Fe_B_4C复合镀层性能优化的研究_习小慧

Fe_B_4C复合镀层性能优化的研究_习小慧
Fe_B_4C复合镀层性能优化的研究_习小慧

颗粒增强铝基复合材料的制备方法及其存在的问题20091311

颗粒增强铝基复合材料的制备方法及其存在的问题 冶金0901班 张莹 20091311

近年来,随着不断追求轻量化、高性能化、长寿命、高效能的发展目标带动牵引了轻质高强多功能颗粒增强铝基复合材料的持续发展。提出的低密度、高比强度、高比模量、低膨胀、高导热、高可靠等优异以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等综合性能要求,传统轻质材料已很难全面满足要求,如铝合金模量低、线胀系数较大; 钛合金密度较大、热导率极低; 纤维增强树脂基复合材料在空间环境下使用易老化等,颗粒增强铝基复合材料经过30 多年的发展,已在国外航空航天领域得到了规模应用,这充分验证了与铝合金、钛合金、纤维树脂基复合材料等传统材料相比具有的显著性能优势,奠定了颗粒增强铝基复合材料在材料体系中的地位和竞争态势。而且更重要的是,在世界范围内有丰富的铝资源,加之易于进行工艺加工成型和处理,因而制各和生产铝基复合材料比其他金属基复合材料更为经济,易于推广,可广泛应用于航空航天、军事、汽车、电子、体育运动等领域,因此,这种材料在国内外受到普遍重视。 颗粒增强铝基复合材料已成为当下世界金属基复合材料研究领域中的一个最为重要的热点,各国已经相继进入了颗粒增强铝基复台材料的应用开发阶段,在美国和欧洲发达国家,该类复台材料的工业应用已开始,并且被列为二十一世纪新材料应用开发的重要方向并日益向工业规模化生产和应用的方向发展。本文旨在探讨颗粒增强铝基复合材料的制备方法及在亟待解决的各方面的问题,推进其应用发展的进程。 主要制备方法介绍: 增强体颗粒的分布均匀性和界面结合状况是影响复合材料性能的重要因素。因此,如何使增强体颗粒均匀分布于铝基体井与铝基体形成良好的界面结台是颗粒增强铝基复台材料制备过程中必须解决的两个最关键问题。以下是制备颗粒增强铝基复合材料的一些方法: 1、原位法 原位法的原理是通过元素间或元素与化合物之间反应制备陶瓷增强金属基复合材料,是近年来迅速发展的一种新的复合工艺方法,目前已成功地在铝基中实现了硼化物、碳化物、氮化物等的原位反应。由于这些增强相引入的特殊性,不仅它的尺寸非常细小,而且与基体具有良好的界面相容性,使得这种复合材料较传统外加增强相复合材料具有更高的强度和模量,以及良好的高温性能和抗疲劳、耐磨损性能。 原位自生铝基复合材料的制备方法较多,下面进行简略介绍。 (1)自蔓延高温合成法:该技术是利用热脉冲使放热反应起始于反应剂粉末压坯的一端,其生成热使邻近的粉末温度骤然升高.发生化学反应并以燃烧波的形式蔓延通过整个反应物,当燃烧波推行前移时反应物转变成产物。该技术的特点是在无需外加热源的情况下,利用高放热化学反应放出的热量使其在引发后自身延续合成材料,节能,粉末纯度高,粒径细小,活性高,易于烧结并能获得高性能的材料。 (2)原位热压放热反应合成法:该技术是在原位热压技术的基础上发展起来的一种新下艺。在制备过程中将反应物的物料混合或与某种基体原料混合后通过热压工艺制备,组成物相在热压过程中原位生成。该技术的突出优点是利用燃烧合成过程的放热反应,在产物处于反应高温时,施加一定的压力。使材料的致密与反应合成同时完成。获得了事半功倍的效果。 (3)放热弥散技术:这种方法法是美国一个实验室在自蔓延法的基础上改进而来的。

