含参不等式恒成立问题的求解策略教学案

含参不等式恒成立问题的求解策略教学案
含参不等式恒成立问题的求解策略教学案

《含参不等式恒成立问题的求解策略》教(学)案

教学目标:

知识与技能:理解不等式恒成立问题成立的充要条件,并掌握解决此类问题的基本技能. 过程与方法:培养分析、解决问题的能力,体验函数思想、分类讨论思想、数形结合思想、转化与化归思想.

情感、态度与价值观:通过对问题的探究,理解事物间普遍联系与辩证统一观点,体验成功的喜悦. 教学重点:

重 点:理解解决不等式恒成立问题的实质,有效掌握不等式恒成立问题的基本技能. 教学难点:

难 点:利用转化思想,通过函数的性质与图像化归至最值问题来处理恒成立问题. 教学方法:诱导探究法 教学手段: 多媒体辅助教学

教学过程:

一、设置情境,感受生活

市二模考试结束了,几人欢喜几人愁!教室外面的那个同学考试成绩比我们班同学都低,用不等式的知识怎样概括表达?可以归结为什么类型的问题?

二、了解高考,把握热点

简单的生活问题,概括为“不等式恒成立”的数学问题,它不但在近几年高考中频繁出现,而且出现的试题大多数以大题为主。2008-2010高考试卷中恒成立的题目如下:

2008年 39套 安徽理第20题 文第21题 全国II 文第21题理第22题 陕西理文第22题理第21题 辽宁理第22题 全国I 第19题 湖南理第21题文第21题 天津理第20题 文第21题 12套 2009年 39套 重庆理第5题 浙江文第21题理第22题 上海理第11题 辽宁理第21题 江西理第15,17题 湖北文理21题

北京理第18题文18题 湖南理第8题 上海春季招生第17题 11套 2010 39套

山东理第14题,全国II 文第22题理第20题 全国Ⅲ理第21题 湖北理第21题 海南文第20题理第21题 天津理第16题 湖南理第20题 安徽文第17题理第19题 四川理第22题 江西文第17题理第19题 福建文第22题理第21题 16套

三、感悟高考 明确考向

(2010·山东理14)若对任意x >0,x

x 2+3x +1≤a 恒成立,则a 的取值范围是____________.

三、回归课本 提炼方法

例1 (新课标选修2-2第28页例题4,第30页例题5改编)已知函数3

1()43

f x x ax -+=

在区间[0,3]上的导数()0f x '≤,则实数a 的取值范围是

归纳总结,概括方法

从例1可以看出,解决恒成立的不等式问题,可以考虑如下方法: (1)转化为求原函数的最值

()0f x >恒成立?min ()0f x >,()0f x <恒成立?max ()0f x <

变式1(2009重庆理第5题)不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为( )(新课标选修4-5第20页第9题改编)

A .(,1][4,)-∞-+∞

B .(,2][5,)-∞-+∞

C .[1,2]

D .(,1][2,)-∞+∞

变式2(2011年乌鲁木齐二模第17题(2))设1

122n n S -??

=- ?

??,对于n ?∈*

N ,总有

n S 4

3

m ->

成立,整数m 的最大值为 . 变式3(2011年乌鲁木齐一模第21题)设函数()ln f x x ax =-,当0a >恒有f (x )≤-1,求实数a 的取值范围.

设计意图:越是高考最后的阶段越需要回过头来研读课本,近几年来恒成立问题的试题主要是基本初等函数的组合为主,在课本中都有原型。所以引用课本例题进行改编和变式,从简单的函数入手掌握解题方法,然后进行巩固、辨析、加深。

三、 化隐为显 突出重围

例2(2009北京理第18题)设函数()(0)kx

f x xe k =≠,若函数()f x 在区间(1,1)-内

单调递增,求k 的取值范围.

从例2可以看出,解决恒成立的不等式问题,还可以考虑如下方法: (2)变量分离法(转化为求新函数最值)

()()f x g a >(a 为参数)恒成立?min ()()f x g a > ()()f x g a <(a 为参数)恒成立?max ()()f x g a <

变式4若命题“2

,2390x R x ax ?∈-+<”为假命题,则实数a 的取值范围为 。(新课标选修2-1第27页第3(3)题改编)

设计意图:学生在解决恒成立问题时首先是被题目中隐性恒成立问题所迷惑,不知道是关于恒成立问题;其次,当发现是恒成立的问题后又无法选取正确的、简便的方法去解决问题。

四、变形求解 提升思维

例3 (2010·全国课标卷理第21题)设函数f (x )=x (e x -1)-ax 2,若当x ≥0时,f (x )≥0,求a 的取值范围.

