基于FPGA的正弦信号发生器

基于FPGA的正弦信号发生器
基于FPGA的正弦信号发生器

基于FPGA的正弦信号发生器设计

摘要:本设计结合了EDA技术和直接数字频率合成(DDS)技术。EDA技术是现代电子设计技术的核心,是以电子系统设计为应用方向的电子产品自动化的设计技术。DDS技术则是最为先进的频率合成技术,具有频率分辨率高、频率切换速度快、相位连续、输出相位噪声低等诸多优点。

本文在对现有DDS技术的大量文献调研的基础上,提出了符合FPGA结构的正弦信号发生器设计方案并利用MAXPLUSⅡ软件进行了设计实现。文中介绍了EDA技术相关知识,同时阐述了DDS技术的工作原理、电路结构,及设计的思路和实现方法。经过仿真测试,设计达到了技术要求。

关键词:现场可编程门阵列(FPGA);直接数字频率合成(DDS);正弦波信号发生器

The design of sine signal generating device

based on FPGA

Abstract:The design that combines EDA technology and Direct Digital Synthesis (DDS) technology. EDA technology is the design of modern electronic technology at the core, electronic system design direction for the application of electronic design automation products technology. DDS technology is the most advanced frequency synthesizer technology with the high-frequency resolution and frequency switching speed, continuous phase, low phase noise output many advantages.

Based on the technology of existing DDS study of the extensive literature on the basis of FPGA with the structure of the sinusoidal signal generator design and the use of FPGA II software located Total realized. The paper introduced the EDA technology-related knowledge, and elaborated on the DDS technology principle, circuit structure, and design ideas and methods. After simulation tests designed to achieve the technical requirements.

Keywords:FPGA;DDS;sine signal generating device

第1章绪论

1.1 引言

直接数字频率合成(Digital Direct Frequency Synthesis)是一种比较新颖的频率合成方法。这个理论早在20世纪70年代就被提出,它的基本原理就是利用采样定理,通过查表法产生波形。由于硬件技术的限制,DDS技术当时没能得到广泛应用。但是随着大规模集成电路的飞速发展,DDS技术的优越性已逐步显现出来。今天DDS技术凭借其优越的性能已成为现代频率合成技术中的佼佼者,广泛用于接收机本振、信号发生器、仪器、通信系统、雷达系统等,尤其适合跳频无线电通信系统。不少学者认为,DDS是产生信号和频率的一种理想方法,发展前景十分广阔。

基于FPGA的DDS模型是在EDA技术逐步完善的今天才得以建立起来的。EDA技术依靠功能强大的电子计算机,在EDA工具软件平台上,对以硬件描述语言HDL为系统逻辑描述手段完成的设计文件,自动地完成逻辑编译、简化、分割、综合、优化和仿真,直至下载到可编程逻辑器件CPLD/FPGA或专用集成电路ASIC芯片中,实现即定的电子电路设计功能。EDA技术使得电子电路设计者的工作仅限于利用硬件描述语言和EDA软件平台来完成对系统硬件功能的实现,极大地提高了设计效率,缩短了设计周期,节省了设计成本。

EDA技术是现代电子设计技术的核心。20世纪90年代以来,微电子工艺有了惊人的发展。为了满足千差万别的系统用户提出的设计要求,最好的办法是由用户自己设计芯片。这个阶段发展起来的EDA工具,目的是在设计前期将原来设计师从事的许多高层次设计工作改由工具来完成。设计师通过一些简单标准化的设计过程,利用微电子厂家提供的设计库来完成数万门ASIC和集成系统的设计与验证。这样就对电子技术的工具提出了更高的要求,提供了广阔的发展空间,促进了EDA技术的形成。

今天,EDA技术已经成为电子设计的重要工具,无论是设计芯片还是设计系统,如果没有EDA工具的支持,都将是难以完成的。EDA工具已经成为现代电路设计工程师的重要工具,正在发挥越来越重要的作用。