第四章 有色金属热处理原理与工艺

第四章有色金属热处理原理与工艺 一、概述 热处理是有色加工的重要组成部分 有色金属材料:黑色金属以外的所有金属及其合金。 分类:轻有色、重有色、稀有色、贵金属 作用:改善工艺性能,保证后续工序顺利进行;提高使用性能,充分发挥材料潜力。 类型:退火、淬火、时效、形变热处理 退火:加热到适当温度,保温一定时间,缓慢速度冷却。 有色中的退火:去应力退火、再结晶退火、均匀化退火 二、均匀化退火 对象:铸锭、铸件—→浇铸冷速大,造成成分偏析以及内应力 目的:提高铸件的性能,消除内应力,稳定尺寸与组织,消除偏析枝晶,改善性能。 非平衡铸态组织特征:晶内偏析or枝晶偏析;伪共晶or离异共晶;非平衡第二相;最大固溶度偏移。非平衡组织对性能的影响:枝晶偏析&非平衡脆性相—→塑性↓; 晶内偏析、浓度差微电池—→耐腐蚀性↓; 粗大的枝晶和严重的偏析—→各向异性&晶间断裂倾向↑; 非平衡针状组织—→性能不稳定。 固相线以下100~200℃长时间保温—→也称为扩散退火 组织变化:获得均匀的单相、晶粒长大、过饱和固溶体的分解、第二相聚集与球化 性能变化:塑性↑、改善冷变形的工艺性能、耐蚀性↑、尺寸形状稳定、消除残余应力 缺点:加热温度高,时间长,耗时耗能;高温长时间出现变形、氧化以及吸气缺陷;产品强度下降。制定均匀化推过规程的原则: (1)加热温度:温度越高,原子扩散越快,均匀化过程越快,但不宜过高,易发生过烧。一般为 0.90~0.95T m ①高温均匀化退火:在非平衡相线温度以上但在平衡固相线温度以下进行均匀化退火。 适用:大截面工件or铝合金 ②分级加热均匀化退火:现在低于非平衡固相线温度加热,待非平衡相部分溶解及固溶体 内成分不均匀部分降低,从而非平衡固相线温度升高后,再加热 至更高温度保温,在此温度下完成均匀化退火过程。 目的:均匀化更迅速、更彻底,且避免过烧 适用:镁合金 (2)保温时间:包括非平衡相溶解及消除晶内偏析所需的时间 取决于退火温度:T↑,D↑,时间↓; 铸锭原始组织特征:合金化程度、第二相分散度、尺寸 铸锭的致密程度 (3)加热速度与冷却速度 原则:铸锭不产生裂纹和大的变形,不能过快or过慢 主要采用均匀化退火的合金:Al合金、Mg合金、Cu合金中的锡磷青铜、白铜

镍基复合材料 57-1

镍基复合材料是以镍及镍合金为基体制造的。由于镍的高温性能优良,因此这种复合材料主要是用于制造高温下工作的零部件。 镍基复合材料主要用于液体火箭发动机中的全流循环发动机。这种发动机的涡轮部件要求材料在一定温度下具有高强度、抗蠕变、抗疲劳、耐腐蚀、与氧相容。在目前正在研制的系统中这些部件选用镍基高温合金。虽然用SiC 颗粒或纤维增强的复合材料可以达到高强度、高刚度和抗蠕变。但在全流循环发动机的富氧驱动气体环境下,这些材料不能兼顾与氧的相容性。发动机起动瞬变过程的热冲击环境,排除了涡轮叶片采用加涂层的材料系的可能。 因此,用整体材料制作的涡轮叶片,必须经受住富氧燃烧产物所形成的环境。因为涡轮部件和涡轮盘在大约9min 运行中一般不用冷却,所以在短时运行中,整体材料温度达到730℃是正常的。对某些设计,希望密度低于6.5g/cm3 的材料的强度要大于1040MPa。应力、温度和化学环境都十分苛刻,要延长维修平均间隔时间(MTBR)使这些材料性能目标更难达到。其它非旋转部件也必须经受住极端运行环境的考验。喷注器面板、喷注壳体和预燃烧器在高温下都必须抗氧化、耐腐蚀、抗氢脆。喷嘴调节和控制流入主燃烧室的推进剂流量。预燃烧室是个小型燃烧室。在这个燃烧室里,产生涡轮驱动气体。在目前一些系统(其中一些被有效冷却)中,这些部件使用钴合金。未来发动机的这些部件,预计有极端的热环境(气体温度接近918℃)和高达62MPa 的压力。Si3N4 整体材料正在用作喷嘴壳体,但陶瓷壳体与金属推力室的匹配困难还没有解决。由于喷嘴壳体的形状是轴对称的,所以早就有人建议这种壳体采用连续纤维增强的复合材料,但部件的匹配条件向连续纤维增强的复合材料提出挑战。 以下为两种比较典型的镍基复合材料及其主要性能: (一)、镍基变形高温合金 以镍为主要基体成分的变形高温合金。镍基变形高温合金以汉语拼音字母“GH”加序号表示,如GH36、GH49、GH141等。它可采用常规的锻、轧和挤压等冷、热变形手段加工成材。按强化方式可分为固溶强化镍基变形高温合金,弱时效强化镍基变形高温合金和强时效强化镍基变形高温合

