实验三_连续时间信号的频域分析

实验三_连续时间信号的频域分析
实验三_连续时间信号的频域分析

实验三 连续时间信号的频域分析

一、实验目的:

1、掌握采用matlab 求解连续时间周期信号的Fourier 级数表达式的方法;

2、掌握采用matlab 求解连续时间非周期信号傅立叶变换的方法;

3、掌握利用MATLAB 求解连续时间信号的频谱图的方法。

4、掌握利用MATLAB 求解连续时间信号的能量谱的方法。

二、实验原理:

1、matlab 相关内容参考《matlab 上机实验指导书》。

2、连续时间周期的傅立叶级数、连续非周期信号的傅立叶变换等内容请参

考教材第四章。

3、连续非周期信号的傅立叶变换

信号)(t f 的傅里叶变换定义为

dt e t f t f F j F t j ?∞∞

--==ωω)()]([)( (3.1) 傅里叶反变换定义为

ωωπωωd e j F j F F t f t j ?∞

∞--==)(21

)]([)(1 (3.2)

下面介绍MATLAB 符号运算求解傅立叶变换的方法。

MATLAB 符号数学工具箱提供了直接求解傅里叶变换和傅里叶反变换的函数fourier( )及ifourier( )。傅里叶变换的语句格式分为三种。

(1) F=fourier(f); 表示符号函数f 的Fourier 变换,默认返回是关于ω的函数。(最为常用)

(2)F=fourier(f,v); 表示返回函数F 是关于符号对象v 的函数,而不是默认的ω,即dt e t f v F jvt ?∞∞--==)()(。

(3)F=fourier(f,u,v); 是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即du e u f u f F v F jvu ?∞

∞--==)()]([)(。

类似的,傅里叶反变换的语句格式也分为三种。

要注意的是,函数fourier( )及ifoureir()都是接收由sym 函数所定义的符号变量或者符号表达式。

例3-1用MATLAB 符号运算求解法求单边指数信号)()(2t u e t f t -=的傅里叶变换。

解:MATLAB 源程序为

>> ft=sym('exp(-2*t)*Heaviside(t)');

>> Fw=fourier(ft)

运行结果为

Fw =

1/(2+i*w)

4、 连续时间信号的频谱图

连续周期信号f T (t)的频谱是离散的Fourier 级数Cn ,Cn =|Cn ︳e j Φn |Cn ︳为幅度频谱,e j Φn 为相位频谱;

而连续非周期信号f(t)的傅里叶变换)(ωj F 表达了信号在ω处的频谱密度分布情况,)(ωj F 一般是复函数,可表示为)(|)(|)(ω?ωωj e j F j F =。我们把ωω|~)(|j F 与ωω?~)(曲线分别称为连续时间非周期信号的幅度频谱和相位频谱。

例3-2用MATLAB 绘制单边指数信号的)()(2t u e t f t -=幅度谱和相位谱。 解:MATLAB 源程序为

ft=sym('exp(-2*t)*Heaviside(t)');

Fw=fourier(ft);

subplot(211)

ezplot(abs(Fw),[-2*pi,2*pi]),grid on

title('幅度谱')

phase=atan(imag(Fw)/real(Fw));

subplot(212)

ezplot(phase,[-2*pi,2*pi]),grid on

title('相位谱')

程序运行结果如图3-2所示。

图3-2 单边指数信号的幅度谱和相位谱

三、实验内容

参考《信号与系统》教材§4.6示例4-32、4-33、4-34等及相关原理,分别用matlab计算下列习题并绘制图形,与笔结果进行对比:

1.习题4-5(a), 求解T0=0.05s,A=3时周期矩形脉冲信号的Fourier 级数表达式,并用

matlab画出前N项,N=5,30的Fourier 级数系数重构信号的近似波形;

2.习题4-3(4),结合笔算结果,画出该信号的频谱图Cn;

3.参考例4-19,画出能量信号x(t)=e-3t u(t)的频谱图。

4.参考习题4-17图,其中:当T→∞,A=2,τ=1,画出其频谱密度函数P(jω)的频

谱图及能量谱。

四、实验要求

完成实验内容的习题,并提交实验报告,实验报告内容须包括以下内容:

1.每个习题的源程序;

2.每个习题源程序的运行结果图片;

