for 2 hours, then compare the sample

to a duplicate control stored at –70°C. If the sample incubated at 37°C shows a lower 28S:18S ratio than

the control or the RNA shows a significant downward shift on a formaldehyde agarose gel, the RNA may

have nuclease contaminants (see Section V.C., below, for methods for assessing RNA quality).

Impurities such as salt or organic contaminants can be removed by repeated ethanol precipitation,

subsequent washing with 80% ethanol and the complete removal of all remaining ethanol.

If your RNA template is from a plant or some other species with high pigment levels, please pay spe-Array cial attention to polysaccharide/pigment contamination. Polysaccharides/pigments are hard to remove

and can’t be detected on the agarose gel. T hese glycoproteins might interfere with primer binding

sites of RNA during the first-strand cDNA synthesis leading to reduced cDNA yield.

C. Assessing the Quality of the RNA T emplate

Methods for Assessing T otal RNA Integrity

Formaldehyde agarose gel visualization with Ethidium Bromide (EtBr):

1.

The integrity of total RNA can be visually assessed by the ratio of 28S:18S RNA on a denaturing

formaldehyde agarose gel by staining with EtBr. The theoretical 28S:18S ratio for eukaryotic RNA is

approximately 2:1. If the 28S:18S ratio of your RNA is less than 1, your RNA template is not suitable

for SMARTer RACE. Y ou need at least 0.5 –1 μg of total RNA for this method for better visualization.

Formaldehyde agarose gel visualization with SYBR

2. ? Green or SYBR Gold:

One drawback of visualizing RNA with Ethidium Bromide is the amount of sample required. Alterna-

tive dyes such as SYBR? Green II or SYBR Gold (Molecular Probes; Eugene, OR) allow you to detect as

little as 1 or 2 ng of RNA (using SYBR Gold and SYBR Green II, respectively). T hese dyes are especially

useful if you have a limited amount of RNA.

3.

Detection with the Agilent 2100 BioAnalyzer (Agilent T echnologies, CA):

This microfluidics-based technology, which provides an alternative to traditional gel-based analysis,

requires only 10 ng of RNA per analysis. In addition to assessing RNA quality, this automated system

provides a good estimate of RNA concentration.

Methods for Assessing mRNA Integrity

All of the methods mentioned above can be used to assess the quality of your mRNA. However, be-

cause mRNA does not contain strong ribosomal bands, the assessment of its quality will be somewhat

subjective. T ypically, mRNA appears as a smear between 0.5 kb to 6 kb, with an area of higher intensity

around 1.5 and 2 kb. T his size distribution may be tissue or species-specific. If the average size of your

mRNA is lower than 1.5 kb, it could be an indication of degradation.

SMART er? RACE cDNA Amplification Kit User Manual

V . Generating RACE-Ready cDNA, continued

D. PROTOCOL: First-Strand cDNA Synthesis

The two 10 μl reactions described in this protocol convert 10 ng–1 μg of total or poly A + RNA into RACE-Ready first-strand cDNA.

We recommend that you use poly A + RNA whenever possible. However, if you have less than 50 μg of total RNA we do not recommend purification of poly A + RNA because the final yield will be too small to effectively analyze the RNA quantity and quality.

We strongly recommend that you perform a positive control cDNA synthesis using the included Mouse Heart T otal RNA in addition to your experimental reactions. This cDNA will be used in the positive control RACE reactions in Section VI.B.

NOTE: If your RNA template is from a non-eukaryotic organism and/or lacks a polyadenylated tail, follow the protocol for first-strand cDNA synthesis with random primers in Appendix D. Alternatively, you can add a poly(A) tail using Poly(A) Polymerase (T akara Bio USA Cat. No.2180A), and proceed with the following protocol.

IMPORTANT :

Prior to cDNA synthesis, please make sure that your RNA is intact and free of

? contaminants (see Section V.C. Assessing the Quality of the RNA T emplate).

Do not change the size (volume) of any of the reactions. All components have been

? optimized for the volumes specified.

Prepare enough of the following Buffer Mix for all of the 5’- & 3’-RACE-Ready cDNA synthesis reac-1. tions plus 1 extra reaction to ensure sufficient volume. For each 10 μl cDNA synthesis reaction, mix the following reagents and spin briefly in a microcentrifuge, then set aside at room temperature until Step 7:

2.0 μl 5X First-Strand Buffer 1.0 μl DTT (20 mM)

1.0 μl dNTP Mix (10 mM) 4.0 μl T otal Volume

2. Combine the following reagents in separate microcentrifuge tubes:

For preparation of For preparation of 5'-RACE-Ready cDNA 3'-RACE-Ready cDNA 1.0–2.75 μl RNA *

1.0–3.75 μl RNA *

1.0 μl 5'-CDS Primer A

1.0 μl 3'-CDS Primer A

*For the control synthesis, use 1 μl of Control Mouse Heart T otal RNA (1 μg/μl)

Add sterile H 3. 2O to the tubes from Step 2 for a final volume of 3.75 μl for 5’ RACE and 4.75 μl for 3’ RACE.Mix contents and spin the tubes briefly in a microcentrifuge.

4. Incubate the tubes at 72°C for 3 min, then cool the tubes to 42°C for 2 min. After cooling, spin the

5. tubes briefly for 10 seconds at 14,000 g to collect the contents at the bottom.

NOTE: This step can be performed in a thermocycler. While the tubes are incubating, you can prepare the Master Mix in Step 7.

To just the 5' RACE cDNA synthesis reaction(s), add 1 μl of the SMARTer IIA oligo per reaction.

6.

SMART er? RACE cDNA Amplification Kit User Manual

Prepare enough of the following Master Mix for all 5’- & 3’-RACE-Ready cDNA synthesis reactions. 7. Mix these reagents at room temperature in the following order:

4.0 μl Buffer Mix from Step 1 0.25 μl RNase Inhibitor (40 U/μl)

1.0 μl SMARTScribe? Reverse T ranscriptase (100 U) 5.25 μl T otal Volume

Add 5.25 μl of the Master Mix from Step 7 to the denatured RNA from Step 5 (3'-RACE cDNA) and 8. Step 6 (5' RACE cDNA), for a total volume of 10 μl.Mix the contents of the tubes by gently pipetting, and spin the tubes briefly to collect the contents 9. at the bottom.Incubate the tubes at 42°C for 90 min in an air incubator or a hot-lid thermal cycler.

10. NOTE: Using a water bath for this incubation may reduce the volume of the reaction mixture (due to evaporation), and therefore reduce the efficiency of first-strand synthesis.

Heat tubes at 70°C for 10 min.

11. Dilute the first-strand reaction product with T ricine-EDTA Buffer:

12. Add 20 μl if you started with ? <200 ng of total RNA.*Add 100 μl if you started with ? >200 ng of total RNA.*Add 250 μl if you started with poly A ? + RNA.

*The copy number of your gene of interest should be the determining factor for diluting your sample. If you have

200 ng of total RNA but your gene of interest has low abundance, dilute with 20 μl. If you have 200 ng of total RNA and the gene of interest is highly abundant, dilute with 100 μl.

Samples can be stored at –20°C for up to three months.

13. V . Generating RACE-Ready cDNA,

continued

BREAK

SMART er? RACE cDNA Amplification Kit User Manual

VI. Rapid Amplification of cDNA Ends (RACE)

Please read the entire Protocol before starting

things you should know prior to starting race Pcr (section a), a positive control race Pcr experiment (section b), and details about the control reactions (section c) are outlined below. the protocol for race is provided in section d.

At this point, you have 3’- and 5’-RACE-Ready cDNA samples. T he RACE reactions in this section use only a fraction of this material for each RNA of interest. T here is sufficient single-stranded cDNA for PCR amplification of multiple genes.

If you intend to use LD PCR to construct your full-length cDNA after completing 5’- and 3’-RACE, be sure to set aside an aliquot of the 5’-RACE-Ready cDNA to use as a template in the PCR reaction.