纳米Al2O3-40%TiO2复相陶瓷颗粒增强镍基合金复合涂层的摩擦学性能

Trans. Nonferrous Met. Soc. China 23(2013) 2618? 2627 Tribological properties of nanostructured Al 2O 3?40%TiO 2 multiphase ceramic particles reinforced Ni-based alloy composite coatings Long HE, Ye-fa TAN, Hua TAN, Chun-hua ZHOU, Li GAO Engineering Institute of Engineering Corps, PLA University of Science and Technology, Nanjing 210007, China Received 10 July 2012; accepted 20 December 2012 Abstract: The Ni-based alloy composite coatings reinforced by nanostructured Al 2O 3?40%TiO 2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al 2O 3, γ-Al 2O 3 and rutile-TiO 2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6?12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear. Key words: nanostructured Al 2O 3?TiO 2 multiphase ceramic particles; Ni-based alloy; composite coating; plasma spray; friction; wear 1 Introduction Aluminum alloys have become the important materials to achieve lightweight of machinery due to their low density, high specific strength, good electrical and thermal conductivity, which are widely used in mechanical industry, aerospace industry, national defense and other high-tech areas [1,2]. However, it is hard for aluminum alloy frictional parts to meet the needs of severely abrasive working condition because of the low hardness and poor wear resistance that restrain their further applications to a great extent [3,4]. Plasma spray technology possesses convenient process, high efficiency and excellent coating performance, which shows great effect and application potential in surface repairing and strengthening of mechanical parts made of light metals [5?7]. For example, ALTUNPAK et al [8] prepared SiC particles reinforced Al ?Si composite coating on the surface of aluminum alloy by plasma spray. The generation of Al 4C 3 brittle phase by reactions between particle and matrix in foundry or sintering process was avoided and the composite coating exhibited better wear resistance than the substrate. The plasma spraying Al 2O 3/ Ni ?Cr ?Cr 3C 2 composite coatings prepared by CHEN et al [9] showed a low friction coefficient of 0.0179 and wear ratio of 6.7×10?4 compared with the 7A55 aluminum alloy substrate. With the development of nanotechnology, nanostructured Al 2O 3?TiO 2 series multi-phase ceramic particles are widely used in plasma spray, the coatings prepared own excellent friction and wear properties. RICO et al [10] studied the tribological properties of plasma spraying Al 2O 3?13%TiO 2 nano and micron coatings, and found that the friction coefficient of nano coating was lower than that of the micron coating and the wear loss was reduced by 1.5 times. LU et al [11] also discovered that the friction coefficient and wear loss of Al 2O 3?13%TiO 2 nano coating were low compared with the micron coating, indicating good anti-friction and anti-wear properties. Owing to the excellent anti-wear, anti-corrosion and anti-high temperature oxidation properties [12], plasma spraying Ni-based alloy coatings are capable of improving the wear resistance of aluminum alloy frictional parts as surface strengthening coatings. Nevertheless, the increasingly severe working conditions call for better tribological properties of Ni-based alloy Corresponding author: Ye-fa TAN; Tel: +86-25-80821055; E-mail: tanyefa7651@https://www.360docs.net/doc/1d8816743.html, DOI: 10.1016/S1003-6326(13)62776-4

复合电镀工艺的简介

复合电镀工艺的简介 现代电镀网讯: 1、复合电镀的发展历程及特点 复合电镀是20世纪20年代发展起来的一种新的电镀镀种,到1949年才出现了第一个专利,这就是美国人西蒙斯(Simos)利用金刚石与镍共沉积制作切削工具的金刚石复合镀技术。此后复合镀获得各国电镀技术工作者的重视,研究和开发都十分活跃,发展到今天则成为电镀技术中一个非常重要的分支领域。 复合电镀的特点是以镀层为基体而将具有各种功能性的微粒共沉积到镀层中,来获得具有微粒特征功能的镀层。根据所用微粒不同而分别有耐磨镀层、减摩镀层、高硬度切削镀层、荧光镀层、特种材料复合镀层、纳米复合镀层等。 几乎所有的镀种都可以用作复合镀层的基础镀液,包括单金属镀层和合金镀层。但是常用的复合镀基础镀液多以镀镍为主,近来也有以镀锌和合金电镀为基础液的复合镀层用于实际生产。 复合微粒早期是以耐磨材料为主,比如碳化硅、氧化铝等,现在则发展为有多种功能的复合镀层。特别是纳米概念出现以来,冠以纳米复合材料的复合镀层时有出现。这正是复合镀层具有巨大潜力的表现。 2、复合电镀原理 复合电镀也叫包覆镀、镶嵌镀,是在金属镀层中包覆固体微粒而改善镀层性能的一种新工艺。根据被包覆的固体微粒的性质,而制作出不同功能的复合镀层。 在研究复合电镀共沉积的过程中,人信曾提出3种共沉积机理,即机械共沉积、电泳共沉积和吸附共沉积。目前较为公认的是由N.Guglielmi在1972年提出的两段吸附理论。Guglielmi提出的模型认为,镀液中的微粒表面为离子所包围,到达阴极表面后,首先松散地吸附(弱吸附)于阴极表面,这是物理吸附,是可逆过程,微粒逐步进入阴极表面,继而被沉积的金属所埋入。 该模型对弱吸附步骤的数学处理采用Langmuir吸附等温式的形式。对强吸附步骤,则认为微粒的强吸附速率与弱吸附的覆盖度和电极与溶液界面的电场有关。一些研究耐磨性镍金刚石复合镀层的共沉积过程显示,镍-金刚石共沉积机理符合Guglielmi的两步吸附模型,其速度控制步骤为强吸附步骤。到目前为止,复合电沉积和其他新技术、新工敢一样,实践远远地走在理论的前面,其机理的研究正在不断的发展中。 3、复合电镀的添加剂 复合电镀的基体镀层往往可以采用本镀种原有的添加剂系列,比如镀镍为载体的复合镀层,可以用到低应力的镀镍光亮剂等。但是根据复合电镀的原理,复合电镀本身也需要用到一些添加剂,以促进复合和微粒的共沉积,这些添加剂依其作用而分别有微粒电性能调整剂、表面活性剂、抗氧化剂、稳定剂等。 (1).电荷调整剂 由于微粒在电场作用下与镀层共沉积是复合镀的重要过程,让微粒带有正电荷有利于共沉积,但是大多数微粒是电中性的,需要通过一定处理让其表面吸附带正电荷的离子,从而成为荷电微粒,某些金属离子如Ti+、Rb+等可以在氧化铝等表面吸附,从而形成带正电荷的微粒,有利于与镀层共沉积。某些络盐、大分子化合物也有调整微粒电荷的功能。为了使微粒表面能与相应的化合物有充分的结合,所有复合镀都要求添加到镀液中的微粒进行表面处理,类似电镀过程中的除油和表面活化,以利以获得有利于共沉积的电性能。 (2).表面活性剂 在以碳化硅为复合微粒的复合镀中,加入氟碳型表面活性剂,有利于微粒的共沉积。因此有些表面活性剂也是一种电位调整剂。但表面活性剂还有分散剂的作用,这对于微粒在镀液中的均匀分布也是很重要的。还有一些表面活性剂由于有明显的电位特征而在特定的电位下才有明显的作用,这对梯度结构的复合镀是有利的。 (3).辅助添加剂 还有一些络合剂、抗氧化剂等对基础液有稳定作用的添加剂,在有利于复合镀液的稳定性的同时,可以有利于微粒的共沉积。同时,电镀过程中的添加剂与许多复配添加剂一样,