变式5(2007年 全国Ⅰ第20题)设函数()x x f x e e -=-,若对任意的0x ≥都有()f x ax ≥成立,求实数a 的取值范围.

设计意图:学生在解决恒成立问题时首先想到的是直接用常规方法解决,当直接解法无法解决问题时,就要考虑变形求解。

五、 增加参数 体会深度

例4 (2011新疆自治区一模第21题)

已知432()216ln f x x ax x x b =---++,其中,a b R ∈.若对对任意[2,2]a ∈-,

4()f x x ≤-在(0,1]x ∈上恒成立,求实数b 的取值范围.

分析思路:解决双参数问题一般是先解决一个参数,再处理另一个参数.本题的实质还是通过函数求最值解决.

解:4

()f x x ≤-恒成立又(0,1]x ∈即 23

216ln x x b

a x

-++≤恒成立 由[2,2]a ∈-得2min 3

216ln ()2x x b

a x

-++≤=- 又(0,1]x ∈ ∴23

216ln 2x x b x -++≤-即32min (2216ln )b x x x ≤-+-

设32()2216ln g x x x x =-+-,则2

16()64g x x x x

'=-+-,(0,1]x ∈

()0g x '<,所以32()2216ln g x x x x =-+-在(0,1]x ∈递减min ()(1)0g x g <= 所以实数b 的取值范围是0b ≤

设计意图:通过变式,逐步增加思考难度,例4是有关双参数的恒成立问题,再次让学生懂得解决此类问题的实质是解决函数最值问题和让学生体会转化到利用函数思想求解的重要性.

变式6 (08天津理第20题)已知函数()()0≠++

=x b x

a

x x f ,其中R b a ∈,.若对于任意的??

????∈2,21a ,不等式()10≤x f 在??

?

???1,4

1上恒成立,求b 的取值范围.

方法1:化归最值,10)(10)(max ≤?≤x h x h ;

方法2:变量分离,)(10x x a b +-≤或x b x a )10(2

-+-≤;

方法3:变更主元,0101)(≤-++?=b x a x a ?,]2,2

1

[∈a

六、课堂小结

通过今天这堂复习课,我们领略了解决恒成立问题的多种常见求解方法,事实上,这

些方法都不是孤立的,在具体的解题实践中,往往需要综合考虑,灵活运用,才能使问题得以顺利解决.但是,不管哪一种解法,都渗透了数学最本质的思想,即通过化归到函数求其最值来处理.

七、课后反思巩固

1.(2000上海理第19题)已知函数f (x )=x

a

x x ++22,x ∈[1,+∞).若对任

意x ∈[1,+∞),f (x )>0恒成立,实数a 的取值范围是 .

2.(2009江西卷文第17题)设函数3

2

9()62

f x x x x a =-

+-.

对于任意实数x ,()f x m '≥恒成立,m 的最大值是 ;

3. 函数2()ln 21f x x x mx =+++在(0,)+∞上单调递增,则实数m 的取值范围为 。

4.(2010年天津理第16题)设函数2()1f x x =-,对任意2,3x ??∈+∞????

24()(1)4()x f m f x f x f m m ??

-≤-+ ???

恒成立,则实数m 的取值范围是 . 5. (2008年新疆自治区二模第22题)设函数2()(4)8ln(4)f x x x =+-+,若当

1[4,4]x e e

∈--时,不等式|()|f x m <,求实数m 的取值范围。答案: m> 1

e 2 + 8

6.(2009年 浙江理第21题)已知函数322

()(1)52f x x k k x x =--++-,

22()1g x k x kx =++,其中k ∈R .(I )设函数()()()p x f x g x =+.若()p x 在区间(0,3)

上不单调...