A. Things Y ou Should Know Before Starting RACE PCR Reactions

The cycling parameters throughout this protocol were optimized with an authorized hot-lid thermal cycler, Advantage 2 Polymerase Mix, and the reagents and TFR controls provided in the SMARTer RACE Kit. The optimal cycling parameters may vary with different polymerase mixes, templates, gene-specific primers, and thermal cyclers. Prior to performing 5’- and 3’-RACE with your experimental sample, you should per-form the positive control PCR experiment (Section B). T hese reactions, which use cDNA generated from the Control Mouse Heart Total RNA and the Control 5’- and 3’- RACE TFR Primers, will help determine if you need to alter the PCR program for your thermal cycler.

Please note that the efficiency of RACE PCR depends on the abundance of the mRNA of interest in your RNA sample. Additionally, different primers will have different optimal annealing/extension temperatures. Refer to the T roubleshooting Guide (Section XI) for suggestions on optimizing PCR conditions.

You must use some form of hot start in the 5’-RACE and 3’-RACE PCR reactions (Section D). The following protocols were optimized using the Advantage 2 Polymerase Mix which contains T aqStart Antibody for au-tomatic hot start PCR (Kellogg et al ., 1994). Hot start can also be performed using wax beads (Chou et al ., 1992) or manually (D’Aquila et al ., 1991).

B. PROTOCOL: Positive Control RACE PCR Experiment

Prior to performing 5’- and 3’-RACE reactions with your cDNA, we strongly recommend that you perform the following positive control RACE PCR experiment using the RACE-Ready cDNAs generated from the Control Mouse Heart Total RNA. These reactions will amplify the ends of the transferrin receptor (TFR) cDNA. This procedure can save you considerable time by ensuring that the SMARTer RACE protocol works with your thermal cycler. If problems arise later in the protocol, the results of this experiment will help you determine immediately if the problem is with your RACE reaction (e.g., from the use of a different thermal cycler) or with your cDNA.

We recommend that you first perform SMARTer RACE PCR reactions using the Advantage 2 Polymerase Mix (Cat. Nos. 639206 & 639207). If your cDNA of interest has a high GC content you can use the Advantage GC 2 Polymerase Mix (Cat. No. 639114) or PCR Kit (Cat. Nos. 639119 & 639120) for subsequent analysis. For applications in which the highest fidelity product is desired, the Advantage HF 2 PCR Kit (Cat. Nos. 639123 & 639124) can amplify templates of up to 3.5 kb. For more information, see Section V III (Troubleshooting Guide).

Prepare enough Master Mix for all of the PCR reactions plus 1 extra reaction to ensure sufficient

1. volume. For each 50 μl PCR reaction, mix the following reagents:

34.5 μl PCR-Grade Water

5.0 μl 10X Advantage 2 PCR Buffer

1.0 μl dNTP Mix (10 mM; in SMARTer RACE or Advantage 2 PCR Kit)

1.0 μl 50X Advantage 2 Polymerase Mix

41.5 μl T otal

Volume

SMART er? RACE cDNA Amplification Kit User Manual VI. Rapid Amplification of cDNA Ends (RACE), continued

2.

Mix well by vortexing (without introducing bubbles), then briefly spin the tube in a microcentrifuge.

3.

Prepare PCR reactions as shown in T able III. Add the components to PCR tubes in the order shown

and mix gently.

NOTE: If you are NOT using a hot-lid thermal cycler, overlay the contents of each tube with 2 drops of mineral

oil and place caps firmly on each tube.

Commence thermal cycling using the following program for touchdown PCR:

4.

?

5 cycles:

94°C 30 sec

72°C 3 min

5 cycles:

?

94°C 30 sec

70°C 30 sec

72°C 3 min

?

27 cycles:

94°C 30 sec

68°C 30 sec

72°C 3 min

Analyze 5 μl of each sample on a 1.2 % agarose/EtBr gel. Store the remaining 45 μl of each reaction

5.

at 4°C until you are sure the control experiment has worked.

SMART er? RACE cDNA Amplification Kit User Manual

VI. Rapid Amplification of cDNA Ends (RACE), continued

Expected Results

The 5’-RACE control reaction should produce a 2.1 kb band (Figure 4, Lane 1). T he 3’-RACE control reaction should produce a 3.1 kb band (Figure 4, Lane 2). If you do not observe these bands, return the tube(s) to your thermal cycler and try cycling the remaining portion of the reaction for 5 additional cycles. If you still do not see the desired product, consult Section VIII for troubleshooting. Before you attempt 5’- and 3’-RACE with your primers and experimental cDNA, we recommend that the positive control reactions produce single strong bands of the correct size in 42 or fewer total cycles (5 cycles annealing at 72°C + 5 cycles at 70°C + 32 cycles at 68°C).

M 1 2

kb

3.02.01.51.00.5

Figure 4. 5’- and 3’-RACE sample results. T he gel shows the 5’- and 3’-RACE amplifications of transferrin receptor starting with mouse heart total RNA. Lane M: 1 kb DNA marker. Lanes 1& 2: transferrin receptor (TFR). The 5’ product will be 2.1 kb; the 3’ product will be 3.1 kb. As seen here, minor products will occasionally be generated in transferrin receptor 3’-RACE.

C. Control PCR Reactions

Tables IV and V in Section VI.D describe several control reactions that will help you troubleshoot your RACE reactions if yields are suboptimal. T hese include:

T ube No. 2:? 5’- or 3’-RACE PCR using the positive control T FR Primer, the UPM Primer Mix, and the 5’- and 3’-RACE-Ready cDNA made from your experimental RNA. Figure 4 (above) shows the expected results of 5’- and 3’- RACE using these positive controls.T ube No. 3:? An additional positive control using both GSPs to amplify the overlapping segment of your 5’- and 3’-RACE fragments (if available). T his reaction should give a single band correspond-ing to the overlap between the primers and confirms that your target cDNA is present in, and can be amplified from, your RACE-Ready cDNA. If you do not have suitable 5’- and 3’-GSPs (i.e., GSPs that create overlapping 5’- and 3’-RACE products), use the control 5’- and 3’-RACE T FR Primers with 5 μl of your positive control RACE-Ready cDNAs (if human). T ube No. 4: ? A negative control using the UPM alone to amplify your cDNA. With fewer than 40

cycles, this reaction should produce no product. If this control produces a smear or ladder of extra bands, you may need to alter the cycling parameters or perform a secondary amplification using the Nested Universal Primer A.T ube No. 5:? A negative control using each GSP by itself. T his control should produce no product. If this control produces a smear or ladder of extra bands, you may need to alter the cycling param-eters, perform a secondary amplification using nested primers, or redesign your original primers.

SMART er? RACE cDNA Amplification Kit User Manual

VI. Rapid Amplification of cDNA Ends (RACE), continued

D. PROTOCOL: Rapid Amplification of cDNA Ends (RACE)

This procedure describes the 5’-RACE and 3’-RACE PCR reactions that generate the 5’ and 3’ cDNA frag-ments. We recommend that you also perform positive control 5’- and 3’-RACE using the T FR primers, UPM, and control RACE-Ready cDNAs as described in Section VI.B. Although the Nested Universal Primer A (NUP) is provided, nested PCR is generally not necessary in SMARTer RACE reactions.

Please note that all RACE PCR reactions have been optimized for use with the Advantage 2 Polymerase Mix.

Prepare enough PCR Master Mix for all of the PCR reactions plus one extra reaction to ensure suf-1. ficient volume. T he same Master Mix can be used for both 5’- and 3’-RACE reactions. For each 50 μl PCR reaction, mix the following reagents:

34.5 μl PCR-Grade Water

5.0 μl 10X Advantage 2 PCR Buffer

1.0 μl dNTP Mix (10 mM; in SMARTer RACE or Advantage 2 PCR Kit)

1.0 μl 50X Advantage 2 Polymerase Mix

41.5 μl T otal Volume

Mix well by vortexing (without introducing bubbles), then briefly spin the tube in a microcentrifuge.2. For 5’-RACE:3. prepare PCR reactions as shown in T able IV. For 3’-RACE: prepare PCR reactions as shown in T able V.