颗粒增强铝基复合材料研究与应用进展

颗粒增强铝基复合材料研究与应用进展摘要:综述了颗粒增强铝基复合材料的研究现状,从基体、增强体的选择,铝基复合材料的制备方法,影响复合材料性能的因素和改善措施等方面进行阐述,并介绍了该复合材料的广泛应用。 关键词:颗粒;铝基复合材料;制备方法; 应用 Abstract :The research progress of particle reinforced aluminum matrix composite was summarized. The research status of the composite was reviewed in detail from the choice of the reinforcement and the matrix, the preparation technique of aluminum matrix composite, the factors which can affect the performance of the composite. Key words :particle; aluminum matrix composite; preparation methods; application 1.前言 铝基复合材料是以金属铝及其合金为基体 , 以金属或非金颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同 , 铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。由于颗粒增强铝基复合材料具有高的比强度、比刚度,优良的高温力学性能和耐磨性,并且价格便宜,适于批量生产,良好的耐磨性和导热性能等优点,在航天、航空、汽车、电子、光学等工业领域具有相当广泛的应用前景。 颗粒增强复合材料是指弥散的硬质增强相的体积超过 20%的复合材料,而不包括那些弥散质点体积比很低的弥散强化金属的金属基复合材料[1] 。此外,这种复合材料的颗粒直径和颗粒间距很大,一般大于1μm。在这种复合材料中,增强相是主要的承载相,而基体的作用则在于传递载荷和便于加工。这种材料虽然其增强效应远不及连续纤维,但它主要是可以弥补某些材料性能的不足,如增加刚度、耐磨性、耐热性、抗蠕变等。在这种复合材料中,硬质增强相造成的对基体的束缚作用能阻止基体屈服。颗粒复合材料的强度通常取决于颗粒的直径、间距和体积比,但基体很重要。除此之外,这种材料的性能还对界面性能及颗粒排列的几何形状十分敏感[2]。 2.铝基复合材料的选择

镍基复合材料

镍 基 复 合 材 料 的 应 用 10级金属(1)班 1007024101

镍基复合材料的应用 镍基复合材料是以镍及镍合金为基体制造的。由于镍的高温性能优良,因此这种复合材料主要是用于制造高温下工作的零部件。 镍基复合材料主要用于液体火箭发动机中的全流循环发动机。这种发动机的涡轮部件要求材料在一定温度下具有高强度、抗蠕变、抗疲劳、耐腐蚀、与氧相容。在目前正在研制的系统中这些部件选用镍基高温合金。虽然用SiC 颗粒或纤维增强的复合材料可以达到高强度、高刚度和抗蠕变。但在全流循环发动机的富氧驱动气体环境下,这些材料不能兼顾与氧的相容性。发动机起动瞬变过程的热冲击环境,排除了涡轮叶片采用加涂层的材料系的可能。 因此,用整体材料制作的涡轮叶片,必须经受住富氧燃烧产物所形成的环境。因为涡轮部件和涡轮盘在大约9min 运行中一般不用冷却,所以在短时运行中,整体材料温度达到730℃是正常的。对某些设计,希望密度低于6.5g/cm3 的材料的强度要大于1040MPa。应力、温度和化学环境都十分苛刻,要延长维修平均间隔时间(MTBR)使这些材料性能目标更难达到。其它非旋转部件也必须经受住极端运行环境的考验。喷注器面板、喷注壳体和预燃烧器在高温下都必须抗氧化、耐腐蚀、抗氢脆。喷嘴调节和控制流入主燃烧室的推进剂流量。预燃烧室是个小型燃烧室。在这个燃烧室里,产生涡轮驱动气体。在目前一些系统(其中一些被有效冷却)中,这些部件使用钴合金。未来发动机的这些部件,预计有极端的热环境(气体温度接近918℃)和高达62MPa 的压力。Si3N4 整体材料正在用作喷嘴壳体,但陶瓷壳体与金属推力室的匹配困难还没有解决。由于喷嘴壳体的形状是轴对称的,所以早就有人建议这种壳体采用连续纤维增强的复合材料,但部件的匹配条件向连续纤维增强的复合材料提出挑战。 以下为两种比较典型的镍基复合材料及其主要性能: (一)、镍基变形高温合金 以镍为主要基体成分的变形高温合金。镍基变形高温合金以汉语拼音字母“GH”加序号表示,如GH36、GH49、GH141等。它可采用常规的锻、轧和挤压等冷、热变形手段加工成材。按强化方式可分为固溶强化镍基变形高温合金,弱时效强化镍基变形高温合金和强时效强化镍基变形高温合金3类。