3.结合理论计算,对运行结果进行必要的分析。

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为 (s)(t)e st X x dt +∞ --∞ = ? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ -∞ =? (2) MATLAB 中相应函数如下: (F) L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 () F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。 (,) F ilaplace L x =用x 替换结果中的变量t 。

的连续时间系统,其系统函数为s 的有理函数 110 110 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++= +++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下: r=roots(c),c 为多项式的系数向量,返回值r 为多项式的根向量。 求取零极点以及绘制系统函数的零极点分布图可以采用pzmap 函数,调用格式如下: pzmap(sys)绘出由系统模型sys 描述的系统的零极点分布图。 [p,z]=pzmap(sys)这种调用方式返回极点与零点,不绘出零极点分布图。 还有两个专用函数tf2zp 和zp2tf 可实现系统的传递函数模型和零极点增益模型的转换。调用格

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

周期矩形信号的频谱分析

1.周期信号的频谱 周期信号在满足一定条件时,可以分解为无数三角信号或指数之和。这就是周期信号的傅里叶级数展开。在三角形式傅里叶级数中,各谐波分量的形式为()1cos n n A n t ω?+;在指数形式傅里叶级数中,分量的形式必定为1j n t n F e ω 与1-j -n t n F e ω 成对出现。为了把周期信号所具有的各 次谐波分量以及各谐波分量的特征(如模、相角等)形象地表示出来,通常直接画出各次谐波的组成情况,因而它属于信号的频域描述。 以周期矩形脉冲信号为lifenxi 周期信号频谱的特点。周期矩形信号在一个周期(-T/2,T/2)内的时域表达式为 ,2 0,>2 ()A t T t f t ττ ≤?=?? (2-6) 其傅里叶复数系数为 12 n n A F Sa T ωττ?? = ??? (2-7) 由于傅里叶复系数为实数,因而各谐波分量的相位为零(n F 为正)或为π±(n F 为负),因此不需要分别画出幅度频谱n F 与相位频谱n φ。可以直接画出傅里叶系数n F 的分布图。 如图2.4.1所示。该图显示了周期性矩形脉冲信号()T f t 频谱的一些性质,实际上那个也是周期性信号频谱的普遍特性: ① 离散状频谱。即谱线只画出现在1ω的整数倍频率上,两条谱线的间隔为1ω(等于2π/t )。 ② 谱线宽度的包络线按采样函数()1/2a S n ωτ的规律变化。如图2.4.2所示。但1ω 为 2π τ 时,即( )2m π ωτ =(m=1,2,……)时,包络线经过零点。在两相邻 零点之间,包络线有极值点,极值的大小分别为-0.212()2A T τ,

连续时间LTI系统的频率特性及频域分析

实验报告 实验项目名称:运用Matlab进行连续时间信号卷积运算 (所属课程:信号与系统) 学院:电子信息与电气工程学院 专业: 10电气工程及其自动化 姓名: xx 学号: 201002040077 指导老师: xxx

一、实验目的 1、学会运用MATLAB 分析连续系统的频率特性。 2、掌握相关函数的调用。 二、实验原理 1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即 )()()()()()(01 )(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得: )(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++ 101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( j ω )称为系统的频率响应特性,简称系统频率响应或频率特性。一般H ( j ω )是复函数,可表示为: )()()(ω?ωωj e j H j H = 其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ω?称为系统的相频响应特性,简称相频响应或相频特性。H ( j ω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。H ( j ω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。 MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( j ω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。 H 返回w 所定义的频率点上系统频率响应的样值。注意,H 返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

周期信号的时域及其频域分析

周期信号的时域及其频域分析 姓名:张敏靓学号:1007433014 一、实验目的 1.掌握Multisim软件的应用及用虚拟仪器对周期信号的频谱测量 2.掌握选频电平表的使用,对信号发生器输出信号(方波、矩形波、 三角波等)频谱的测量 二、实验原理 周期信号的傅里叶级数分析法,可以把周期信号表示为三角傅里叶级数或指数傅里叶级数,其中周期信号满足。 1. 周期信号表示为三角傅里叶级数 2. 周期信号表示为指数傅里叶级数 其中, 周期矩形信号的频谱