Add the components to 0.5 ml PCR tubes in the order shown and mix gently.

* Skip this reaction if your RNA is nonmouse.?

Skip this reaction if your GSPs will not create overlapping RACE fragments.

For detailed descriptions of the control reactions, see Section VI.C.

SMART er? RACE cDNA Amplification Kit User Manual

* Skip this reaction if your RNA is nonmouse.?

Skip this reaction if your GSPs will not create overlapping RACE fragments.For detailed descriptions of the control reactions, see Section VI.C.

NOTE: If you are NOT using a hot-lid thermal cycler, overlay the contents of each tube with 2 drops of mineral oil and place caps firmly on each tube.

Commence thermal cycling using one of the following programs (both programs 1 and 2 work with 4. the positive control 5’- and 3’-RACE T FR and UPM Primers). Be sure to choose the correct number of cycles (as noted) based on whether you started with poly A + or total RNA.

NOTES on cycling : Because the necessary number of cycles depends on the abundance of the target transcript, you may need to determine the optimal cycling parameters for your gene empirically. Run 20 or 25 PCR cycles first as described and analyze 5 μl from each tube, along with appropriate DNA size markers, on a 1.2% agarose/EtBr gel. If you see weak bands or no bands, return the tube(s) to your thermal cycler and perform five additional cycles (according to the third set of cycles for touchdown PCR). T he optimal extension time depends on the length of the desired amplicon. For 0.2-2 kb amplicons, we typically extend for 2 min; for 2-4 kb amplicons, we extend for 3 min; and for 5-10 kb amplicons, we extend for up to 10 min.

Program 1 (preferred; use if GSP T m >70°C)

5 cycles:? 94°C 30 sec 72°C

3 min*

5 cycles:? 94°C 30 sec 70°C 30 sec 72°C

3 min*

20 cycles (Poly A ? + RNA) OR 25 cycles (Total RNA):94°C 30 sec 68°C 30 sec 72°C 3 min*

*If fragments >3 kb are expected, add 1 min for each additional 1 kb.

VI. Rapid Amplification of cDNA Ends (RACE),

continued

SMART er? RACE cDNA Amplification Kit User Manual VI. Rapid Amplification of cDNA Ends (RACE), continued

Program 2 (use if GSP T

m = 60–70°C)

20 cycles (Poly A

? + RNA) OR 25 cycles (Total RNA):

94°C 30 sec

68°C 30 sec

72°C 3 min*

*If fragments >3 kb are expected, add 1 min for each additional 1 kb.

[OPTIONAL] If the primary PCR reaction fails to give the distinct band(s) of interest or produces a 5.

smear, you may wish to perform a Southern blot using:

A cDNA Probe

a.

A nested primer as a probe

b.

Or, you may wish to perform a secondary, or “nested” PCR reaction using the NUP primer supplied and a NGSP (See the discussion in Section IV.)

Dilute 5 μl of the primary PCR product into 245 μl of T ricine-EDTA buffer.

a.

Repeat Steps 1–5 above, using:

b.

5 μl of the diluted primary PCR product in place of the RACE-Ready cDNAs.

?

1 μl of the NUP primer and 1 μl of your nested GSPs.

?

15–20 cycles of Program 2.

?

SMART er? RACE cDNA Amplification Kit User Manual

VII. Characterization of RACE Products

At this point, we recommend that you characterize your RACE fragments and confirm that you have ampli-

fied the desired product. This procedure can prevent confusion and wasted effort when you generate the

full-length cDNA, even if you have single major products from both the 5’- and 3’-RACE reactions. Charac-

terization is especially important if you have multiple bands or if you suspect that you are working with a

member of a multigene family.

We describe three methods for characterizing RACE products: (Section A) Comparison of RACE products

obtained with GSPs and NGSPs; (Section B) Southern blotting; and (Section D) Cloning and sequencing.

Options A and B require nested GSPs for analyzing 5’- and 3’-RACE products. For more detailed blotting and

cloning protocols, see Sambrook & Russell (2001) or other appropriate laboratory manuals.

A. Comparison of RACE Products Obtained with GSPs & NGSPs

For the 5’-RACE reaction, compare the products of primary amplifications performed with the UPM Mix and

GSP1 to the products obtained using the UPM and NGSP1. (For 3’-RACE, compare the products obtained

from amplifications with the UPM and GSP2 to those obtained with the UPM and NGSP2.) T his analysis will

help determine if any multiple bands are a result of correctly primed PCR or nonspecifically primed PCR. If

the bands are real (i.e., the result of correct priming), they should be slightly smaller in the reaction using

the nested gene-specific primers. The difference in the mobility of the products should correspond to the

positions of the outer and inner (nested) gene-specific primers in the cDNA structure. If you have multiple

bands with UPM and GSP1 (or GSP2), some may disappear upon amplification with UPM and NGSP1 (or

NGSP2).

B. Southern Blot Analysis

You can obtain stronger confirmation of your RACE products by probing a Southern blot with an internal

gene-specific probe (usually one of your other GSPs or NGSPs). T his method can be particularly useful for

determining which bands are real when RACE produces multiple bands. Multiple bands are more common

with 5’-RACE than with 3’-RACE.)

Examine your RACE products on an agarose/EtBr gel.

1.

2.

Photograph the gel, then transfer the DNA to a nylon membrane using standard blotting procedures.

3.

Prepare a hybridization probe that does not have sequences in common with GSP1 (or GSP2). T he

probe can be end-labeled NGSP1 (or NGSP2). Alternatively, if your GSPs define overlapping 5’ and

3’ fragments, GSP2 can be used as a probe to characterize your 5’-RACE products, and GSP1 can

be used as a probe to characterize your 3’-RACE products. Nick-translated or random-primed inter-

nal restriction fragments from a previously cloned partial cDNA can also be used.

4.

Hybridize the probe to the Southern blot, wash under moderate-to-high stringency conditions, and

expose x-ray film.

5.

Compare the hybridization pattern to the photograph of the agarose/EtBr gel. Generally, you will

want to isolate the RACE product(s) that correspond(s) to the largest band(s) on the Southern blot.

There may be larger RACE products that appear on the agarose gel but that do not hybridize to

the gene-specific probe. T hese bands are generally due to nonspecific priming. Smaller bands that

hybridize to your probe may be the result of incomplete reverse transcription; however, you cannot

exclude the possibility that some of these shorter bands are real and correspond to alternatively

spliced transcripts, transcripts derived from multiple promoters, or other members of a multigene

family.

Once you have pinpointed the band(s) of interest, isolate the DNA from the gel using the NucleoTrap

6. ?

Gel Extraction Kit provided, and proceed with your experiments.

RACE原理及应用

RACE的简介 目前,全长基因的获得是生物工程及分子生物学研究的一个重点。尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA通过转录获得全长cDNA很困难。近年来发展成熟的cDNA末端快速扩增(RACE)技术为从低丰度转录快速获得全长cDNA提供了一个便捷的途径。 cDNA 末端快速扩增(rapid amplification of cDNA ends,RACE)技术是一种基于mRNA反转录和PCR技术建立起来的、以部分的已知区域序列为起点,扩增基因转录本的未知区域,从而获得mRNA(cDNA)完整序列的方法。简单的说就是一种从低丰度转录本中快速增长cDNA5’和cDNA3’末端,进而获得获得全长cDNA简单而有效的方法,该方法具有快捷、方便、高效等优点,可同时获得多个转录本。因此近年来RACE技术已逐渐取代了经典的cDNA文库筛选技术,成为克隆全长cDNA序列的常用手段。 第二RACE的原理 RACE 是采用PCR 技术由已知的部分cDNA 顺序来扩增出完整cDNA5’和3’末端,是一种简便而有效的方法, 又被称为锚定PCR (anchoredPCR)和单边PCR(one2side PCR)。 3’RACE的原理 一)加入oligo(dT)17和反转录酶对mRNA进行反转录得到(-)cDNA;