1.2 方案比较与确定

设计要求:利用EDA技术,建立正弦信号DDS产生模型,编写源程序,达到频率输出范围1KHz-10MHz、频率步进100Hz、频率稳定度优于104 、带50Ω负载输出电压峰峰值大于1V等要求,完成硬件实现与测试。

【方案一】采用分立元件模拟直接合成法。这种方法转换速度快,频率分辨率高,但其转换量程靠手动来实现,不仅体积大难以集成,而且可靠性和准确度很难进一步提高。

【方案二】采用MAX038芯片来产生正弦波信号。该集成块的输出波形种类多,频率覆盖范围广。它采用的是RC充放电振荡结构。第一,由于模拟器件元件分散性太大,外接的电阻、电容对参数的影响很大,因而产生的频率稳定度差,只能达到4

--。

310

10-

第二,它的频率控制是通过充放电流的大小来实现。因而要达到步进100HZ,所需的电流变化量非常小,精度要求很高。所以采用MAX038芯片难以实现设计要求。

【方案三】采用锁相环合成方法。采用该方案设计输出信号的频率可达到超高频甚至微波段,且输出信号频谱纯度较高。由于锁相环技术是一个不间断的负反馈控制过程,所以该系统输出的正弦信号频率可以维持在一个稳定状态,频率稳定度高。但由于它是采取闭环控制的,系统的输出频率改变后,重新达到稳定的时间也比较长。所以锁相环频率合成器要想同时得到较高的频率分辨率和转换率非常困难,频率转换一般要几毫秒的时间[1],同时频率间隔也不可能做得很小。

【方案四】采用直接数字合成器(DDS),可用硬件或软件实现。即用累加器按频率要求对相应的相位增量进行累加,再以累加相位值作为地址码,取存放于ROM中的波形数据,经D/A转换,滤波即得到所需波形。

以EDA技术为基础,用FPGA实现DDS模型的设计。电路的规模大小和总线宽度可以由设计者根据自己的需要而设定可将波形数据存入FPGA的ROM中。同时外部控制逻辑单元也可在FPGA中实现。方法简单,易于程控,便于集成。用该方法设计产生的信号频率范围广,频率稳定度高,精度高,频率转换速度快。

分析以上四种方案,显然第四种方案具有更大的优越性、灵活性。所以采用方案四进行设计。

1.3 频率合成技术概述

所谓频率合成技术指的是由一个或者多个具有高稳定度和高精确度的频率参考源,通过在频率域中的线性运算得到具有同样稳定度和精确度的大量的离散频率的技术。完成这一功能的装置被称为频率合成器。频率合成器应用范围非常广泛,特别是在通信系统、雷达系统中,频率合成器起了极其重要的作用。随着电子技术的不断发展。频率合成器的应用范围也越来越广泛,对其性能要求也越来越高。频率合成器的主要指标有以下这些:

(1) 输出频率的范围

指的是输出的最小频率和最大频率之间的变化范围。

(2) 频率稳定度

指的是输出频率在一定时间隔内和标准频率偏差的数值,它分长期、短期和瞬间稳定度三种。

(3) 频率分辨率

指的是输出频率的最小间隔。

(4) 频率转换时间

指的是输出由一种频率转换成另一种频率的时间。

(5) 频谱纯度

频谱纯度以杂散分量和相位噪声来衡量,杂散分为谐波分量和非谐波分量两种,主要由频率合成过程中的非线性失真产生;相位噪声是衡量输出信号相位抖动大小的参数。

(6) 调制性能

指的是频率合成器是否具有调幅(AM),调频(FM)、调相(PM)等功能。

频率合成器的实现方法大体可以分成三种:直接频率合成、间接频率合成、直接数字频率合成。下面对这三种方法进行一下简单的介绍。

直接频率合成是一种比较早期的频率合成方法,这种频率合成方法使用一个和多个标准频率源先经过谐波发生器产生各次谐波,然后经过分频、倍频、混频滤波等处理产生所需要的各个频点。这种方法产生的波形,相噪小,频率转换时间短。但是直接频率合成设备比较复杂笨重,并且容易产生杂散。