三、实验内容 1.在Multisim上实现周期信号的时域、频域测量及分析 (1)绘制测量电路 (2)周期信号时域、频域(幅度频谱)的仿真测量 虚拟信号发生器分别设置如下参数: 周期方波信号:周期T=100μs,脉冲宽度τ=50μs,脉冲幅度 V P=5V; 周期矩形信号:周期T=100μs,脉冲宽度τ=20μs,脉冲幅度 V P=5V; 周期三角波信号:周期T=200μs,脉冲幅度V P=5V; 采用虚拟示波器及虚拟频谱仪分别测量上述信号的时域、频域波形并保存测试波形及数据。

2.周期信号时域、频域(幅度频谱)的测量 信号发生器、示波器、选频电平表的连线如上图所示。信号发生器的输出信号分别为周期分别信号、周期矩形信号、周期三角波信号,参数设置同仿真测量。采用示波器及选频电平表对信号发生器的输出信号分别测量,并将测量数据记录下表中。

四、实验总结 1.在周期矩形信号的实验中,信号频率减小,频谱减小;信号占空 比减小,频谱减小;幅度值减小,频谱减小。 2.未安装Origin绘图软件,Excel绘图未能达到理想效果。

北京理工大学信号与系统实验实验5连续时间系统地复频域分析报告报告材料

实验5 连续时间系统的复频域分析 一、实验目的 1.掌握拉普拉斯变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握连续时间系统系统函数的定义及复频域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号)(t x 的拉普拉斯变换定义为 )1.....(..........)()(dt e t x s X st ? +∞ ∞ --= 拉普拉斯反变换定义为 )2....(..........)(21)(ds e s X j t x j j st ?∞ +∞ -=σσπ 在MATLAB 中,可以采用符号数学工具箱的laplace 函数和ilaplace 函数进行拉氏变换和反拉氏变换。 L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 L=laplace(F,t)用t 替换结果中的变量s 。 F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。 F=ilaplace(L,x)用x 替换结果中的变量t 。 除了上述ilaplace 函数,还可以采用部分分式法,求解拉普拉斯逆变换,具体原理如下: 当 X (s )为有理分式时,它可以表示为两个多项式之比: )3.(..........)()()(0 110 11a s a s a b s b s b s D s N s X N N N N M M M M +?+++?++==---- 式(3)可以用部分分式法展成一下形式 )4.....(.............)(2211N N p s r p s r p s r s X -++-+-= 通过查常用拉普拉斯变换对,可以由式(1-2)求得拉普拉斯逆变换。 利用 MATLAB 的residue 函数可以将 X (s )展成式(1-2)所示的部分分式展开式,该 函数的调用格式为:[r,p,k] = residue(b,a) 其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数

实验二连续时间信号的频域分析

实验二 连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab 编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞ =++=1 000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞=++=1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、 余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为:

(完整word版)连续时间信号分析答案

实验一 连续时间信号分析 一、实验目的 (一)掌握使用Matlab 表示连续时间信号 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉常用信号的波形和特性 (二)掌握使用Matlab 进行连续时间信号的相关运算 1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换 2、学会运用Matlab 进行连续时间信号微分、积分运算 3、学会运用Matlab 进行连续时间信号相加、相乘运算 4、学会运用Matlab 进行连续时间信号卷积运算 二、实验条件 一台电脑、winXP 系统、matlab7.0软件 三、实验内容 1、利用Matlab 命令画出下列连续信号的波形图。 (1))4/3t (2cos π+ 代码: clear all;close all;clc; K=2;a=3; t=0:0.01:3; ft=K*cos(a*t+pi/4); plot(t,ft),grid on axis([-5,5,-2.2,2.2]) title('2cos(3t+4π)')

-5 -4 -3 -2 -1 1 2 3 4 5 -2-1.5-1-0.500.511.5 22cos(3t+4π) (2) )t (u )e 2(t -- -3 -2-10123 -3 -2 -1 1 2 3 指数信号与阶跃信号的乘积

代码: 函数文件: function f=uCT(t) f=(t>=0); 命令文件: clear all;close all;clc; a=-1; t=-5:0.01:5; ft=(2-exp(a*t)).*uCT(t); %y=2-exp(a*t); %plot(t,y),grid on plot(t,ft),grid on axis([-3,3,-3,3]); title('指数信号与阶跃信号的乘积') (3))]2()(u )][t (cos 1[--+t u t π