二)以oligo(dT)l7和一个35bp的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组DNA中罕见的限制酶的酶切位点。这样就在未知cDNA末端接上了一段特殊的接头序列。再用一个基因特异性引物(3 amp)与少量第一链(-)cDNA退火并延伸,产生互补的第二链(+)cDNA。 三)利用3amp和接头引物进行PCR循环即可扩增得到cDNA双链。扩增的特异性取决于3amp的碱基只与目的cDNA分子互补.而用接头引物来取代dT17一adaptor则可阻止长(dT)碱基引起的错配。 5’RACE的原理 5’RACE与3’ RACE略有不同。首先,引物多设计了一个用于逆转录的基因特异引物GSP-RT;其次,在酶促反应中增加了逆转录和加尾步骤,即先用

人elisa试剂盒,人8羟基脱氧鸟苷(8-OHdG)ELISA试剂盒使用说明书

人elisa试剂盒,人8羟基脱氧鸟苷(8-OHdG)ELISA 试剂盒使用说明书 本试剂仅供研究使用标本:血清或血浆 樊克生物专业供应: 使用目的:本试剂盒用于测定人血清、血浆及相关液体样本8羟基脱氧鸟苷 (8-OHdG)含量。 试验原理: 8-OHdG试剂盒是固相夹心法酶联免疫吸附实验(ELISA).已知8-OHdG浓度的标准品、未知浓度的样品加入微孔酶标板 内进行检测。先将8-OHdG和生物素标记的抗体同时温育。洗涤后,加入亲和素标记过的HRP。再经过温育和洗涤,去除未结合 的酶结合物,然后加入底物A、B,和酶结合物同时作用。产生颜色。颜色的深浅和样品中8-OHdG的浓度呈比例关系。 试剂盒内容及其配制 试剂盒成份(2-8℃保存)96孔配置48孔配置配制 96/48人份酶标板1块板(96T)半块板(48T)即用型 塑料膜板盖1块半块即用型 标准品:80ng/ml 1瓶(0.6ml)1瓶(0.3ml)按说明书进行稀 稀 空白对照1瓶(1.0ml)1瓶(0.5ml)即用型 标准品稀释缓冲液1瓶(5ml)1瓶(2.5ml)即用型 生物素标记的抗8-OHdG抗体1瓶(6ml)1瓶(3.0ml)即用型 亲和链酶素-HRP 1瓶(10ml)1瓶(5.0ml)即用型 洗涤缓冲液1瓶(20ml)1瓶(10ml)按说明书进行稀 释 底物A 1瓶(6.0ml)1瓶(3.0ml)即用型 底物B 1瓶(6.0ml)1瓶(3.0ml)即用型 终止液1瓶(6.0ml)1瓶(3.0ml)即用型 标本稀释液1瓶(12ml)1瓶(6.0ml)即用型 自备材料 1.蒸馏水。 2.加样器:5ul、10ul、50ul、100ul、200ul、500ul、1000ul。 3.振荡器及磁力搅拌器等。 安全性

TPPA试剂盒说明书

T P P A试剂盒说明书-CAL-FENGHAI.-(YICAI)-Company One1

梅毒TPPA试书剂盒说明书 1、试验原理: 梅毒抗体检测是采用抗原抗体凝集反应中的抗原抗体凝集反应。其原理如下:将梅毒 (Nichols 株)的精制菌体成分包被在人载体明胶粒子上。这种致敏粒子和样品中的梅毒螺旋体(TP)抗体进行反应发生凝集,产生粒子凝集反应(TP)抗体,并且可用来测定抗体效价。 2、样本收集和贮存: 血清或血浆1ml,标本应无溶血,无脂血,无微生物污染。不满足上述要求的标本拒收,标本的采集应使用清洁,无菌的一次性的干燥管。 标本用量最少50ul,七天内检测的标本应在2-8℃保存,贮存在-20℃可保存4W,同时避免反复冻融血清。 3、安全防范: 3.1此试剂盒内含人血成分。尽管所有的对照及定点对照都已经过试验验证并且发现对于乙型肝炎表面抗原,丙型肝炎抗体,HIV抗体均为阴性;但仍认为它们具有潜在的感染性。 3.2移液过程禁止用口。 3.3 在处理试剂和标本的地方禁止吸烟,饮食。 3.4使用试剂盒和标本时,必须戴一次性手套,穿试验服。使用后请彻底洗手清洁。 3.5患者样本及其他潜在感染材料试验后应放入医用垃圾桶内。 3.6试剂的溶解液,血清稀释液和阳性对照血清含有叠氮钠作为防腐剂,叠氮钠可以和铅铜反应形成爆炸的金属叠氮化合物.为防止金属叠氮化合物的形成,应用大量的水冲洗以免其堆积. 4、试剂: 4.1 储存与稳定性: 试剂应在2-10℃保存。 冻干试剂必须在复溶后的当天使用,如果保存在2-10℃最多可使用7天。 4.2 试剂盒组成:(由富士瑞士欧公司出产) (1)溶解液(液体) 8mL×1瓶 用于调制致敏粒子和未致敏粒子。 (2)血清稀释液 29mL×1瓶 用于样品的稀释。 (3)致敏粒子(冷冻干燥)

5-RACE经验

5 Race (2007-11-18 21:37:08) 转载▼ 分类:核酸技术 如果您顺的话,一个礼拜足矣! 同意,5'-RACE确实比较难,但也有顺利的时候,我上周做5'-RACE也一次就成功了,我觉得关键还是RNA 的质量,如果RNA模板质量不好,后面做得再认真也是白费! 当时要克隆基因的5'GC含量达到了80%,一般的反转录酶和PCR都拿不到,后来加了海藻糖60度反转录一个小时后,用TaKaRa的GC-Buffer和LA-Taq才扩出来,当时就为了这个5端,很是费了力气。 如果RCR产物不是很特异或没有目的条带的话,建议用nest PCR。在做5‘时,对RNA要求比较高,最好用新鲜的组织提,随即做逆转录,扩增。 做RACE PCR条带单一的不多,尽可能的回收与目的片段大小相近的条带。克隆的时候,一般kit上建议挑8-10个克隆,多一个,多一份希望,因为RACE,尤其是5’太难了,我作了约6个月。 偶没有买试剂盒,自己合成了3条引物,买了反转录酶。然后一次就出来了。 RACE的盒子最常用的是CLONTECH和INVITROGEN的, 这个方法我也试过很多次了,方法很简单,但是作出来效果非常的不理想。PCR出来的东西都是杂七杂八的东西,更多的时候是弥散的条带。 SmartRace 既然称之为Smart,因为它的引物能特异的识别5'端帽子位点,因此排除了所有非完全的逆转录。再加上使用基因特异性引物,使其做出来的可能性更大。 这个方法省钱,但是我不是很看好,祝好运。 另,建议你不要用oligodT进行逆转录,在基因mRNA300bp处设计一条或几条基因特异性逆转录引物更好。 希望你能有好结果。 我刚做过5’、3‘ RACE,我个人的经验如下: 1、首先,提的RNA必须完整,最好跑个RNA电泳来验证一下; 2、设计引物时要注意:Tm最好大于70度,两引物间要有100-200bp的重叠区; 3、用巢氏PCR相对容易出结果; 4、如果出现多个条带,要分别验证; 5、PCR过程中,我一般分两次,第一次用touchdowm PCR,后产物稀释50倍,