间接频率合成又称之为锁相频率合成。采用了锁相环技术,对频率进行加、减、乘、除,产生所需的频率。由于锁相环相当于一个窄带跟踪滤波器,所以锁相频率合成的方法对杂散有很好的抑止作用。锁相式频率合成器还易于集成化。但是锁相式频率合成器的频率转换时间比较长,而且在单环的情况下很难做到很小的频率分辨率。

直接数字频率合成(DDS-Digital Direct Frequency Synthesis)是一种比较新颖的频率合成方法。随着科学技术的日益发展这种频率合成方法也越来越体现出它的优越性来。DDS是一种全数字化的频率合成方法。DDS频率合成器主要由频率寄存器、相位累加器、波形ROM, D/A转换器和低通滤波器组成。在系统时钟一定的情况下,输出频率决定于频率寄存器的中的频率字。而相位累加器的字长决定了分辨率。基于这样的结构DDS频率合成器具有以下优点:(1)频率分辨率高,输出频点多,可达N2个频点(假设DDS相位累加器的字长是N);(2)频率切换速度快,可达us量级;(3)频率切换时相位连续;(4)可以输出宽带正交信号;(5)输出相位噪声低,对参考频率源的相位噪声有改

善作用;(6)可以产生任意波形;(7)全数字化实现,便于集成,体积小,重量轻。

1.4 直接数字频率合成技术的现状与应用

由于 DDS的自身特点决定了它存在这以下两个比较明显的缺点:一是输出信号的杂散比较大,二是输出信号的带宽受到限制。DDS输出杂散比较大这是由于信号合成过程中的相位截断误差、D/A转换器的截断误差和D/A转换器的非线性造成的。当然随着技术的发展这些问题正在逐步的到解决。如通过增长波形ROM的长度减小相位截断误差。通过增加波形ROM的字长和D/A转换器的精度减小D/A量化误差。在比较新的DDS芯片中普遍都采用了12bit的D/A转换器。

当然一味靠增加波形ROM 的深度和字长的方法来减小杂散对性能的提高总是有限的。国内外学者在对DDS输出的频谱做了大量的分析以后,总结出了误差的频域分布规律建立了误差模型,在分析DDS频谱特性的基础上又提出了一些降低杂散功率的方法:可以通过采样的方法降低带内误差功率,可以用随机抖动法提高无杂散动态范围(在D/A 转换器的低位上加扰打破DDS输出的周期性,从而把周期性的杂散分量打散使之均匀化)。

此外随着集成电路制造工艺的逐步提高,通过采用先进的工艺和低功耗的设计,数字集成电路的工作速度己经有了很大的提高。现在最新的DDS芯片工作频率己经可以达到1GHz。这样就可以产生频带比较宽的输出信号了。

为了进一步提高DDS的输出频率,产生了很多DDS与其他技术结合的频率合成方法。如当输出信号是高频窄带信号的时候可以用混频滤波的方法扩展DDS的输出,也可以利用DDS的频谱特性来产生高频信号,如输出它较高的镜像频率。

DDS和 PLL相结合的方法也是一种有效的方法[2]。这种方法兼顾了两者的优点,既有较高的频率分辨率,又有较高的频谱纯度。DDS和PLL相结合一般有两种实现方法:DDS激励PLL的锁相倍频方式和PLL内插DDS方式。

DDS不仅可以产生正弦波同时也可以产生任意波,这是其他频率合成方式所没有的。任意波在各个领域特别是在测量测试领域有着广泛的应用。通过DDS这种方法产生任意波是一种简单、低成本的方法,通过增加波形点数可以使输出达到很高的精度,这都是其他方法所无法比拟的。

自80年代以来各国都在研制DDS产品,并广泛的应用于各个领域。其中以AD公司的产品比较有代表性。如AD7008, AD9850, AD9851, AD9852, AD9858等。其系统时钟频率从30MHz到300MHz不等,其中的AD9858系统时钟更是达到了1GHz。这些芯片还具有调制功能。如AD7008可以产生正交调制信号,而AD9852也可以产生FSK,PSK、线性