理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的 复频域分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞ --∞ =? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ - ∞ = ? (2) MATLAB 中相应函数如下: (F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 ()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量 为t 的结果表达式。 (,)F ilaplace L x =用x 替换结果中的变量t 。 拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比: 110 1 10 ...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3)

上式可以采用部分分式法展成以下形式 1212(s)...N N r r r X s p s p s p = +++--- (4) 再通过查找常用拉氏变换对易得反变换。 利用residue 函数可将X(s)展成(4)式形式,调用格式为: [r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分 别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数 连续时间系统的系统函数是指系统单位冲激响应的拉氏变换 (s)(t)e st H h dt +∞ --∞ = ? (5) 连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。 (s)(s)/X(s)H Y = (6) 单位冲激响应(t)h 反映了系统的固有性质,而(s)H 从复频域反映了系统的固有性质。由(6)描述的连续时间系统,其系统函数为s 的有理函数 110 1 10 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:

连续时间信号的频域分析.

课程设计任务书 题目 专业、班级电信1班学号姓名 主要内容、基本要求、主要参考资料等: 基于钟表设计的常识,给出时、分、秒的设计思路,并利用硬件编程语言VHDL或者Verilog-HDL来实 现。要求具有基本功能如调整时间对表、闹铃、计时器等,给出完成控制电路所需要的设计模块;给出硬 件编程语言的实现,并进行仿真;给出下载电路的设计,设计为2种下载方法,其中一种必须为JTAG;同 时设计者报告不允许雷同。 参考资料: 1、潘松、黄继业《EDA技术及其应用》(第四版)科学出版社 2009 2、樊昌信《通信原理》电子出版社 完成期限: 指导教师签名: 课程负责人签名: 年月日

目录 摘要…………………………………………………………………………………II

ABSTRACT……………………………………………………………………………III 绪论…………………………………………………………………………………III 1傅里叶变换原理概述 (1) 1.1 傅里叶变换及逆变换的MATLAB实现 (2) 2 用MATLAB实现典型非周期信号的频域分析 (3) 2.1 单边指数信号时域波形图、频域图 (3) 2.2 偶双边指数信号时域波形图、频域图 (4) 2.3 奇双边指数信号时域波形图、频域图 (4) 2.4 直流信号时域波形图、频域图 (5) 2.5 符号函数信号时域波形图、频域图 (5) 2.6 单位阶跃信号时域波形图、频域图 (6) 2.7 单位冲激信号时域波形图、频域图 (6) 2.8 门函数信号时域波形图、频域图 (7) 3 用MATLAB实现信号的幅度调制 (8) 3.1 实例1 (8) 3.2 实例2 (10) 4 实现傅里叶变换性质的波形仿真 (11) 4.1 尺度变换特性 (11) 4.2 时移特性 (14) 4.3 频移特性 (16) 4.4 时域卷积定理 (18) 4.5 对称性质 (20) 4.6 微分特性 (22) 心得体会 (25) 参考文献 (26) 附录 (27)

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

第6章 连续信号的复频域分析

第六章 连续信号的复频域分析 在复频域分析方法中,用复指数信号e st 作为基本信号,将系统的输入信号分解为复指数信号的叠加,然后同样根据线性时不变系统的特性求解系统的输出响应,并进一步分析系统的性能。 连续信号和系统的复频域分析是基于另外一种数学工具,即拉普拉斯变换。本章首先介绍连续信号的拉普拉斯变换及反变换,下一章介绍连续系统的复频域分析。 6.1 基本要求 1.基本要求 ? 掌握双边和单边拉普拉斯变换的定义; ? 了解拉普拉斯变换的零极点及收敛域; ? 掌握单边拉普拉斯变换的性质; ? 熟练掌握单边拉普拉斯反变换的两种典型方法; ? 了解信号的拉普拉斯变换与傅里叶变换的关系。 2.重点和难点 ? 单边拉普拉斯变换的性质 ? 单边拉普拉斯反变换 6.2 知识要点 1.拉普拉斯变换的定义 (1)双边拉普拉斯变换及反变换 ?∞ ∞--=t t f s F st d e )()( (6-1) ?∞+∞ -= σσs s F t f st d e )(πj 21)( (6-2) (2)单边拉普拉斯变换及反变换 ?∞--=0 d e )()(t t f s F st (6-3) 0,d e )(πj 21)(≥=?∞+∞ -t s s F t f st σσ (6-4)