,求k 的取值范围; 答案:()5,2k ∈-- 7.(2009年 陕西理第20题)已知函数1()l n (1),01x

f x a

x x x

-=++≥+,其中0a >

若()f x 的最小值为1,求a 的取值范围。 答案:[2,).+∞

8. (2008年 全国I 第19题)已知函数32

()1f x x ax x =+++,a ∈R .设函数()f x 在区间2133??-- ???

,内是减函数,求a 的取值范围.

9.(2010湖北高考理第21题)已知函数)0()(>++

=a c x

b

ax x f 的图象在点))1(,1(f 处的切线方程为.1-=x y (I)用a 表示出b,c;(II)若[)+∞≥,1ln )(在x x f 上恒成立,求a 的取值范围; 答案:1

[,)2

+∞

10.(2010年海南理第21题)设函数)(x f =2

1x

e x ax ---.若当x ≥0时)(x

f ≥0,求a 的取值范围. 答案:1(,]2

-∞

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

含参不等式以及含参不等式组的解法

含参不等式以及含参不等式组的解法 不等式在中考中的运用,往往掺杂参数来增加难度,我们只要读清楚题目找到解题思路便能迎刃而解了。本节课我们就重点讲讲如何读题去寻找解题思路。 含参不等式: 解不等式5(x-1)<3x+1 通过去括号、移项、合并同类项等一系列运算可以求出解为:x<3 求不等式 57x -<3 2 -x 的最小整数解. 通过去括号、移项、合并同类项等一系列运算可以求出解为:x>8 31 ,故可以得出最小整数为4. 那么含参不等式如下: 解含参不等式ax0时 X< a b X ≤ a b a<0时 X>a b X ≥a b a=0时 若b>0,则解集为任意数 若b ≥0,则解集为任意数 若b ≤0,则这个不等式无解 若b<0,则这个不等式无解 在这些需要讨论的情况下,等号最后讨论才方便,不会讨论重合。 例题:1、求不等式kx+2>2x-3的解集 移项、合并同类项、讨论取值 2、(1)求不等式解集mx+a>nx+b 移项、合并同类项、讨论取值 (2)(m-1)x>a 2+1对于任意x 都成立,则参数m 的值为 练习 :1、求不等式kx+2>3的解集 2、(1)求不等式mx-2<-7-nx 的解集 (2)求不等式m 2x+1<-x+5的解集 3、关于x 的方程5x-2m=-4-x 的解满足2

含参不等式组: 观察下列不等式组的解集 ?? ?>>31 x x ???<<31 x x ???<>31 x x ?? ?><3 1 x x 同大取大 同小取小 大小小大中间找 大大小小无限了 例题:1、(1)求不等式x-a )(x-b )>0的解集。 (2)求不等式 320-x +518-x +716-x +914-x +11 12 -x >5的解集。 那么5的倍数呢?不是5的倍数,18呢? 2、(1)已知关于x 的不等式组???>-≥-1 250 x a x 只有四个整数解,求实数a 的取值范围。 (2)已知关于x 的不等式组? ??-<+>232 a x a x 无解,则a 的取值范围是? 3、已知关于x 的不等式(a+3b )>a-b 的解集是x<-3 5 ,试求bx-a>0的解集。 4、已知关于x 的不等式组?? ? ??-<<->k x x x 111 (1)求其解集。 (2)由(1)可知,不等式组的解集是随数k 的值的变化而变化,当k 为任意有理数时,写出不等式的解集。 练习:1、已知关于x 数的不等式组?? ?>->-0 230 x a x 的整数解共有6个,则a 的取值范围是?

含参数的一元一次不等式组的解集

《含参数的一元一次不等式组的解集》教学设计 万福中心学校余达恒 教材分析:本章内容是苏科版八年级数学(下)第七章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

人教版必修五含参不等式和恒成立问题(含答案)