调频以及幅度调制的信号。这些芯片集成度高内部都集成了D/A转换器,精度最高可达126it。同时都采用了一些优化设计来提高性能。如这些芯片中大多采用了流水技术,通过流水技术的使用,提高了相位累加器的工作频率,从而使得DDS芯片的输出频率可以进一步提高。通过运用流水技术在保证相位累加器工作频率的前提下,相位累加器的字长可以设计得更长,如AD9852的相位累加器达到了48位。而不是之前型号的32位,这样输出信号的频率分辨率大大提高了。同时为了抑止杂散这些芯片大多采用了随机抖动法提高无杂散动态范围(这是由于DDS的周期性,输出杂散频谱往往表现为离散谱线,随机抖动技术使离散谱线均匀化,从而提高输出频谱的无杂散动态范围)。

运用 DDS技术生产的DDS任意波型信号发生器是较新的一类信号源并,且已经广泛投入使用。它不仅能产生传统函数信号发生器能产生的正弦波、方波、三角波、锯齿波,还可以产生任意编辑的波形。由于DDS的自身特点,还可以很容易的产生一些数字调制信号,如FSK, PSK等。一些高端的信号发生器甚至可以产生通讯信号。同时输出波形的频率分辨率、频率精度等指标也有很大的提高。如HP公司的HP33120可以产生lOmHz-15MHz的正弦波和方波。同时还可以产生lOmHz-5MHz的任意波形。任意波形深度16000点。采样率40M,还具备了调制功能,可以产生AM, FM, FSK,拌发、扫频等信号。HP公司的HP33250可以产生luHZ-80MHz的正弦波和方波,产生luHz到25MHz的任意波形,任意波形深度64K点,采样率200M。同时也具备了AM,FM,FSK,碎发、扫频等功能。BK PRECISION公司的4070A型函数级任意波形发生器正弦波和方波输出频率DC-21.5M Hz频率分辨率IO mHz。同时还具有AM,FM,PM,SSB,BPSK,FSK,碎发、DTMF Generation和DTMF Detection的功能。并且具有T和PC机良好的接口,可以通过WINDOWS 界面的程序进行任意波形的编辑。

除了在仪器中的应用外,DDS在通信系统和雷达系统中也有很重要的用途。通过DDS 可以比较容易的产生一些通信中常用的调制信号如:频移键控(FSK)、二进制相移键控(BPSK)和正交相移键控(QPSK)。 DDS可以产生两路相位严格正交的信号在正交调制和解调中的到广泛应用,是一中很好的本振源。

在雷达中通过DDS和PLL相结合可以产生毫米波线性调频信号,DDS移相精度高、频率捷变快和发射波形可捷变等优点在雷达系统中也可以得到很好的发挥。

第2章直接数字频率合成技术(DDS)

2.1 直接数字频率合成的基本结构

图2.1 直接数字频率合成的基本结构

如图2.1DDS的基本结构图,从图中可以看出DDS主要由四个基本部分组:(1)相位累加器;(2)波形ROM;(3)D/A转换器;(4)低通滤波器。

相位累加器的结构如图2.2所示

图2.2 相位累加器原理框图

相位累加器是DDS的核心部分,它由一个N位的加法器和N位的寄存器构成,通过把上一个时钟的累加结果反馈回加法器的输入端实现累加功能。这里的N是相位累加器的字长,K叫做频率控制字。每经过一个时钟周期,相位累加器的值递增K。

波形ROM示意图如图2.3所示

图2.3 波形 ROM示意图

当 ROM 地址线上的地址(相位)改变时,数据线上输出相应的量化值(幅度量化序列)。因为波形ROM的存储容量有限,相位累加器的字长一般不等于ROM地址线的位数,因此在这个过程当中也又会引入相位截断误差。

D/A 转换器将波形ROM 输出的幅度量化序列转化成对应的电平输出,将数字信号转换成模拟信号。但输出波形是一个阶梯波形,必须经过抗镜像滤波,滤除输出波形中的镜像才能得到一个平滑的波形。抗镜像滤波器是一个低通滤波器,要求在输出信号的带宽内有较平坦的幅频特性,在输出镜像频率处有足够的抑止。