信号的拉氏变换是信号的复频域描述(复频域表达式),对这些定义说明如下几点: (1)式(6-3)中积分下限取为0- 是考虑到信号f (t )中可能会含有δ(t )。如果给定信号中没有δ(t ),计算时可以将积分下限设为0。 (2)拉氏反变换的定义只需做一般了解,实际求反变换时,一般不用该定义直接计算。 (3)注意到式(6-2)和式(6-4)的区别,说明单边拉氏反变换的结果都为因果信号。 (4)本课程重点掌握单边拉氏变换的定义、性质及反变换。 2.拉普拉斯变换的零极点和收敛域 信号的拉普拉斯变换一般都是有理分式,可以表示为 11011)()()(a s a s b s b s b s D s N s F n n n m m m m ++++++==---- 令F (s )的分子多项式N (s )=0,可以得到一系列根z i (i = 1,2,…,m )。当s = z i 时,F (s )=0,因此将这些根称为F (s )的零点。同样,令F (s )的分母多项式D (s )=0,可以得到一系列根p j (j = 1,2,…,n ),称为F (s )的极点。 [s ]平面是一个复平面,其上每个点都代表s 的一个取值。在[s ]平面上分别用“ ”和“?”将所有的零点和极点表示出来,称为信号拉氏变换的零极点图。 为使信号f (t )的拉普拉斯变换F (s )存在所允许的σ = Re[s ]的取值范围称为该信号的拉普拉斯变换的收敛域。显然,收敛域实质上就是函数F (s )的定义域,并且该定义域只与其复数自变量s 的实部有关,因此在s 平面上表现为这样一个连续的区域,该区域以平行于虚轴的直线为边界。 3.典型信号的拉氏变换 (1)δ(t )?1 (2)t n e -at u (t ) ? 1 )(!++n a s n 根据这一对拉氏变换还可以得到单边指数信号、单位阶跃信号、单位斜变信号等的拉氏变换。 (3)e -at cos ω0tu (t ) ?20 2)(ω+++a s a s e -at sin ω0tu (t ) ?2 020 )(ωω++a s 当a =0时,由以上两对变换得到正弦信号和余弦信号的拉氏变换。 4.单边拉氏变换的性质 教材P.148表6.2.1总结了单边拉氏变换的常用性质。学习这部分内容时需要密切注意与傅里叶变换各性质的区别和联系,特别是大多数性质都有附加条件。具体再总结如下: (1) 大多数性质中所涉及到的信号都必须是因果信号。 (2) 时移性质:t 0>0;尺度变换性质:a >0。 (3) 终值定理要求F (s )的所有极点中,最多只有一个极点等于零(位于[s ]平面的坐标原点),其余极点实部都必须小于零(位于左半平面2、3象限)。 4.单边拉氏反变换 单边拉氏反变换是已知信号的复频域表达式求信号的时域表达式,反变换结果一定都为

连续系统的时域、频域分析

学生实验报告实验课程:信号与 系统E D A 实验地点:东1教 414 学院: 专业: 学号 : 姓名 :

2.信号卷积,根据PPT 中的实验2、2与2、3内容完成课堂练习,写出程序及运行结果。 用Matlab 实现卷积运算)(*)(t h t f ,其中 )()()],2()([2)(t e t h t t t f t εεε-=--=,)2 ()(2t h t h =;对比说明信号)( t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。 >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-nh)、*(nh>0); y=conv(f,h);

t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1、1]); subplot(3,1,3),plot(0、01*t,y); title('y(t)=f(t)*h(t)'); >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-2*nh)、*(2*nh>0); y=conv(f,h); t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]);