小鼠cfos试剂盒使用方法

小鼠c-fos试剂盒使用方法 检测范围:96T 20pg/ml-480pg/ml 使用目的: 本试剂盒用于测定小鼠血清、血浆及相关液体样本中c-fos含量。 实验原理 本试剂盒应用双抗体夹心法测定标本中小鼠c-fos水平。用纯化的小鼠c-fos抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入c-fos,再与HRP标记的c-fos抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。TMB在HRP酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的c-fos呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),通过标准曲线计算样品中小鼠c-fos 浓度。 试剂盒组成 1 30倍浓缩洗涤液20ml×1瓶7 终止液6ml×1瓶 2 酶标试剂6ml×1瓶8 标准品(960pg/ml)0.5ml×1瓶 3 酶标包被板12孔×8条9 标准品稀释液 1.5ml×1瓶 4 样品稀释液6ml×1瓶10 说明书1份 5 显色剂A液6ml×1瓶11 封板膜2张 6 显色剂B液6ml×1/瓶12 密封袋1个 标本要求 1.标本采集后尽早进行提取,提取按相关文献进行,提取后应尽快进行实验。若不能马上进行试验,可将标本放于-20℃保存,但应避免反复冻融 2.不能检测含NaN3的样品,因NaN3抑制辣根过氧化物酶的(HRP)活性。 操作步骤 1.标准品的稀释:本试剂盒提供原倍标准品一支,用户可按照下列图表在小试管中进行稀 释。 480pg/ml 5号标准品150μl的原倍标准品加入150μl标准品稀释液 240pg/ml 4号标准品150μl的5号标准品加入150μl标准品稀释液 120pg/ml 3号标准品150μl的4号标准品加入150μl标准品稀释液 60pg/ml 2号标准品150μl的3号标准品加入150μl标准品稀释液 30pg/ml 1号标准品150μl的2号标准品加入150μl标准品稀释液 2.加样:分别设空白孔(空白对照孔不加样品及酶标试剂,其余各步操作相同)、标准孔、 待测样品孔。在酶标包被板上标准品准确加样50μl,待测样品孔中先加样品稀释液40μl,然后再加待测样品10μl(样品最终稀释度为5倍)。加样将样品加于酶标板孔底部,尽量不触及孔壁,轻轻晃动混匀。 3.温育:用封板膜封板后置37℃温育30分钟。 4.配液:将30倍浓缩洗涤液用蒸馏水30倍稀释后备用 5.洗涤:小心揭掉封板膜,弃去液体,甩干,每孔加满洗涤液,静置30秒后弃去,如此 重复5次,拍干。 6.加酶:每孔加入酶标试剂50μl,空白孔除外。 7.温育:操作同3。

RACE不用试剂盒

5'race 现在的通用方法是根据CLONTECH SMART RACE kit 改进而来的方法 那个试剂盒很坑爹的,价格高的离谱。其实在实验过程中完全没有必要买试剂盒,下面我来告诉你怎么玩。 原理:5'race的关键目的就是要克隆出已知片段上游的未知片段。方法就是在反转录的过程中人为的在5'端加上接头,然后利用接头上面的特异序列作为引物和你已知序列上面的一段引物扩增cDNA片段,就能得到5'未知序列片段。 方法:在反转录的过程中加入5'-AAGCAGTGGTATCAACGCAGAGTACGCGGG–3' 这个接头引物。在反转录之后这段序列就会位于整个mRNA反转录出来的cDNA的最前端。 为什么?? MMLV反转录酶有一种特性就是在反转录到序列末端的时候加上三个C来终止这个反转录过程,利用这添加上去的CCC和上面给你的那个接头引物的GGG碱基配对,MMLV就会以上面那个引物为模版将反转录出来的第一链继续延伸出接头引物的互补链,从而形成一个带接头的cDNA 5'-末端。 这个就是RACE的核心原理。具体不明白的看看这篇说明书就好,GOOGLE一搜,结果满天飞的,我就不给你传文件了。 SMART? RACE cDNA Amplification Kit User Manual 你肯定有一下问题 1.上面给你的那个接头引物能不能换掉。 上面那个引物看起来好像很普通,其实里面大有玄机,如果你用DNAMAN软件预测一下引物的二级结构就可以发现,这个引物自身能形成一个类似老虎钳子的形状,而且仅仅只有GGG三个核苷酸暴露在外面用来和MMLV添加出来CCC配对。所以这个引物的设计是非常巧妙的。不建议你更换,而且你换掉以后自己要在你实验动物的基因组中验证是否存在相同或互补序列,这也是另一个问题。 2.是不是用普通的方法合成该接头引物即可。 答曰,可以。clontech公司提供的试剂盒里面的这段引物其实并非全是单链DNA,用于配对的那关键的GGG用的是RNA单链,为什么?原因是DNA-RNA的结合能力强于DNA-DNA。明白了把,所以那个用来坑中国人钱的试剂盒提供的引物是很容易降解的,一旦那三个G降解掉了,好了,这8K+盒子就报销了。值得庆幸的是用全DNA引物是完全能满足RACE需求的。所以,随便找个单位合成一下这引物就可以了。 3.是不是所有的反转录酶都可以 答曰,不是。RACE的核心技术就是MMLV延伸的CCC。别的酶不具有这种特性。 4.其他方法 其他方法有很多,例如传统的方法,那种利用5'帽子结构筛选完整mRNA然后去帽子加接头的方法肯定是最好的。因为严格的说只有这种方法做出来的才真正称得上是准确的RACE。但是,同学,这方法麻烦,而且,价格不菲。这个贵是很有道理的,里面那么多种酶呀………… 5.实验要求 RNA的质量一定要好,越少的末端降解你得到的5'RACE结果就是越准确的。 6.中间已知序列特异性引物的设计,这个很容易,用primer 5 在已知序列里面随便挑一个分数高点的一般就行,实在不放心的话可以和接头引物配下对,看看有无引物二聚体,根据经验,一般没有。

加A试剂盒使用说明书

编码品名规格单位 北京华越洋生物 加A试剂盒50次盒GX9133 北京华越洋生物 加A试剂盒100次盒GX9133 产品及特点本产品利用Taq DNA polymerase的不依赖于模板的末端转 移酶活性,在只有dATP存在的情况下,在平末端的DNA片段加 上一个dA尾巴,使平末端片段也能被T载体克隆。 1.简单, 2X Tailing Buffer 中含有所需要的所有成分,不需要 单独准备。 2.适用于任何平末端的DNA片段,包括Pfu DNA polymerase等酶合成的DNA片段。 3.产物可以直接用于与T载体的连接。 规格及成分成份50 次包装 2 X Tailing Buffer 1.25 mL Taq DNA olymerase(5U/uL) 50 uL 使用手册1份运输及保存低温运输,-20℃保存,保存期限为一年。 自备试剂PCR片段 使用方法一:反应前纯化处理: 用Vent, Deep Vent, Pfu, Pwo等具有3到5外切活性的 DNA聚合酶扩增得到的DNA片段,必须经过彻底的去除残留的酶 的处理过程(如酚/氯仿抽提或Proteinase K处理),否则它们将 在加A反应时,切除掉加上的A尾巴,干扰反应。可以采取胶回收 和酚/氯仿抽提法等常规方法纯化,最后溶解在水或TE中,终浓度 以0.1 ug/uL为宜。 二:加A反应

在干净的0.5 mL或1.5 mL离心管中,分别加入下列成分: 回收的DNA片段(0.2-2 ug) 25 uL 2 X dA Tailing Buffer 1 uL Taq DNA polymerase(5 U/uL) 补水到50 uL 72℃保温2小时 三:反应后处理 加A反应后,Taq DNA polymerase将与DNA末端紧密结合,所以必须酚/氯仿抽提去除。如果使用Proteinase K处理后再 用酚/氯仿抽提效果会更好。得到的DNA溶于适量水和TE中后即 可用于T载体的连接反应。 疑难解答Q:Taq DNA polymerase加尾有特异性吗? A:在有四种核苷酸存在的反应体系中,Taq DNA polymerase加 尾特异性跟DNA的3’末端的核苷酸有关。如果要加T,要加尾的 DNA片段最好末位为T。如果要加A,要加尾的DNA片段最好末 位为C。其关系具体见下表: 3’末端核苷酸加尾核苷酸 A A,但效率极低 C A>C G G>A>C T T>A --DNA & Cell Biol. 12:763, 1993 关联产品加T试剂盒(dT Tailing Kit)、一站式T载体制备套装