根据 DDS 的基本结构,可以推出以下一些结论:

频率控制字K 唯一地确定一个单频模拟余弦信号)2cos()(0t f t S =的频率0f ,

N c f k f 2/0?= (2.1)

当K =1的时候DDS 输出最低频率为f ?,

f ?=N c f 2/ (2.2)

这就是DDS 的频率分辨率,所以,当N 不断增加的时候DDS 的频率分辨率可以不断的提高。D/A 转换器的输出波形相当于是一个连续平滑波形的采样,根据奈奎斯特采样定律,采样率必需要大于信号频率的两倍。也就是说D/A 转化器的输出如果要完全恢复的话,输出波形的频率必须小于N c f 2/。一般来说,由于低通滤波器的设计不可能达到

理想情况,即低通滤波器总是有一定的过渡带的,所以输出频率还要有一定的余量,一般来说在实际应用当中DDS 的输出频率不能超过0.4c f 。

2.2 DDS 的技术特点

2.2.1 DDS 的优点

(1)输出频率的范围广。由式 2.1 知道,频率覆盖范围从N c f 2/到 0.4c f 。c f 为输入时钟频率。随着硬件水平的不断提高,一些DDS 专用芯片的最大输出频率已经可以达到几百兆赫兹[3]

(2)频率分辨率高,可达N 2个频点。

(3)频率稳定度高。

(4)频率转换时间快,可小于100ns 。同时,频率转换时相位是连续的。

(5)频谱纯度高。

(6)正交输出。

(7)产生任意波形。由于DDS 技术是利用查表法来产生波形的,所以它适用于任意波形发生器。

(8)全数字化实现,便于集成,体积小,重量轻。 2.2.2 DDS 的缺点

(1)最高工作频率不可能很高,从理论上说就只有系统始终频率的一半,实际中还

要小于此值。要想获得较高的输出频率,就必须提高系统的时钟批率,也就是说DDS 系统的相位累加器、波形存储器、D/A 转换器等都将工作在较高的时钟频率下,它的实现依赖于高速数字电路和高速D/A 转换器。

(2)DDS 系统采用数字技术,先构成离散信号再变换成模拟信号输出,尤其是要产生相位截断误差,因而噪声和杂散是不可避免的[4]

2.3 DDS 性能分析

由式 2.1可知,系统的输出频率只与频率字的值K 、系统时钟频率c f

和相位累加器的字长N 有关。在系统时钟频率c f 和相位累加器字长N 固定时,通过改变频率字,可以方便地改变输出频率0f 。

系统的频率分辨率只与系统的时钟频率c f 和相位累加器的字长N 有关。要增加系统

的频率分辨率,可以增加相位累加器的字长N ,或是降低系统的时钟频率。 为了达到较高的输出频率,DDS 系统的时钟频率一般都比较高。根据式2.2,在较高的时钟频率下,为了获得较高的频率分辨率,则只有增加相位累加器的字长N ,故一般N 都取值较大。但是受存储器容器的限制,存储器地址线的为数 W 不可能很大,一般都要小于N 。这样存储器的地址线一般都只能接在相位累加器输出的高 W 位,而相位累加器输出余下的(N-W )个低位则只能被舍弃,这就是相位截断误差的来源[5]。

由于相位截断,频率字的值K 就将被分为两部分,其最高的 W 位将被看承整数部分,而余下的将被看为小数部分。这是因为存储器地址线的位数只有 W 位,相位累加器的输出只有搞 W 位才对存储器有影响,频率字的小数部分只有在其累加达到整数部分是才能影响存储器。

DDS 系统的频率转换非常快,几乎是即时的这是锁相环系统无法做到的。DDS 系统在频率字改变后的一个时钟周期,起输出频率就可以转换成新的输出频率。也就是说在频率字的值改变以后,累加器在经过一个时钟周期后就按照新的频率字进行累加,即开始输出新的频率,所以我们可以认为DDS 系统的频率转换是在一个系统时钟周期内完成的。