连续系统的复频域分析

实验四:连续系统的复频域分析 一、实验目的: 1、掌握连续与离散时间系统的正反复频域与Z域变换 2、掌握利用MATLAB进行零极点分析,进一步了解零极点对整个系统的影响 3、掌握simulink环境下系统建模与仿真以及系统求解。 二、实验内容: 1、已知某连续系统的系统函数为: (1)利用[r, p, k]=residue(num, den),求H(s)的极零点以及多项式系数; (2)画出系统的零极点分布图,判断系统得稳定性。 (3)求h(t),判断系统得稳定性。 2、已知某离散系统的系统函数为:, (1)利用[r, p, k]=residuez(num, den)求H(z)的极零点以及多项式系数; (2)画出零极点分布图,判断系统得稳定性。 (3)求单位函数响应用impz(b, a),判断系统是否稳定; 3、已知线性时不变微分方程 在Simulink环境下搭建起系统的仿真模型,并查看仿真结果曲线。(1)写出传递函数H(s),绘出系统模拟框图; (2)当f(t)分别为,,的零状态响应;且当与课本P81的结果进行比较(3)方程的初值为, ,求全响应; 4、已知某信号,n(t)为正态噪声干扰且服从N(0,0.22)分布,对此信号进行采样,采样间隔为0.001s,之后对此信号进行Botterworth低通滤波,从信号中过滤10HZ的输出信号,试对系统进行建模与仿真。 三、实验数据处理与结果分析: 第一题:题1_1:

>> num=[2,5]; den=[1,1,3,2]; [r,p,k]=residue(num,den) r = -0.5750 - 0.7979i -0.5750 + 0.7979i 1.1499 p =-0.1424 + 1.6661i -0.1424 - 1.6661i -0.7152 k =[]

连续信号的频域分析

第四章 连续信号的频域分析 将信号分解为若干不同频率的正弦信号或虚指数信号,实质上是将信号在频率域上进行分解,因此根据这种基本思想对信号和系统的分析称为频域分析。这种分解过程是通过傅里叶级数和傅里叶变换这一数学工具来实现的。 本章首先介绍连续信号的傅里叶级数和傅里叶变换,熟悉信号频谱的概念。 4.1 基本要求 1.基本要求 ? 了解傅里叶级数和傅里叶变换的定义及其物理含义; ? 掌握信号频谱和频谱密度的概念; ? 了解连续谱和离散谱的特点和区别; ? 掌握傅里叶变换的常用性质; ? 掌握周期信号傅里叶变换的求解方法。 2.重点和难点 ? 傅里叶变换的性质及其应用 4.2 知识要点 1.周期信号的傅里叶级数 (1)傅里叶级数展开式 三角形式:∑∑∞ =∞=+Ω+=Ω+Ω+=1010)cos(2)]sin()cos([2)(n n n n n n t n A A t n b t n a a t f ?(4-1) 指数形式: ∑∑∞ -∞ =+Ω∞ -∞ =Ω= =n t n n n t n n n F F t f )j(j e e )(? (4-2) 其中 ? +Ω= T t t n t t n t f T a 00 d cos )(2 ,n =0,1,2,? (4-3) ? +Ω= T t t n t t n t f T b 00 d sin )(2,n =1,2,? (4-4) 且

n n n n n n a b b a A a A arctg , ,2 200-=+==? (4-5) ?+Ω-= T t t t n n t t f T F 00 d e )(1j (4-6) (2)两种形式之间的转换关系 0)( e 2 1 j ≥=n A F n n n ? (4-7) 并且|F n |为偶函数,?n 为奇函数,即 ||||n n F F -=,||||n n -=?? (4-8) (3)傅里叶级数的物理含义 通过傅里叶级数可以将任意周期信号f (t )分解为若干个正弦信号(三角形式)或复简谐信号(指数形式)的叠加。每个正弦信号分量的频率为周期信号基波频率的n 倍(n ?0),即n ?,而幅度为A n 或者2|F n |,相位为?n ,将其称作第n 次谐波分量。特别地,将频率为0(即n =0)的分量称为直流分量,幅度为A 0/2或者F 0;频率等于基波频率?(即n =1)的分量称为基波分量。 2.周期信号的频谱 通过傅里叶级数可以将时域中的周期信号分解为直流分量、基波分量和各次谐波分量之和,傅里叶级数展开式中的A n 、?n 或傅里叶系数F n 分别代表了各分量的幅度和相位随谐波次数n (从而频率n ?)的变化关系,称为周期信号的频谱,其中A n 或|F n |称为幅度谱,?n 称为相位谱。 A n 或|F n |、?n 都是关于整型变量n 的实函数,分别以其为纵轴,以n (或者n ?)为横轴,得到的图形称为周期信号的幅度谱图和相位谱图,合称为周期信号的频谱图。 但是,在三角形式的傅里叶级数中,A n 和?n 的自变量n 只能取非负的整数,因此称为单边频谱,而在F n 中,n 可以为任意的整数,相应地将F n 称为双边频谱。对同一个周期信号,其单边和双边频谱可以通过式(4-7)进行相互转换。 所有周期信号的频谱都具有离散性,因此称为离散谱。 3.非周期信号的傅里叶变换及其频谱密度 非周期信号的傅里叶变换及傅里叶反变换的定义为 ?∞ ∞--=t t f F t d e )()j (j ωω (4-9) ?∞ ∞ -= ωωωd )e (j 2π1)(j t F t f (4-10) 其中正变换用于根据信号的时域表达式求其频谱表达式,反变换用于根据其频谱表达式求时域表达式。 通过傅里叶变换可以将信号分解为不同频率的复简谐信号的叠加,而信号的傅里叶变换F (j ?)反映了信号中各分量的幅度和相位随其频率? 的变化关系,称为信号的频谱密度,又称为频谱密度函数或频谱函数。 教材表4-1中列出了一些基本信号的傅里叶变换,在求解复杂信号的傅里叶变换和频谱密度时经常用到。 4.傅里叶变换的性质