含参不等式专题 一、一元二次不等式含参问题 含参不等式的解法:由于解含参数不等式的主要目的是求未知数的取值集合,而不是求参数的范围,因此在分析含参数不等式时,把参数看成 是常数,确定不等式的类型,按相应类型不等式的解题方法进行转化;但 在求解过程中要审视参数对不等式类型、同解变形、解的结构等是否有不 确定性影响,若有不确定性则进行分类讨论,否则不予讨论。 解含参数的一元二次不等式,通常情况下,均需分类讨论,对含参一元二次不等式常用的分类方法有三种: (1)按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; (2)按判别式?的符号分类,即0,0,0?; (3)按方程02=++c bx ax 的根21,x x 的大小来分类,即2121,x x x x =<; 例题1:解x 的不等式:(1)042 >++ax x 。 (2) )(0122 R a a ax ∈>++ 例题2:解关于x 的不等式:(1).01)1(2 <++-x a ax (2) )(0)1(2 R k x k kx ∈>-+ 例题3:解不等式(1))0( 01)1(2≠<++-a x a a x . (2) ) (R a x ax ∈≥++22 2 二、一元二次不等式恒成立问题 1、不等式对任意实数恒成立,就是不等式的解集为R ,对于一元二次不等式ax 2+bx +c >0, 它的解集为R 的条件为??? a >0Δ<0;ax 2+bx +c <0的解集为R 的条件为??? a <0 Δ<0 ;0 2≥++c bx ax 的解集为R 的条件为?? ?≤?>00a ;02≤++c bx ax 的解集为R 的条件为???≤?<0 a . 2、对于一般恒成立问题: 方法一:转化为函数的最值(或值域)(1)m x f ≥)(对任意x 都成立 m x f ≥?min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥?。简单计作:“大 的大于最大的,小的小于最小的”。 方法二:数形结合,如果不等式中涉及的函数、代数式对应的图象、图 形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围. 方法三:分离参数,把要求的参变量分离出来,单独放在不等式的一侧, 将另一侧看成新函数,于是将问题转化成新函数的最值问题;(1)对于取 值范围内的任一个数都有恒成立,则;(2)对于取值范围内的任一个数都有 恒成立,则 例题1:若)5lg(2b x x y --=的定义域为R,求b 范围。 例题2:已知关于x 的不等式01)2()2(2≥+---x a x a 恒成立,试求a 的取值范围. 例题3:已知1)(2+-=ax x x f ,求使不等式0)(++a ax x 2、解关于x 的不等式0)1(2>++-a x a x 3、解关于x 的不等式:04)1(22>++-x a ax 4、不等式x p xp x 212->++ 对),1(+∞∈x 恒成立,求p 的范围。 5、已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

含参不等式

含参不等式知识互联网 题型一:不等式(组)的基本解法

x ( x ( b ( 无解(大大小小无解了) 典题精练 【例1】 ⑴解不等式 31 423 x x x +--+≤. ⑵解不等式组12(1)532122 x x x --?? ?-<+??≤,并在数轴上表示出解集 ⑶求不等式组2(2)43 251x x x x --??--? ≤<的整数解 ⑷解不等式组32215x x -<-<

⑸解不等式组253473 x x -?? (2012年朝阳一模) 题型二:含参数的不等式(组) 思路导航 对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <, 例题精讲 【引例】⑴关于x 的一次不等式组x a x b >???? ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--

⑸() 212m x +< ⑹()25n x --< 【例3】 ⑴不等式 ()1 23 x m m ->-的解集与2x >的解集相同,则m 的值是 . ⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 . ⑶ 关于x 的不等式5ax >的解集为5 2 x <-,则参数a 的值 . ⑷ ①若不等式组3 x x a >??>? 的解集是x a >,则a 的取值范围是 . ②若不等式组3 x x a >??? ≥的解集是x a ≥,则a 的取值范围是 . A .3a ≤ B .3a = C .3a > D .3a ≥ (北京二中期中考试) ⑸已知关于x 的不等式组2 32x a x a +??-?≥≤无解,则a 的取值范围是 . ⑹已知关于x 的不等式组>0 53x a x -??-? ≥无解,则a 的取值范围是 . 【例4】 ⑴ 已知关于x 的不等式组0 521≥x a x -??->? 只有四个整数解,则实数a 的取值范围是 . ⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥ (北京五中期中考试)

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

备战2018高考数学黄金解题模板 含参不等式的存在性与恒成立问题

备战2018高考数学黄金解题模板 含参不等式的存在性与恒成立问题 【高考地位】 含参不等式的恒成立问题越来越受到高考命题者的青睐,由于新课标高考对导数应用的加强,这些不等式的恒成立问题往往与导数问题交织在一起,这在近年的高考试题中不难看出这个基本的命题趋势. 解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,在高考中各种题型多以选择题、填空题和解答题等出现,其试题难度属高档题. 【方法点评】 方法一 判别式法 使用情景:含参数的二次不等式 解题模板:第一步 首先将所求问题转化为二次不等式; 第二步 运用二次函数的判别式对其进行研究讨论; 第三步 得出结论. 例1 设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围 . ??? ????-≤--≥-≥?1220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-. 【点评】一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立 ????00a ;2)0)(