DDS 系统不仅频率转换速度快,而且更可贵的是只须改变频率字,就可以改变输出频率,无须复杂的控制过程。从DDS 技术的原理可知,在改变输出频率时,实际改变的是频率字,也就是相位增量。当频率字的值从1K 改变为2K 之后,相位累加器是在已有的

积累相位上,再每次累加2K ,相位函数的曲线是连续的,只是在改变频率字的瞬间其

斜率发生了突变。输出波形和相位累加器的输出值两者都是平滑过度。也就是说DDS 系统能够在频率转换中保持相位连续,输出波形能平滑的从一个频率过度到另一个频率。

第3章EDA技术

3.1 EDA技术及其发展

随着社会生产力发展到了新的阶段,各种电子新产品的开发速度越来越快。现代计算机技术和微电子技术进一步发展和结合使得集成电路的设计出现了两个分支。一个是传统的更高集成度的集成电路的进一步研究;另一个是利用高层次VHDL/Verilog等硬件描述语言对新型器件FPGA/CPLD进行专门设计,使之成为专用集成电路(ASIC)。这不仅大大节省了设计和制造时间,而且对设计者,无须考虑集成电路制造工艺,现已成为系统级产品设计的一项新的技术。

EDA(Electronic Design Automation)技术是现代电子设计技术的核心[7]。它以EDA 软件工具为开发环境,采用硬件描述语言(Hardware Description Language, HDL),采用可编程器件为实验载体,实现源代码编程、自动逻辑编译、逻辑简化、逻辑分割、逻辑综合、布局布线、逻辑优化和仿真等功能,以ASIC、SOC芯片为目标器件,以电子系统设计为应用方向的电子产品自动化的设计技术。

EDA代表了当今电子设计技术的最新发展方向,利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出IC版图或PCB版图的整个过程在计算机上自动处理完成。设计者采用的设计方法是一种高层次的“自顶向下”的全新设计方法,这种设汁方法首先从系统设计人手,在顶层进行功能方框图的划分和结构设计。在方框图一级进行仿真、纠错.并用硬件描述语言对高层次的系统行为进行描述,在系统一级进行驶证。然后,用综合优化工具生成具体门电路的网络表,其对应的物理实现级可以是印刷电路板或专用集成电路(ASIC)。设计者的工作仅限于利用软件的方式,即利用硬件描述语言和EDA软件来完成对系统硬件功能的实现。由于设计的主要仿真和调试过程是在高层次上完成的,这既有利于早期发现结构设计上的错误,避免设计工作的浪费,又减少了逻辑功能仿真的工作量,提高了设计的一次性成功率。

EDA技术在硬件实现方面融合了大规模集成电路制造技术,IC版图设计技术、ASIC 测试和封装技术、FPGA/CPLD编程下载技术、自动测试技术等;在计算机辅助工程方面融合了计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)、计算机辅助工程(CAE)技术以及多种计算机语言的设计概念;而在现代电子学方面则容纳了更多的内容,如电子线路设计理论、数字信号处理技术、数字系统建模和优化技术及长线技术理论等等。因此EDA技术为现代电子理论和设计的表达与实现提供了可能性。

在现代技术的所有领域中,纵观许多得以飞速发展的科学技术,多为计算机辅助设计,而非自动化的所有设计。显然,最早进入设计自动化的技术领域之一是电子技术,这就是为什么电子技术始终处于所有科学技术发展最前列的原因之一。不难理解,EDA技术已经不是那一学科的分支,或者是新的技术,应该是一门综合性学科。它融合多学科于一体,打破了软件和硬件间的壁垒,使计算机的软件技术与硬件实现、设计效率和产品性能合二为一,他代表了电子设计技术和应用技术的发展方向。

正因为EDA技术丰富的内容以及电子技术各学科领域的相关性,其发展的历程同大规模集成电路设计技术、计算机辅助工程、可编程逻辑器件,以及电子设计技术和工艺的发展是同步的。就过去近30年的电子技术的发展历程,可大致将EDA技术的发展分为三个阶段。