生物素标记试剂盒使用说明书

生物素标记试剂盒 使用说明书 货号: EBLK0002

产品介绍: Elabscience生物素标记试剂盒提供了生物素标记所需全部试剂,用于含有氨基(NH2-)抗体的标记。生物素已经活化,可直接使用,每个试剂盒足以完成3次标记,每次可标记0.2-2mg。试剂盒中包括6个用于抗体标记脱盐的Filtration tube,不用透析,操作简便,熟练操作90min可完成整个标记过程。 产品特点: 试剂全面:本试剂盒提供了生物素标记所需全部试剂。 快速:整个过程仅需90min。 方便:通过Filtration tube即可脱盐,无需透析或者凝胶过滤。 使用灵活:既可用于微量标记又可大量标记,每次可标记0.2-2mg。 理想的标记效果:已经优化确定了最适的标记比例,降低标记不足或由于过度标记而失活的可能性。 产品组成: 标记过程需要仪器: 1. 10ul,50ul,200ul,1000ul可调高精度移液器 2. 恒温箱(37℃) 3. 离心机(离心力可达到12,000×g) 储存条件: 本试剂盒未开封前在2-8℃可稳定保存一年

生物素标记反应原理: NH2-Reactive Biotin专一地与伯胺反应(N-末端及赖氨酸残基侧链)形成稳定的酰胺键 生物素标记NH 2 -Reactive Biotin使用量的计算: 每个反应中生物素试剂的使用量取决于待标记蛋白质的量和浓度。通过优化,我们确定了标记2mg/ml的抗体(IgG ,150KD),使用生物素和抗体的分子比为20:1能达到较理想的标记效果。 1、标记2mg/ml的抗体,使用生物素和抗体的分子比为20:1时,应加入生物素量的计算方 法: ml蛋白×2mg蛋白 ml蛋白×1mmolIgG 150,000mgIgG ×20mmol生物素 mmol蛋白 = mmol生物素 2、对于10mmol的生物素溶液,应加入反应中该生物素体积的计算方法: mmol生物素×1,000,000μL L ×L 10mmol = ul生物素 计算示例: 对于0.5ml 2mg/ml的IgG(分子量为150,000)溶液,需加入10mM的生物素溶液13.3ul。 0.5ml IgG×2mgIgG 1mLIgG ×1mmolIgG 150,000mgIgG ×20mmol生物素 1mmolIgG =0.000133mmol生物素 0.000133mmol生物素×1,000,000μl L ×L 10mmol =13.3ul生物素溶液 操作过程: 实验前准备: 1.仔细阅读使用说明书。 2.计算待使用NH2-Reactive Biotin的量。 3.提前20min从冰箱中取出试剂盒,平衡至室温(注:不需要用到的NH2- Reactive Biotin 继续放置冰箱中)。

人MyoDELISA试剂盒使用说明书

人Myo-DELISA试剂盒使用说明书 本试剂仅供研究使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人Myo-D含量。 实验原理: 本试剂盒应用双抗体夹心法测定标本中人Myo-D水平。用纯化的人Myo-D抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入Myo-D,再与HRP标记的Myo-D抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。TMB在HRP 酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的Myo-D 呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),通过标准曲线计算样品中人Myo-D浓度。 样本处理及要求: 1.血清:室温血液自然凝固10-20分钟,离心20分钟左右(2000-3000转/分)。仔细收集上 清,保存过程中如出现沉淀,应再次离心。 2.血浆:应根据标本的要求选择EDTA、者柠檬酸钠或肝素作为抗凝剂,混合10-20分钟后, 离心20分钟左右(2000-3000转/分)。仔细收集上清,保存过程中如有沉淀形成,应该再次离心。 3.尿液:用无菌管收集,离心20分钟左右(2000-3000转/分)。仔细收集上清,保存过程中 如有沉淀形成,应再次离心。胸腹水、脑脊液参照实行。 4.细胞培养上清:检测分泌性的成份时,用无菌管收集。离心20分钟左右(2000-3000转/分)。仔细收集上清。检测细胞内的成份时,用PBS(PH7.2-7.4)稀释细胞悬液,细胞浓度达到100万/ml左右。通过反复冻融,以使细胞破坏并放出细胞内成份。离心20分钟左右(2000-3000转/分)。仔细收集上清。保存过程中如有沉淀形成,应再次离心。

RACE原理及其应用

RACE 的简介 目前,全长基因的获得是生物工程及分子生物学研究的一个重点。尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA 通过转录获得全长cDNA 很困难。近年来发展成熟的cDNA 末端快速扩增(RACE)技术为从低丰度转录快速获得全长cDNA 提供了一个便捷的途径。 cDNA 末端快速扩增 (rapid amplification of cDNA ends,RACE)技术是一种基于 mRNA 反转录和 PCR 技术建立起来的、以部分的已知区域序列为起点,扩增基因转录本的未知区域,从而获得mRNA(cDNA)完整序列的方法。简单的说就是一种从低丰度转录本中快速增长cDNA5’和cDNA3’末端,进而获得获得全长cDNA 简单而有效的方法,该方法具有快捷、方便、高效等优点,可同时获得多个转录本。因此近年来RACE 技术已逐渐取代了经典的cDNA 文库筛选技术,成为克隆全长 cDNA 序列的常用手段。 第二 RACE 的原理 RACE 是采用PCR 技术由已知的部分cDNA 顺序来扩增出完整cDNA5’和3’ 末端,是一种简便而有效的方法,又被称为锚定PCR (anchoredPCR)和单边 PCR(one2side PCR)。 3’RACE 的原理 一)加入 oligo(dT)17 和反转录酶对 mRNA 进行反转录得到(-)cDNA; 二)以 oligo(dT)l7 和一个 35bp 的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组 DNA 中罕见的限制酶的酶切位点。这样就在未知cDNA 末端接上了一段特殊的接头序列。再用一个基因特异性引物(3 amp)与少量第一链(-)cDNA 退火并延伸,产生互补的第二链(+)cDNA。 三)利用 3amp 和接头引物进行 PCR 循环即可扩增得到 cDNA 双链。扩增的特异性取决于 3amp 的碱基只与目的 cDNA 分子互补.而用接头引物来取代 dT17 一 adaptor 则可阻止长(dT)碱基引起的错配。

高纯度质粒小提试剂盒使用说明书

高纯度质粒小提试剂盒 Pure Mini Plasmid Kit (目录号:HS0103) 产品包装 试剂盒成分 50 preps Buffer P1 15 ml Buffer P2 15 ml Buffer P3 20 ml Buffer PD 30 ml RNase A(10 mg/ml) 150 ul Buffer PW 60 ml Buffer EB 10 ml Spin Columns PA 50个 Collection Tubes (2 ml) 50个 (注意:使用前将全部RNase A 溶液加到Buffer P1中混合均匀,2 ~ 8℃保存) 保存条件 本试剂盒在室温(15 ~ 25℃)干燥条件下,可保存12个月;更长时间的保存可置于2 ~ 8℃。若溶液产生沉淀,应在使用前置于37℃下溶解沉淀。单独包装的RNase A 在室温可稳定保存12个月。加入RNase A 后的Buffer P1应置于2 ~ 8℃保存,可稳定保存6个月。 产品简介 本试剂盒用于高纯度质粒DNA 的小量制备与纯化。菌体经碱裂解、高盐、低pH 处理,质粒可从菌体中释放出来,并特异、高效地被离心柱硅胶膜(Spin Columns PA )吸附。通过去蛋白液(Buffer PD )和漂洗液(Buffer PW )的清洗可去除蛋白及其他杂质,在低盐、高pH 条件下洗脱,最后得到高纯度的质粒DNA 。 北京厚生博泰科技有限公司 Beijing Hooseen Biotech Co., Ltd.