纳米金刚石复合镀层制备工艺的研究

纳米金刚石复合镀层制备工艺的研究 王立平,高燕,刘惠文,徐洮 (中国科学院兰州化学物理研究所固体润滑国家重点实验室,甘肃兰州730000) [摘要]纳米金刚石复合镀层具有金刚石和纳米颗粒的双重特性,应用前景广阔。采用复合电镀法制备了Ni-纳米金刚石复合镀层,考察了阴极电流密度、镀液pH值以及搅拌强度对纳米复合镀层显微硬度的影响,并分析了Ni-纳米金刚石复合镀层的共沉积过程。结果表明,选择适当的共沉积工艺参数,可以制备出同底材结合牢固,金刚石微粒弥散较均匀的高硬度纳米复合镀层,基质Ni中金刚石粒子的含量与镀面的机械俘获粒子的能力有关。 [关键词]复合镀层;纳米金刚石;显微硬度;工艺参数 0引言 纳米复合镀层所表现出的诸多优异性能已使纳米复合镀技术迅速成为电镀技术发展的又一热点[1]。目前,已经开发出各种纳米结构的耐磨减摩、装饰防护、耐高温以及电子复合镀层[2]。利用炸药爆炸法合成的纳米金刚石是目前所有方法中得到的最细的金刚石超粉,它不仅具有金刚石固有的高硬度、高耐磨特性,而且具有比表面积大、量子尺寸等特殊效应,金刚石和纳米颗粒的双重特性,使其在制备功能性纳米复合镀层中显示出广阔的应用前景[3]。采用普通瓦特镀液,添加纳米金刚石微粉制备了镍基纳米复合镀层,考察了工艺参数对复合镀层硬度的影响,得到了纳米金刚石复合共沉积的最佳工艺条件。 1试验部分 (1)复合电镀工艺流程:45钢→打磨、抛光→超声波除油→活化处理(表面强活化和弱活化)→纳米复合电镀→镀后处理。 (2)复合镀液以普通瓦特型光亮镀镍液为基础液,纳米金刚石添加量为10 g/L;镀液温度45℃,电流密度1~6A/dm2,pH=2~6 ,搅拌方式为磁力搅拌。电镀前将纳米金刚石粉与适量的有机分散剂混合后加入镀液,经超声波分散一定时间后,开始复合电镀。 (3)采用MV-5-VM型显微硬度仪测定复合镀层的显微硬度,用来判断纳米金刚石颗粒对复合镀层的强化效果。用光学显微镜和JSM-5600LV型扫描电子显微镜对镀层的表面形貌进行观察。采用WS-97型自动划痕仪对纳米复合镀层与底材的结合强度进行了测试。以镀层剥落时的最小临界载荷Lc作为镀层结合强度的度量。 2结果与讨论 2.1工艺参数对复合镀层硬度的影响 2.1.1阴极电流密度的影响 在电沉积其他工艺条件不变的情况下,阴极电流密度与镍-纳米金刚石复合镀层显微硬度关系见图1。图1电流密度对纳米复合镀层硬度的影响由图1中可见,随着阴极电流密度的增加,纳米复合镀层的硬度呈现出先缓慢增大后急剧减小的趋势,当电流密度大于 5 A/dm2后,复合镀层的硬度几乎与纯镍镀层硬度相当。原因是随着阴极电流密度的增大,金属镍对纳米金刚石颗粒的包裹能力增强,同时电沉积过程中的电场力增强,即阴极对吸附着少量正离子的纳米金刚石的静电引力增强,对金刚石和基质金属镍的共沉积有一定的促进作用。 当电流密度继续提高时,镍的沉积速度将会显著加快。然而,纳米金刚石被输送到阴极附近并被嵌入镀层中的速度,随电流密度而增大的速度,常赶不上基质镍沉积速度的提高[4],所以当阴极电流密度太大时,金刚石沉积量反而减少,复合镀层的硬度自然下降。同时电流密度过大时,阴极表面析氢加剧,阻碍了纳米金刚石与阴极表面的吸附。这也说明金刚石颗粒到达阴极表面并不是主要靠电场力的作用。综合其他复合镀工艺[5]发现,与微米级颗粒相比,对于纳米颗粒的共沉积,最优化的施镀电流密度大幅下降,这可能是由于纳米颗粒的特有的小尺寸等特性所影响的。