20世纪70年代,集成电路制作方面,MOS工艺已得到广泛的应用。可编程逻辑技术及器件已经问世,计算机作为一种运算工具已经在科研领域得到了广泛的应用。而在后期,CAD的概念已见雏形。这一阶段人们开始利用计算机取代手工劳动,辅助进行集成电路版图编辑、PCB布局布线等工作。

20世纪80年代,集成电路设计进入了COMS(互补场效应)时代。复杂可编程逻辑器件已经进入商业应用,相应的辅助设计软件也已投入使用。而在80年代末,出现了FPGA(Field Programmable Gate Array),CAE和CAD技术应用更为广泛,他们在PCB 设计方面的原理图输入、自动布局布线及PCB分析,以及逻辑设计、逻辑仿真、布尔方程综合和化简等方面担任了重要的角色,特别是各种硬件描述语言的出现、应用和标准化方面的重大进步,为电子设计自动化必须解决的电路建模、标准文档及仿真测试奠定了基础。

进入20世纪90年代,随着硬件描述语言的标准化得到进一步的确立,计算机辅助工程、辅助分析和辅助设计在电子技术领域获得了更加广泛的应用,与此同时电子技术在通信、计算机及家电产品生产中的市场需求和技术需求,极大地推动了全新的电子设计自动化技术的应用和发展。特别是集成电路设计工艺步入了超深亚微米阶段,百万门以上的大规模可编程逻辑器件的陆续面世,以及基于计算机技术的面向用户的低成本大规模ASIC技术的应用,促进了EDA技术的形成。更为重要的是各EDA公司致力于推出兼容各种硬件实现方案和支持标准硬件描述语言的EDA工具软件的研究,都有效地将EDA技术推向成熟。

EDA技术在进入21世纪后,得到了更大的发展,突出表现在以下几个方面:

(1)使电子设计成果以自主知识产权的方式得以明确表达和确认成为可能;

(2)在仿真和设计两方面支持标准硬件描述语言的功能强大的EDA软件不断推出;

(3)电子技术全方位纳入EDA领域;

(4)EDA使得电子领域各学科的界限更加模糊,更加互为包容;

(5)更大规模的FPGA和CPLD器件的不断推出;

(6)基于EDA工具的ASIC设计标准单元已涵盖大规模电子系统及IP核模块;

(7)软硬件IP核在电子行业的产业领域、技术领域和设计应用领域得到进一步确认;

(8)SoC高效低成本设计技术的成熟。

3.2 硬件描述语言VHDL

3.2.1 VHDL简介

甚高速集成电路硬件描述语言(Very-High-Speed Integrated Circuit Hardware Description Language,VHDL)于1983年有美国国防部(DOD)发起创建,由IEEE(The Institute of Electrical and Electronics Engineers)进一步发展并在1987年作为“IEEE 标准1076”发布[8]。从此,VHDL成为硬件描述语言的业界标准之一。自IEEE公布了VHDL的标准版本之后,各EDA公司相继推出了自己的 VHDL 设计环境,或宣布自己的设计工具支持 VHDL。此后 VHDL在电子设计领域得到了广泛应用,并逐步取代了原有的非标准硬件描述语言。1993年,IEEE对VHDL进行了修订,从更高的抽象层次和系统描述能力上扩展VHDL的内容,公布了新版本的VHDL,即IEEE标准的1076-1993版本,(简称93版)。现在,VHDL和V erilog作为IEEE的工业标准硬件描述语言,又得到众多EDA公司的支持,在电子工程领域,已成为事实上的通用硬件描述语言。有专家认为,在新的世纪中,VHDL语言将承担起大部分的数字系统设计任务。除了作为电子系统设计的主选硬件描述语言外,VHDL在EDA领域的仿真测试、程序模块的移植、ASIC设计源程序的交付、IP核(Intelligence Property core)的应用方面担任着不可或缺的角色,因此不可避免地将成为了必要的设计开发工具。