连续系统的频域分析

第三章傅立叶变换 时域分析:f(t) y f(t)=h(t)*f(t) ↓分解↑ 基本信号δ(t)→LTI →h(t) 频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt ↓分解↑ 基本信号 sinωt →LTI →H(jω)e jωt e jωt H(jω):系统的频域响应函数,是信号角频率ω的函数,与t无关. 主要内容: 一、信号的分解为正交函数。 二、周期信号的频域分析?付里叶级数(求和),频谱的特点。信号 三、非周期信号的频域分析?付里叶变换(积分),性质。分析 四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析) 五、抽样定理:连续信号→离散信号.

§3.1 信号分解为正交函数 一、正交: 两个函数满足φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。 二、正交函数集:几个函数φi(t)φi(t)dt= 0 当i≠j; K i 当i=j. 三、完备正交函数集:在{φ1(t)…φn(t)}之外, 不存在ψ(t)满足ψ (t)φi(t)dt= 0 (i=1,2,…n). 例、三角函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt, sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期. 满足: cosmΩtcosnΩtdt= 0 m≠n T/2 m=n≠0 T m=n=0 sin(mΩt)sin(nΩt)dt= 0 m≠n T/2 m=n≠0 sin(mΩt)cos(nΩt)dt= 0. 所有的m和n. 结论:三角函数集是完备正交集。 推导: cosmΩtcosnΩtdt =(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt =(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt =(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0] +(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0] =0 当m≠n时.

实验4:连续系统的频域分析

实验4:连续系统的频域分析 一、实验目的 (1)掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。 (2)掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。 二、实验原理 1.周期信号的分解 根据傅里叶级数的原理,任何周期信号都可以分解为三角级数的组合——称为 ()f t 的傅里叶级数。在误差确定的前提下,可以由一组三角函数的有限项叠加而得到。 例如一个方波信号可以分解为: 11114111 ()sin sin 3sin 5sin 7357E f t t t t t ωωωωπ?? = ++++ ??? 合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原波形,在间断点附近,即使合成的波形所含谐波次数足够多,也任存在约9%的偏差,这就是吉布 斯现象(Gibbs )。 2.连续时间信号傅里叶变换的数值计算 由傅里叶变换的公式: ()()lim ()j t j n n F j f t e dt f n e ωωττωττ∞ ∞ ---∞ →=-∞ ==∑ ? 当 ()f t 为时限信号时,上式中的n 取值可以认为是有限项N ,则有: ()(),0k N j n n F k f n e k N ωτττ-==≤≤∑,其中2k k N π ωτ = 3.系统的频率特性 连续LTI 系统的频率特性称为频率响应特性,是指在正弦信号激励作用下稳态响应随激励信号频率的变化而变化的情况,表示为 () ()() Y H X ωωω= 三、实验内容与方法 1.周期信号的分解 【例1】用正弦信号的叠加近似合成一个频率为50Hz 的方波。 MATLAB 程序如下: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211) for n=1:2:9 plot(t,4/pi*1/n*sin(2*pi*n*f0*t),’k ’); hold on; end title(‘信号叠加前’); subplot(212) for n=1:2:9;

连续时间信号的频域分析(信号与系统课设).