碳化硅颗粒增强铝基复合材料

碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基复合材料, 是目前普遍公认的最有竞争力的金属基复合材料品种之一。尽管其力学性能尤其是强度难与连续纤维复合材料相匹敌, 但它却有着极为显著的低成本优势, 而且相比之下制备难度小、制备方法也最为灵活多样, 并可以采用传统的冶金工艺设备进行二次加工, 因此易于实现批量生产。冷战结束后的20 世纪90 年代, 由于各国对国防工业投资力度的减小, 即使是航空航天等高技术领域, 也越来越难以接受成本居高不下的纤维增强铝基复合材料。于是, 颗粒增强铝基复合材料又重新得到普遍关注。特别是最近几年来, 它作为关键性承载构件终于在先进飞机上找到了出路, 且应用前景日趋看好, 进而使得其研究开发工作也再度升温。碳化硅颗粒增强铝基复合材料主要由机械加工和热处理再结合其的性质采用一定的方法制造。如铸造法、粘晶法和液相和固相重叠法等。 碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。纳米碳化硅颗粒分布的均匀与否与颗粒的大小、颗粒的密度、添加颗粒的体积分数、熔体的粘度、搅拌的方式和搅拌的速度等因素有关。纳米颗粒铝

的分散的物理方法主要有机械搅拌法、超声波分散法和高能处理法。对复合材料铸态组织的金相分析表明,碳化硅复合材料挤压棒实物照片 颗粒在宏观上分布均匀,但在高倍率下观察,可发其余代表不同粒度、含量的复台材料现SiC颗粒主要分布在树枝问和最后凝固的液相区,同时也有部分SiC颗粒存在于初生晶内部,即被初生晶所吞陷。从凝固理论分析,颗粒在固液界面前沿的行为与凝固速度、界面前沿的温度梯度及界面能的大小有很大关系,由于对SiC颗粒的预处理有效地改善了它与基体合金的润湿性,且在加入半固态台金浆料之前的预热温度大大低于此时的合金温度,故而部分SiC颗粒就可能直接作为凝固的核心而存在于部分初生晶的内部,但是太多数SiC在枝晶相汇处或最后凝固的液相中富集,这便形成了上述的组织形貌。金属中弥敷分布的铝对金属中的品界运动,位错组态及位错运动都有响.纳米碳化硅颗粒增强复合材料具有细小而均匀的组织其原因应该是细小而均匀分布的纳米颗粒高教率地占据空间,颗粒间距较小.有效地控制晶粒的长大;微米碳化硅颗粒增强复台材料中.颗粒尺寸较大,它在空间的分布间距也较大,由于基体热膨胀系数的差异而引起的局部应力也越大,造成了颗粒附近与远离颗粒处基体状态的差异.这种差异是造成微米颗粒增强复合材料组织不均匀的原因。 碳化硅颗粒增强铝基复合材料的航空航天工程应用;1、在惯导系统中的潜在应用;在我国自行研制的诸多型号机载、弹载惯性导航系统中, 不同程度地存在着现用的铸造铝合金结构件比刚度不足、热

金属热处理原理与工艺复习提纲精选版

金属热处理原理与工艺 复习提纲 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、名词解释 1.正火:把零件加热到临界温度以上30-50℃,保温一段时间,然后在空气中冷却的热处理工艺。 2.退火:将钢加热、保温后,随炉冷却后,获得接近平衡状态组织的热处理工艺。 3.回火:将淬火钢重新加热到A1线以下某一温度,保温一定时间后再冷却到室温的热处理工艺。 4.淬火:将钢加热到AC1或AC3以上某一温度,保温一定时间,以大于临界冷却速度进行快速冷却,获得马氏体或下贝氏体组织的热处理工艺。 5.淬硬性:钢淬火后的硬化能力。 6.淬透性:钢淬火时获得马氏体的能力。 7.贝氏体:过冷奥氏体中温转变的产物。 8.马氏体:C原子溶入 -Fe形成的饱和间隙固溶体。 9.贝氏体转变:奥氏体中温转变得到贝氏体的过程。 10.马氏体转变:将奥氏体快速冷却到Ms点以下得到马氏体组织的过程。 11.脱溶:从过饱和固溶体中析出第二相(沉淀相)、形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。 12.固溶:将双相组织加热到固溶度线以上某一温度保温足够时间,获得均匀的单相固溶体的处理工艺。 13.固溶强化:当溶质原子溶入溶剂原子而形成固溶体时,使强度、硬度提高,塑性、韧性下降的现象。 14.渗碳:向钢的表面渗入碳原子的过程。

15.渗氮:向钢的表面渗入氮原子的过程。 16.化学热处理:将零件放在特定的介质中加热、保温,以改变其表层化学成分和组织,从而获得所需力学或化学性能的工艺总称。 17.表面淬火:在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。 二、简答题 1.材料的强韧化机制及其应用 答:固溶强化; 位错强化; 第二相强化; ④细晶强化。 2.相变应力/组织应力是什么对组织性能有什么影响 3. 答:组织应力又称相变应力:金属制品在加热和冷却时发生相变,由于新旧相之间存在着结构和比容差异,制品各部分又难以同时发生相变,或者各部分的相变产物有所不同,也会引起应力,这种因组织结构转变不均均而产生的应力称为组织应力。 热应力:金属制品在加热和冷却过程中,由于各部分加热速度或冷却速度不同造成制品各部分温度差异,从而热胀冷缩不均匀所引起的内应力。4.奥氏体化的形成及控制(形成过程、机理、及控制措施)其中包含的化学反应有哪些? 答:奥氏体:C溶于γ–Fe的八面体间隙形成间隙式固溶体