(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+有解,求实数m 的取值范围. 【答案】(1)()21f x x x =-+;(2)(),5m ∈-∞. (2)∵在区间[]1,1-上,不等式()2f x x m >+有解, ∴2 31m x x <-+在区间[]1,1-上有解, 故只需m 小于函数()231g x x x =-+在区间[]1,1-上的最大值, 由二次函数可知当1x =-时,函数()g x 取最大值5, ∴实数m 的取值范围为()5-∞, 考点:1、求二次函数解析式;2、不等式能成立问题. 【方法点睛】本题首先考查二次函数解析式,已知函数类型求解析式时,可以采用待定系数法,第二问考

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

(完整版)含参数一元一次不等式

含参数一元一次不等式(组)的解法 1、若关于x 的不等式2)1(≥-x a ,可化为a x -≤12,则a 的取值范围是多少? 2 、关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是? 3、关于x 的方程x+2m-3=3x+7的解为不大于2的非负数,则m 的整数值是多少? 4、关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是多少? 5、己知不等式 )2(211)5(21+≥--ax x 的解集是2 1≥x ,试求a 的值?

6、关于x 的不等式2x -a ≤0的正整数解恰好是1、2、3、4,则m 的取值是多少? 7、已知关于x ,y 的方程组?? ?-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围. 8、已知a 是自然数,关于x 的不等式组?? ?>-≥-02,43x a x 的解集是x >2,求a 的值. 对应练习1、不等式组???+>+<+1 ,159m x x x 的解集是x >2,则m 的取值范围是 . 对应练习2、若不等式组? ??>≤-≥-1 23,0x a x 的整数解共有5个,求a 的取值范围.

对应练习:若关于x 的不等式组???????+<+->+a x x x x 3 22,3215只有4个整数解,求a 的取值范围. 10、k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10? 二、 应用题 1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外的安全地区,导火索至少需要多长? 2、某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?

第40讲 含参数不等式的解法

第40讲 含参数的不等式 【考点解读】 解含参数的不等式的基本途径——分类讨论思想的应用;(应注意寻找讨论点,以讨论点划分区间进行讨论求解.能避免讨论的应设法避免讨论)。 【知识扫描】 含有参数的不等式可渗透到各类不等式中去,在解不等式时随时可见含参数的不等式.而这类含参数的不等式是我们教学和高考中的一个重点和难点.解含参数的不等式往往需要分类讨论求解,寻找讨论点(常见的如零点,等值点等),正确划分区间,是分类讨论解决这类问题的关键.在分类讨论过程中要做到不重,不漏. 【考计点拔】 牛刀小试: 1.设0(2a )a ③(2 a )a >a a ④a a >2a a 其中不成立的有( ) A.0个 B.1个 C.2个 D.3个 【答案】B 2.已知方程mx 2-2(m+2)x+(m+5)=0有两个不同的正根,则m 的取值范围是( ) A.m<4 B.021} C.{x |x>2} D.{x |x<2} 【答案】A 4.若ax 2+bx+c>0的解集为{x |x<-2或x>4},那么对于函数f(x)=ax 2+bx+c 会有( ) A.f(5)???-f(-a),则实数a 的取值范围是 (A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1) 【答案】C