福建农林大学计算机与信息学院 信息工程类 课程设计报告 课程名称:信号与系统 课程设计题目:连续时间信号的频域分析 姓名: 系:电子信息工程 专业:电子信息工程 年级:2008 学号: 指导教师: 职称: 2011 年 1 月10 日

福建农林大学计算机与信息学院信息工程类 课程设计结果评定

目录 1课程设计的目的 (1) 2课程设计的要求 (1) 3课程设计报告内容.....................................................................1-13 3.1连续信号的设计..................................................................1-11 3.2验证傅里叶变换的调制定理 (11) 3.3周期信号及其频谱 (12) 4总结 (13) 参考文献 (14)

连续时间信号的频域分析 1.课程设计的目的 (1)熟悉MATLAB语言的编程方法及MATLAB指令; (2)掌握连续时间信号的基本概念; (3)掌握门函数、指数信号和抽样信号的表达式和波形; (4)掌握连续时间信号的傅里叶变换及其性质; (5)掌握连续时间信号频谱的概念以及幅度谱、相位谱的表示; (6)掌握利用MATLAB进行信号的傅里叶变换以及时域波形和频谱的表示;(7)通过连续时间信号的频域分析,更深刻地理解了连续时间信号的时域和频域间的关系,加深了对连续时间信号的理解。 2.课程设计的要求 (1)自行设计以下连续信号:门函数、指数信号和抽样信号。要求:(a)画出以上信号的时域波形图; (b)实现以上信号的傅里叶变换,画出以上信号的幅度谱及相位谱,并对相关结果予以理论分析; (c)对其中一个信号进行时移和尺度变换,分别求变换后信号的傅里叶变换,验证傅里叶变换的时移和尺度变换性质。 (2)自行设计信号,验证傅里叶变换的调制定理。 (3)自行设计一个周期信号,绘出该信号的频谱,并观察周期信号频谱的特点。 3.课程设计报告内容 3.1(a)①门函数(矩形脉冲): MATLAB中矩形脉冲信号用rectpuls函数表示: y=rectpuls (t,width) %width缺省值为1 >> t=-2:0.001:2; T=2; yt=rectpuls (t,T); plot(t,yt); axis([-2,2,0,1.5]); grid on; %显示格线

信号与系统报告 实验5 连续系统的复频域分析实验

信号与系统 实验报告 实验五连续系统的复频域分析 实验五连续系统的复频域分析 一、实验目的 1. 深刻理解拉普拉斯变换、逆变换的定义,掌握用MATLAB实现拉普拉斯变换、逆变换的方法。 2会求几种基本信号的拉氏变换。 3 掌握用MATLAB绘制连续系统零、极点的方法。 4 求解系统函数H(s)。 二

1已知连续时间信号f(t)=sin(t)u(t)、求出该信号的拉普拉斯变换,并用MATLAB 绘制拉普拉斯变换的曲面图。 syms t; ft=sin(t)*heaviside(t); Fs=Laplace(ft); a=-0.5:0.08:0.5; b=-2:0.08:2; [a,b]=meshgrid(a,b); c=a+i*b; d=ones(size(a)); c=c.*c; c=c+d; c=1./c; c=abs(c); mesh(a,b,c); surf(a,b,c) axis([-0.5,0.5,-2,2,0,10]) colormap(hsv

) 2求[(1-e^(-at))]/t的拉氏变换。 syms t s a f1=(1-exp(-a*t))/t; F=laplace(f1,t,s) F = log(s+a)-log(s) 3求F(s)=-log(s)+ log(s+a)的拉氏逆变换syms t s a F =log(s+a)-log(s); f1=ilaplace(F,s,t) f1 = (1-exp(-a*t))/t

4已知某连续系统的系统函数为: H(s)=(s^2+3s+2)/(8s^4+2s^3+3s^2+5)试用MATLAB求出该系统的零极点,画出零极点分布图。 b=[1 3 2]; a=[8 2 3 0 5]; zs=roots(b); ps=roots(a); hold on plot(real(zs),imag(zs),'o'); plot(real(ps),imag(ps),'x'); grid axis([-2.5,1,-1,1]) 5已知H(s)=(s+1)/(s^2+s+1),绘制阶跃响应图形,冲激响应图形,频率激响应图形。 syms t s H=(s+1)/(s^2+s+1); f1=ilaplace(H,s,t); f2=heaviside(t);

相关文档
最新文档