纳米复合镀层的研究进展

第26卷第2期 唐山师范学院学报 2004年3月 Vol. 26 No.2 Journal of Tangshan Teachers College Mar. 2004 ────────── 收稿日期:2003-07-01 作者简介:曹茂盛(1961-),男,江苏南通人,北京理工大学材料学院教授,博士后,博士生导师,主要从事纳米材料、吸 波材料及复方材料的研究。 纳米复合镀层的研究进展 曹茂盛 (北京理工大学 材料学院,北京 100083) 摘 要:介绍了纳米复合镀层的制备、分类及耐磨减磨、耐腐蚀、耐高温、自润滑、催化、导磁等方面的性能,综述了近年来有关纳米颗粒在复合镀层制备过程中的沉积机理和影响因素。 关键词:纳米颗粒;复合镀层 中图分类号:N34 文献标识码:A 文章编号:1009-9115(2004)02-0006-04 1 引言 复合镀技术是近年来发展起来的一项新技术,它是将一种或数种不溶性固体颗粒加入到镀液中,经过搅拌使之均匀地悬浮于镀液中,使固体颗粒与金属离子共沉积而形成复合镀层的一种沉积技术。该技术的研究已有20多年的历史,利用复合镀技术可以制备出一系列性能广泛变化的复合镀层,在强化材料表面等方面具有显著的效果。目前国内外研究及应用广泛的复合镀层采用的第二相粒子多是微米级的,其性能不能满足科技发展的要求。 纳米材料科学的发展,给复合镀技术带来了新的契机,纳米材料的表面效应、小尺寸效应、巨磁电阻效应、宏观隧道效应等使其呈现出常规材料不具备的特殊的光学、电学、力学、催化等方面的特性,使纳米材料具有比普通材料高的多的硬度、耐磨性、自润滑耐性和耐腐蚀性。纳米复合镀层就是在镀液中加入纳米固体颗粒,通过和金属共沉积获得镀层,从而使镀层复合了纳米材料的特异功能。纳米颗粒在复合镀层中的应用将有力地促进复合镀层的发展。 2 沉积机理及制备方法简述 纳米颗粒与金属离子共沉积机理包括电化学机理、吸附机理和力学机理等,这些理论强调沉积发生的热力学条件,Wagner 和Trand 等人提出的混合电位理论侧重于沉积发生的动力学条件。由于沉积过程本身是一系列反应链相互作用的结果,反应过程中许多中间态离子寿命短且难以检测,所以至今沉积机理尚无完善的理论解释。而且整个沉积过程是一个动态过程,最终镀层中纳米颗粒含量与各 个反应环节均有关联。综合上述的机理,共沉积过程可分为3个阶段:(1)悬浮于镀液中的纳米颗粒,由镀液深处移向试样表面,需要依靠搅拌形成的动力场或电场力来实现;(2)纳米颗粒粘附于试样表面,其动力学因素复杂,与颗粒、电极基质金属、镀液、添加剂和电镀操作条件等因素有关;(3)纳米颗粒被试样表面析出的基质金属牢固嵌入,形成复合镀层。 纳米复合镀层的制备工艺主要有复合电镀法、复合化学镀法及复合电刷镀等方法。复合电镀是指在电解质溶液中加入一种或几种不溶性纳米固体颗粒,在金属离子被还原的同时,将不溶性的纳米固体颗粒均匀地夹杂到金属镀层中,复合镀层是一类以基质金属为均匀连续相和以不溶性纳米粒子为分散相的金属基复合材料。复合化学镀是指利用化学镀技术来制备复合镀层。化学镀对粒子具有较强复合能力,用悬浮微粒镀液可获得微粒含量相当高的复合镀层。复合电刷镀是指为获得弥散镀层,在金属镀液中加入不溶性固体微粒,使这些固体微粒与金属镀液中的金属离子共沉积,并均匀弥散在金属镀层中的镀层而采用刷镀技术的一种工艺方法。 3 纳米结构表面化学复合镀的研究现状 3.1 纳米结构复合镀层的研究 纳米微粒在理论上可以大幅度提高镀层中化合物的含量,并给镀层带来优良的功能特性,目前开发的有镍基、铜基、银基等镀层,其中大量研究和应用的是镍基化学复合镀。常见的镀层主要分为两类:一类是加入硬质颗粒形成的高硬度、耐磨损镀层;另一类是加入减摩颗粒,形成自润滑镀层。