含参不等式恒成立问题中,求参数取值范围一般方法

含参不等式恒成立问题中,求参数取值范围一般方法 恒成立问题是数学中常见问题, 也是历年高考的一个热点。大多是在不等式中,已知一 个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若 a_ f x 恒成立,只须 求出 f X max ,则 a - f X 血;若 ^ f X 恒成立,只须求出 f X min ,则 a 乞 f X 讪, 转化为函数求最值。 例1已知函数f X = lg I X a -2,若对任意x := 2川a?恒有f X \ >0,试确定a 的 I x 丿 取值范围。 a 解:根据题意得:x 2 1在x := 12,牡阳上恒成立, x 即:a ?-X 2 ? 3x 在 x :二 2,上恒成立, 设 f x = -x 2 3x ,则 f x - - x- 3 9 I 2丿4 当 X =2时,f X max =2 所以 a 2 在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不 等式的两边,即:若 f (a )Z g (x )恒成立,只须求出g (x )max ,则f (a )K g (x )m ax ,然后 解不等式求出参数 a 的取值范围;若f (a )兰g(x)恒成立,只须求出g (x ).,则 f (a )兰g( x m in ,然后解不等式求出参数 a 的取值范围,问题还是转化为函数求最值。 t +1 f t p 3 f t min = f 2 — 4 解:令2二t ,二,1丨■ 10,2所以原不等式可化为: 宀亠1 , 例2、已知x^- ,11时,不等式1 ■ 2X 亠〔a -a 2 4X 0恒成立,求a 的取值范围。 要使上式在t 三i 0,2 1上恒成立,只须求出 在t 0,2 1上的最小值即 可。 t 十1 f t 〒 1 3 a :: 2 2 _a ::-

含参数不等式的解法(含答案)

含参数不等式的解法 典题探究 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。 例3:在?ABC 中,已知2|)(|,2cos )2 4 ( sin sin 4)(2 <-++ =m B f B B B B f 且π 恒成立,求实数m 的范围。 例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2 ,0(4,cos sin π π ∈-->x x x a 恒成立的实数a 的范围。 演练方阵 A 档(巩固专练) 1.设函数f (x )=???? ??? ≥-<<-+-≤+)1(11 )11(22)1()1(2x x x x x x ,已知f (a )>1,则a 的取值范围是( ) A.(-∞,-2)∪(-21 ,+∞) B.(-21,2 1) C.(-∞,-2)∪(-2 1 ,1) D.(-2,-2 1 )∪(1,+∞) 2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2 ,b ),g (x )>0的解集是(22a ,2 b ),则f (x )·g (x ) >0的解集是__________. 3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________. 4. 解不等式)0( 01)1 (2 ≠<++ -a x a a x 5. 解不等式0652 2>+-a ax x ,0≠a

含参不等式恒成立问题资料

不等式中恒成立问题的解法研究 在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。 恒成立问题的基本类型: 类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立 ?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立???>>?0)(0 )(βαf f ],[0)(βα∈- ?????<-?0)(2020)(2βββαααf a b a b f a b 或或 类型3: α α>?∈>min )()(x f I x x f 恒成立对一切αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0)(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立

含参数不等式的解法

关于含参数(单参)的一元二次不等式的解法探究 高二数学组 盛耀建 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是学生不清楚该如何对参数进行讨论,笔者认为这层“纸”捅破了,问题自然得到了很好的解决,在教学的过程中本人发现参数的讨论实际上就是参数的分类,而参数该如何进行分类有一个非常好的方法,下面我们通过三个例子找出其中的奥妙! 一.二次项系数为常数 例1解关于x 的不等式:.0)2(2>+-+a x a x 解:0)2(2>+-+a x a x )(* ()3243240422 +≥-≤?≥--=?a a a a 或, 此时两根为()2 42)2(2 1a a a x --+ -= ,()2 42)2(2 2a a a x --- -= . (1)当324-?, )(*解集为(2 48)2(,2 +-- -∞-a a a )?( +∞+-+-,2 48)2(2 a a a ); (2)当324-=a 时,0=?,)(*解集为(13,-∞-)?(+∞-,13); (3)当324324+<<-a 时,0a 时,0>?, )(*解集为(2 48)2(,2 +-- -∞-a a a )?( +∞+-+-,2 48)2(2 a a a ). 二.二次项系数含参数 例2解关于x 的不等式:.01)1(2 <++-x a ax 解:若0=a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0>a ,原不等式.0)1)(1(<-- ?x a x )(*