使用本试剂盒可从1 ~ 5 ml过夜培养的菌液中纯化得到高达20 ug的高纯度质粒DNA,可在30 min之内完成提取任务。所得质粒可直接用于酶切、转化、PCR、测序、低敏感细胞株的转染等各种常规分子生物学操作。 产品特点 1. 快速:步骤少,操作简便,节约时间。 2. 简便:离心吸附柱不需要预平衡,漂洗液Buffer PW 和去蛋白液Buffer PD不需要另加乙醇,即开即用。 3. 纯度高:所得质粒可直接用于酶切、转化、PCR、测序、低敏感细胞株的转染等各种常规分子生物学操作。 操作步骤 1. 取1 ~ 5 ml过夜培养的菌液,室温12,000 rpm离心1 min,尽量将上清去除干净。 (注意:根据菌液的浓度决定取液量,浓度高时取1 ml菌液离心即可,浓度低时可多收集一次) 2. 加入250 ul Buffer P1,用枪头充分吹打使菌体重悬均匀。 (注意:是否将RNase A溶液加到Buffer P1中并混合均匀;菌体沉淀是否悬浮充分,如有未彻底悬浮的菌块会影响裂解,导致提取的质粒浓度及纯度降低) 3. 加入250 ul Buffer P2,温和颠倒混匀6 ~ 8次,直到溶液变得清亮粘稠。 (注意:不可剧烈震荡,以免造成基因组DNA片段的污染,所用时间不要超过5 min,以免质粒受到破坏,如未完全变得清亮,可能是菌体太多,可增加Buffer P2的用量,在后续的操作中Buffer P3的用量也要相应增加) 4. 加入350 ul Buffer P3,立即温和颠倒混匀6 ~ 8次,可见白色沉淀物产生,室温静置2 min,然后12,000 rpm离心3 ~ 5 min。 (注意:Buffer P3加入后应立即混合,避免产生局部沉淀,如果上清中还有微小白色沉淀,可再次离心后取上清) 5. 小心将上清液转移到离心吸附柱Spin Columns PA中,静置2 min,让质粒DNA与吸附柱中的硅胶膜充分结合。12,000 rpm离心0.5 ~ 1 min,弃收集管中的废液。 6. 向吸附柱中加入500 ul去蛋白液,12,000 rpm离心1 min,弃收集管中废液。 (注意:如果宿主菌是endA-,如DH5α若TOP10,此步骤可省略。如果宿主菌是endA+,如TG1、BL21、HB101、JM101等,此步骤不可省略,因这些宿主菌含有大量的核酸酶,易降解质粒。如果提取低拷贝质粒

浅谈Rockshox前叉的原理和部分特性技术

浅谈Rockshox前叉的原理和部分特性技术 发布日期:2012-10-16 绿色的部分适合菜鸟看 首先普及下前叉常识,前叉可以分为弹簧,油簧,油气,双气,下面就每一个名字做一下介绍: 弹簧:顾名思义,就是以弹簧作为避震介质的。比如Rockshox,manitou的底端叉子如:J1,SIX,都是使用弹簧作为避震介质的。其结构简单,一般都是在前叉的一边有一根弹簧,或者两边都有弹簧,一般前者居多。这种叉子成本低,价格不贵,名牌的一般在300元左右,二线品牌一般都在200元上下。这种叉子一般都具有软硬调节功能通过压缩弹簧来获得不同的软硬(即弹簧压缩的越厉害,叉子就越硬,反之就越软),同时,要损失一定的行程。一根标称80mm的叉子在调到最硬的清况下,会损失20mm 左右的行程。 油簧:这个词要分开来理解:油阻+弹簧。这类叉子就是在上者的基础上,一边叉是弹簧,另外一边叉是油阻尼。油阻尼就是使用油调节弹簧回弹的速度快慢。这类叉子一般在调节软硬的基础上,同时具有回弹调节(即龟兔调节),锁死功能,部分具有形成调节功能。市面上的这类产品有Rockshox J3,Manitou Axel,Suntour Axon(本人正在使用)。这种产品价格差别很大,从400-1000元不等。一般情况下,这种叉子重量上没有优势,但是锁死功能在平路和爬坡时能体现出较大优势。

油气:这个和上面的油簧叉类似,只是用气压代替了弹簧作为避震介质。通过打气来调节软硬。一般对于不同体重的车手,会有不同的气压值对应。Rockshox 的TORA,Manitou的R7 super就属于这类产品。目前,有些二线厂家也生产这种前叉,比如Suntour 的xc pro,Axon气压版,斯普Aries系列。这类前叉由于使用空气代替了弹簧,所以重量上可以更轻,一般都在1.8kg以下。但相对来说,价格更高,一般都在1500元以上。这类叉子同样具有回弹,锁死的功能。 双气:这是Rockshox高端产品的一个特点。其采用正负气压,比如Reba team, sid team都使用了这种技术,这种叉子更轻,重量在1.6KG左右。相对价格更高,一般都在2K以上。 还有一种避震值得一提,就是智能避震。FOX将这种技术在的其X系列的产品上。其主要特点是,当车手送从面向下压避震的时候,避震并不动作,而在骑行过程中,当路面不平坦时,从下面传导上来的力可以让避震动作。目前这类叉子非常昂贵,价格在4k 左右。 下面说下RockShox几款具体的叉子,首先要说明的是,这里只说2011年款的。ROCKSHOX的Cross Country前叉中,档次从高到低排,有REBA和SID,RECON,TORA,DART。我用过REBA,TORA和DART,SID是试用过,其中REBA和SID都为顶级前叉。 REBA是XC-trail叉,真正意义上的XC越野叉,其强度为这里所有叉中最高的,而TORA的强度是仅次于它。REBA的重量仅次于SID(最轻的RLT Ti Dual Air版是1620g),同时它又是功能最多叉,官方的定义是“变色龙”。其系列有REBA RL ,REBA RLT,REBA RLT Ti,REBA XX 29''。其中RL RLT RLT Ti中都有Dual Air,Air U-Turn,和Dual Air for Trail 29'',XX则只有Dual Air和Dual Air for trail。所有的型号回弹介质都是双气压。 RL和RLT的阻尼是避震油+Motion Control阻尼棒,RLT Ti则是避震油+Blackbox Motion Control钛合金阻尼棒+双重回弹。XX则是用避震油+XX Motion Control,且压缩调节直接采用液压装置。 SID是XC-Race叉,是XC竞速叉。其强度可以说仅比DART强点,但其重量是所有系列中最轻的,其中SID WORLD CUP仅重1345g。其系列有SID RLT,SID RLT Ti,SID World cup,SID XX,SID XX World cup。所有型号中都是Dual Air版。回弹介质都是双气压。阻尼系统照搬REBA,World cup与RLT Ti一样。 RECON是中间型产物,是探索未知路段的首选。回弹介质通常是单气压或者弹簧。阻尼全部都是避震油。其系列有RECON Sliver RL,RECON Sliver TK,RECON Gold R,RECON Gold RL,RECON Gold TK。RECON还是推荐弹簧作为回弹介质,弹簧线性比较好。而ROCKSHOX的单气压技术,轻易越用越不润,无法跟FOX的智能单气压技术相比(RS的双气压调整好后与其不相上下) TORA则是专门为高强度越野而生,价格便宜,强度很高,很润,而且作为油簧叉其2.2kg的重量并不太重。2011年款中只有TORA Trail 289,TORA Trail 302,TORA TK。其中289和302的特点是Coil U-Turn,而TK则是Preload(预压行程可调)。