金刚石涂层

化学气相沉积法制备金刚石涂层 金刚石是硬度最高的固体物质(HV= 100GPa),性质稳定,耐磨,但却难以加工成各种所需的零件和制品。采用气相沉积法制备金刚石涂层,可以使金刚石性质得以从分利用,同时也节约了成本。下面以金刚石涂层拉拔模具的制备为例,简单介绍化学气相沉积法金刚石涂层的制备方法。 金属线材行业是我国的主要传统产业,而金属线材生产企业重要的易消品就是拉拔模具,其使用方式如图1所示,拉拔模具的性能决定了金属线材的质量、生产效率和生产成本。目前线材行业所用的模具主要为硬质合金模具和聚晶金刚石模具两大类。硬质合金模具寿命短,易粘料,生产效率低;聚晶金刚石模具价格高,制作较大尺寸模具和异形模具非常困难,且韧性较差。本文应用化学气相沉积 (chemicMvaperdepsdition,CVD)金刚 石涂层技术,制成金刚石涂层拉拔模 具,克服了硬质合金拉拔模具不耐磨 和聚晶金刚石拉拔模具韧性较差的缺 点,成为新一代的拉拔模具。 金刚石涂层拉拔模具的制备过 程:金刚石涂层拉丝模具是以YG6 硬质合金模具为基体,经过特殊的表 面处理后,用气相沉积方法,在硬质合金拉丝模具基体工作区域表面沉积10—30p,m的多晶金刚石膜。经修整、抛光、镶套后制作成成品,具体过程如图2所示。 (1)准备工作 选择YG6牌号硬质合金模具,坯料孔型和尺寸与所要制备的成品模具相适应,通过内孔研磨修整工艺将模具坯料修整为合适的形状,预留30u m 左右的尺寸余量,以配合涂层厚度尺寸。将修整完毕的硬质合金模具进行喷砂处理,去除表面的污染物和疏松层,再使用蒸馏水、酒精在超声波清洗机中清洗。最后将模具在配制好的酸、碱液中进行表面腐蚀处理,并采用蒸馏水、酒精超声波清洗,完毕后将试件装入自制的热丝CVD金刚石沉积设备中。 (2)涂层沉积

纳米复合电镀

纳米复合电镀 1208030123侯天润 引言:随着技术的发展,对材料性能的要求更为严格和挑剔,单一材料难以满足工业生产的某些特殊性能,需要多种材料复合。因此开发各种新型结构与功能材料,是目前材料科学中的一个重要研究方向。近年来,高速发展起来的复合镀层以其独特的物理、化学、生物及机械性能,成为复合材料的一枝新秀,正日益过得广泛的关注和应用。复合电镀技术自20世纪60年代开始应用于工业领域以来,日益受到人们的重视。复合电镀又称为分散电镀、镶嵌电镀,是用电镀的方法使金属(如Ni,Cu,Ag,Co,Cr等)与不溶性固体微粒(如Al2O3、SiC、ZrO2、WC.SiO2、BN、Cr2O3、SiN4、B4C等)共沉积获得复合材料的一种工业过程。不仅电沉积复合镀层在不断发展,而且利用复合化学镀技术也可以制备出一系列性能广泛变化的复合镀层,复合镀层在强化材料表面性能方面具有显著的效果[1]。但由于其加入的固体颗粒多为微米级,其性能不能满足科技的飞速发展的要求,应用范围受到了一定的限制。自纳米材料诞生以来,国内复合镀的研究逐渐增多,随着认识的深入和纳米材料科学的迅猛发展,人们意识到纳米微粒具有很多独特的物理及化学性能,包括表面效应、体积效应、量子尺寸效应、宏观量子隧道效应和一些奇异的光、点、磁性质[2],若化合物颗粒尺寸减小到纳米量级,理论上将可以大幅度提高镀层中的化合物复合量,更重要的是纳米颗粒的引入将有可能给镀层性能带来意想不到的改变,这一性能的改变将有可能更多的体现功能性能特性上。现已支出包括金属、非金属、有机、无机和生物等各种纳米复合材料[3],成为科技发展前沿具有挑战性的研究点。 纳米复合电镀工艺研究: 镀工艺主要包括镀液 PH,搅拌速度,镀液温度、电流密度。电流特性、电镀速度和纳米电镀沉积技术这些参数的不同,会对复合镀层的表面形貌、结构及性质产生很大的影响 [4]。 纳米电镀沉积技术:电镀的基本原理就是在电场作用下,带电离子沉积在被镀物上镀层质量与镀液中的离子浓度和工艺参数密切相关。沉积的原理为吸附,第一步镀液中的颗粒在阴极表面形成吸附层;第二步颗粒在强力搅拌下通过流动层;第三步颗粒通过扩散层到阴极表面;第四步弱吸附;第五步为强吸附。随着工业生产自动化程度的日渐提高、工艺参数的选择及各种添加剂的合理使用,一种所谓纳米晶镀层结构已经得到实际应用,使得镀层的硬度、耐磨性有显著提高,光洁度和致密性得到改善,气孔率大幅度下降,出现“无气孔镀层”概念,这对于用于电接触材料的贵金属镀层有着重要意义[5]。镀液的PH:镀液的PH会造成纳米微粒表面不同的带电情况,进而影响复合镀层的表面形貌甚至结构,最终导致复合镀层性质的显著变化。例如,PH=4.8时得到的镀层的孔隙度要低于其它试样,但晶界容积率达到最大,就使得纳米微粒在Ni矩阵中得到很好的分散,进而提高了复合镀层的机械性质。镀液的搅拌速度:电镀过程中,为了使微粒在镀液中达到充分、均匀的悬浮状态以及便于微粒向阴极表面的输送,必须依靠搅拌的作用,因此搅拌速度即转速的大小对微粒在复合镀层中的含量、镀层的表面结构和性能的影响较大。镀液温度:一般在20℃(常温)-65℃范围内进行调整,温度高,沉积

相关文档
最新文档