含参不等式题型精编版

含参不等式题型 一、 给出不等式解的情况,求参数取值范围: 总结:给出不等式组解集的情况,只能确定参数的取值范围。记住:“大小小大有解;大大小小无解。”注:端点值格外考虑。 1:已知关于x 的不等式组3x x a >-???? ???+>-??的解集是x>2a,则a 的取值范围是 。 4、已知关于x 的不等式组2113x x m -?>???>?的解集为2x >,则( ) .2.2.2.2A m B m C m D m ><=≤ 5、关于x 的一元一次不等式组x a x b >?? >?的解集是x>a,则a 与b 的关系为( ) ...0.0A a b B a b C a b D a b ≥≤≥>≤< 6、若关于x 的不等式组841x x x m +-???的解集是x >3,则m 的取值范围是 7、若关于x 的不等式组8x x m ? ,有解,则m 的取值范围是__ ___。 8、若关于x 的不等式组?? ?->+<121m x m x 无解,则m 的取值范围是 。 二、给出不等式解集,求参数的值

总结:给出不等式组确切的解集,可以求出参数的值。方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。 1:若关于x的不等式组 21 23 x a x b -< ? ? -> ? 的解集为11 x -<<,求()() 11 a b +-的值。 2:已知关于x的不等式组 () 324 2 1 3 x x a x x --≤ ? ? ?+ >- ? ? 的解集是13 x ≤<,求a的值。 3、若关于x的不等式组的解集为,求a,b的值 巩固训练: 4、若关于x的不等式组的解集是,求a,b的值。 三、给出方程(组)解的情况,转化成不等式(组) 总结:先解含参数的方程组,解用含参数的式子表示出来。列出题中解满足的不等关系,将含参数的式子代入,转化成关于参数的不等式(组)。 1:如果关于x、y的方程组 3 22 x y x y a += ? ? -=- ? 的解是负数,求a的取值范围? 2:若方程组 21 23 x y m x y +=+ ? ? += ? 中,若未知数x、y满足x+y>0,则m的取值范围是( ) .4.4.4.4 A m B m C m D m >-≥-<-≤- 3、a为何值时,方程组 231 2 x y a x y a -=+ ? ? += ? , 的解满足x y ,均为正数?{a b x b a x 2 2 > + < + 3 3< < -x {b a x a b x < - > +22 7 2<

含参数不等式解法练习题

高二数学(含参数不等式解法) 一、选择题 1、如果不等式x 2 – log m x < 0在 x ∈( 0, 12 )上恒成立,则实数m 的取值范围是 A 、116≤m < 1 B 、0 < m ≤116 C 、0 < m < 14 D 、m ≥116 2、已知a > 0,b > 0,不等式 – a < 1x < b 的解集是 A 、( - 1a ,0)∪(0,1b ) B 、( - 1b ,1a ) C 、( - 1b ,0)∪(0,1a ) D 、( - ∞,1a )∪(1b ,+ ∞) 3、设集合M = {x | > a 且a 2 – 12a + 20 < 0},N = {x | x < 10},则M ∩N 是 A 、{x | a < x < 10} B 、{x | x > a} C 、{x | 2 < x < 10} D 、N 4、若函数 f(x) = 228x x --的定义域为M ,g(x) = 11|| x a --的定义域为N , 则使M ∩N = ?的实数a 的取值范围是 A 、( - 1,3) B 、(- 3,1) C 、[- 1,3] D 、[- 3,1] 5、若关于x 的方程x 2 + ( a – 3)x + a = 0的两根均为正数,则实数a 的取值范围是 A 、0 < a ≤3 B 、a ≥9 C 、a ≥9或a ≤ 1 D 、0 < a ≤ 1 6、已知函数f(x) = ax 3 + bx 2 + cx + d 的图象如右图,则 A 、b ∈( - ∞,0) B 、b ∈( 0,1) C 、b ∈( 1,2) D 、b ∈(2,+ ∞) 7、不等式ax 2 + bx + 2 > 0的解集是( - 11,23) ,则a – b 等于 A 、- 4 B 、14 C 、- 10 D 、10 8、命题甲:ax 2 + 2ax + 1 > 0的解集是R ,命题乙:0 < a < 1,则命题甲是乙成立的 A 、充分非必要条件 B 、必要非充分条件 C 、充要条件 D 、既非充分又非必要条件 9、若|x – a| < h ,| y – a| < h ,则下列不等式一定成立的是 A 、| x – y| < h B 、| x – y | < 2h C 、| x – y| > h D 、| x – y | > 2h 10、命题p : 若a 、b ∈R ,则| a | + | b | >1是 | a + b| > 1的充分而不必要条件。

相关文档
最新文档