武汉科前生物猪繁殖与呼吸综合征ELISA试剂盒使用说明书

猪繁殖与呼吸综合征病毒ELISA抗体检测试剂盒使用说明书【样品制备】 取动物全血,按常规方法制备血清,要求血清清亮,无溶血。 【洗涤液配制】 使用前,浓缩的洗涤液应恢复至室温(25℃左右),并摇动使沉淀的盐溶解(最好在37℃水中加热5~10分钟),然后用蒸馏水或去离子水作20倍稀释(例如:每板用20ml浓缩液加上380ml水),稀释好的洗涤液在2~8℃可以存放7天。 【样品和对照稀释】 样品稀释:在血清稀释板中按1:40的体积稀释待检血清样品(195μl样品稀释液中加5μl待检血清样品)。 对照稀释:在血清稀释板中按1:4分别稀释阳性对照和阴性对照(180μl样品稀释液中加60μl对照血清)。 【注意事项】 1 试剂盒使用前各试剂应平衡至室温,使用后放回2~8℃。 2 不同批号试剂盒的试剂组分不得混用,使用试剂时应防止试剂污染。 3 不要用口移液。 4 底物液B不要暴露于强光,避免接触氧化剂。 5 未使用的抗原包被板切记不要撕开上面的封口膜。 6 待检血清样品数量较多时,应先使用血清稀释板稀释完所有要检测血清,再将稀释好的血清转移到检测板,使反应时间一致。 7 浓缩洗涤液用蒸馏水或去离子水稀释,如果发现有结晶加热使其溶解后再使用。 8 严格按照操作说明书可以获得最好的结果。 【操作步骤】 1 取抗原包被板(根据样品多少,可拆开分次使用),每孔加入稀释好的洗涤液200μl,静置3分钟倒掉液体,并在吸水纸上拍干,共计洗板2次。再分别将稀释好的待检血清和对照各取100μl加入到抗原包被板孔中,待检样品做1孔,阴性对照和阳性对照各设2孔,每孔100μl。轻轻振匀孔中样品(勿溢出),置37℃温育30分钟。 2 甩掉板孔中的溶液,每孔加入稀释好的洗涤液200μl,静置3分钟倒掉,再在吸水纸上拍干,共计洗涤5次, 3 每孔加羊抗猪酶标二抗100μl,置37℃温育30分钟。 4 洗涤5次, 方法同2。切记每次在干净吸水纸上拍干。 5 每孔先加底物液A一滴(50?l)、再加底物液B一滴(50?l),混匀,室温(18℃~25℃)避光显色10分钟。 6 每孔加终止液一滴(50μl),10分钟内测定结果(测定前在震荡器上轻轻震动一下)。 【结果判定】在酶标仪上测各孔OD630nm值。试验成立的条件是阳性对照孔平均OD630nm值≥0.7,阴性对照孔平均OD630nm值必须<0.3。 样品OD630nm值>0.42,判为阳性;样品OD630nm值介于0.38到0.42之间,判为可疑;样品OD630nm值<0.38,判为阴性。 注意:用620~650纳米波长测定结果均有效。

植物基因克隆

来自dxy 22003luocong 植物基因全长克隆几种方法的比较 基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。 1 RACE技术 1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3?RACE和5?端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5?RACE 跟3?RACE原理基本一样,但是相对于3?RACE来说难度较大。 5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。 笔者主要介绍两种比较新的RACE技术,基于…模板跳转?的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。 1.1基于‘模板跳转’的SMART RACE技术[7,12]

试剂盒使用说明书

牛气肿疽(symptoinatic anthrax)酶联免疫分析(ELISA) 试剂盒使用说明书 本试剂仅供研究使用目的:本试剂盒用于测定牛血清,血浆及相关液体样本中牛气肿疽(symptoinatic anthrax)的含量。 实验原理: 本试剂盒应用双抗体夹心法测定标本中牛气肿疽(symptoinatic anthrax)水平。用纯化的牛气肿疽(symptoinatic anthrax)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入牛气肿疽(symptoinatic anthrax),再与HRP标记的牛气肿疽(symptoinatic anthrax)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。TMB在HRP酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的牛气肿疽(symptoinatic anthrax)呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),通过标准曲线计算样品中牛气肿疽(symptoinatic anthrax)浓度。 试剂盒组成: 试剂盒组成48孔配置96孔配置保存说明书1份1份 封板膜2片(48)2片(96) 密封袋1个1个 酶标包被板1×481×962-8℃保存标准品:1800pg/ml0.5ml×1瓶0.5ml×1瓶2-8℃保存标准品稀释液 1.5ml×1瓶 1.5ml×1瓶2-8℃保存酶标试剂3ml×1瓶6ml×1瓶2-8℃保存样品稀释液3ml×1瓶6ml×1瓶2-8℃保存显色剂A液3ml×1瓶6ml×1瓶2-8℃保存显色剂B液3ml×1瓶6ml×1瓶2-8℃保存终止液3ml×1瓶6ml×1瓶2-8℃保存浓缩洗涤液(20ml×20倍)×1瓶(20ml×30倍)×1瓶2-8℃保存 样本处理及要求: 1.血清:室温血液自然凝固10-20分钟,离心20分钟左右(2000-3000转/分)。仔细收集上 清,保存过程中如出现沉淀,应再次离心。 2.血浆:应根据标本的要求选择EDTA或柠檬酸钠作为抗凝剂,混合10-20分钟后,离心 20分钟左右(2000-3000转/分)。仔细收集上清,保存过程中如有沉淀形成,应该再次离心。 3.尿液:用无菌管收集,离心20分钟左右(2000-3000转/分)。仔细收集上清,保存过程 中如有沉淀形成,应再次离心。胸腹水、脑脊液参照实行。 4.细胞培养上清:检测分泌性的成份时,用无菌管收集。离心20分钟左右(2000-3000转/ 分)。仔细收集上清。检测细胞内的成份时,用PBS(PH7.2-7.4)稀释细胞悬液,细胞浓度达到100万/ml左右。通过反复冻融,以使细胞破坏并放出细胞内成份。离心20分

BCA试剂盒操作说明

INSTRUCTIONS Warranty: Pierce products are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sale for products used, handled and stored according to Pierce instructions. Pierce’s sole liability for the product is limited to Number Description 23225BCA? Protein Assay Kit , sufficient reagents for 500 test tube or 5,000 microplate assays 23227 BCA? Protein Assay Kit , sufficient reagents for 250 test tube or 2,500 microplate assays Kit Contents: BCA? Reagent A , 1,000 ml (in Product No. 23225) or 500 ml (in Product No. 23227), containing sodium carbonate, sodium bicarbonate, bicinchoninic acid and sodium tartrate in 0.1 M sodium hydroxide BCA? Reagent B , 25 ml, containing 4% cupric sulfate Albumin Standard Ampules, 2 mg/ml , 10 x 1 ml ampules, containing bovine serum albumin (BSA)at 2.0 mg/ml in 0.9% saline and 0.05% sodium azide Storage: Upon receipt store at room temperature. Product shipped at ambient temperature. Note: If either Reagent A or Reagent B precipitates upon shipping in cold weather or during long-term storage, dissolve precipitates by gently warming and stirring solution. Discard any kit reagent that shows discoloration or evidence of microbial contamination. Table of Contents Introduction..................................................................................................................................................................................1Preparation of Standards and Working Reagent (required for both assay procedures)................................................................2Test Tube Procedure (Sample to WR ratio = 1:20).....................................................................................................................3Microplate Procedure (Sample to WR ratio = 1:8)......................................................................................................................3Troubleshooting...........................................................................................................................................................................4Related Pierce Products...............................................................................................................................................................5Additional Information................................................................................................................................................................5Cited References..........................................................................................................................................................................6Product References. (6) Introduction The BCA? Protein Assay is a detergent-compatible formulation based on bicinchoninic acid (BCA) for the colorimetric detection and quantitation of total protein. This method combines the well-known reduction of Cu +2 to Cu +1 by protein in an alkaline medium (the biuret reaction) with the highly sensitive and selective colorimetric detection of the cuprous cation (Cu +1) using a unique reagent containing bicinchoninic acid.1 The purple-colored reaction product of this assay is formed by the chelation of two molecules of BCA with one cuprous ion. This water-soluble complex exhibits a strong absorbance at 562 nm that is nearly linear with increasing protein concentrations over a broad working range (20-2,000 μg/ml). The BCA?method is not a true end-point method; that is, the final color continues to develop. However, following incubation, the rate of continued color development is sufficiently slow to allow large numbers of samples to be assayed together. The macromolecular structure of protein, the number of peptide bonds and the presence of four particular amino acids (cysteine, cystine, tryptophan and tyrosine) are reported to be responsible for color formation with BCA.2 Studies with di-,tri- and tetrapeptides suggest that the extent of color formation caused by more than the mere sum of individual color-producing functional groups.2 Accordingly, protein concentrations generally are determined and reported with reference to standards of a common protein such as bovine serum albumin (BSA). A series of dilutions of known concentration are 3747 N. Meridian Road P.O. Box 117 Rockford, IL 61105 BCA? Protein Assay Kit

相关文档
最新文档