VHDL主要用于描述数字系统的结构,行为,功能和接口。除了含有许多具有硬件特征的语句外,VHDL的语言形式和描述风格与句法是十分类似于一般的计算机高级语言。VHDL的程序结构特点是将一项工程设计,或称设计实体(可以是一个元件,一个电路模块或一个系统)分成外部(或称可视部分,及端口)和内部(或称不可视部分),既涉及实体的内部功能和算法完成部分。在对一个设计实体定义了外部界面后,一旦其内部开发完成后,其他的设计就可以直接调用这个实体。这种将设计实体分成内外部分的概念是VHDL系统设计的基本点。

3.2.2 VHDL的主要优点

(1)覆盖面广,有强大的系统硬件描述能力

VHDL可以覆盖行为描述、RTL (寄存器传输)级描述、门描述、电路描述和物理参数描述(包括延时、功耗、频率、几何尺寸等)。VHDL还具有丰富的数据类型.即可以支持预定义的数据类型,也可以自己定义数据类型。这样便给硬件描述带来了较大的自由度,使设计人员能够方便地使用VHDL创建高层次的系统模型。

(2)可读性好、易于修改

在硬件电路设计过程中,主要的设计文件是用VHDL编写的源代码,因为VHDL易读和结构模块化,所以易于修改设计。

(3)独立于器件的设计,与工艺无关

用VHDL进行硬件电路设计时,并不需要首先考虑选择完成设计的器件,也就是说,VHDL并没有嵌入具体的技术和工艺约定,设计人员可以集中精力进行设计的优化,不需要考虑其他问题。当一个设计描述完成以后,可以用多种不同的器件结构来实现其功能。

(4)易于移植和设计资源共享

由于VHDL是一种国际标准化的硬件描述语言,对于同一个设计描述,它可以移植到符合相同标准的任意系统或平台上运行。

对于一些较大的通用性硬件电路,目前已经有专门的IP核出售,因此,能实现设计资源的有偿使用,可大大缩短设计周期,加快设计产品的上市速度。

3.3 现场可编程逻辑(FPGA)器件

3.3.1 引言

FPGA(现场可编程门阵列)与CPLD(复杂可编程逻辑器件)都是可编程逻辑器件[11],它们是在PAL、GAL等逻辑器件的基础之上发展起来的。但FPGA/CPLD的规模较大,非常适合于对时序、组合等逻辑电路应用场合,它可以替代几十甚至上百块通用IC芯片。应用FPGA/CPLD可以做成一个系统级芯片,它具有可编程性和实现方案容易修改的特点。

现在,CPLD/FPGA等可编程器件已应用在不同的高科技领域,如数字电路设计、微处理系统、DSP、通信及ASIC设计等。由于芯片内部硬件连接关系的描述的存放,是以EEPROM、SRAM或FLASH或外接EPROM为基础的,设计用户可在可编程门阵列芯片及外围电路保持不动的情况下,通过计算机重新下载或配置设计软件,就能实现一种新的芯片功能。于是FPGA/CPLD可编程器件,正得到越来越多的电子设计者的青睐。

3.3.2 FPGA的组成及其应用特点

FPGA的组成:现场可编程门阵列(FPGA)是在PAL和GAL等逻辑器件的基础之上发展起来的、可由用户自行定义配置的高密度专用集成电路,结构上主要由三部分组成:可编程逻辑块(CLB----Configurable Logic Block)、输入\输出单元(IOB----I\O Block)和可编程连线(IR----Interconnect Resoutce)。

高速和高可靠是FPGA最明显的特点,当今的该类可编程器件,其最高工作频率可达百兆级,其时钟延迟可达纳秒级,结合其并行工作方式,在超高速应用领域和实时测控方面有非常广阔的应用前景。相比应用单片机的设计系统来说,可以较好地解决诸如MCU 的复位不可靠和PC可能跑飞等问题。CPLD和FPGA的高可靠性还表现在,可形成片上系统,从而大大缩小了体积,易于管理和屏蔽。

由于FPGA的集成规模非常大,因此可借助HDL硬件描述语言开发出系统级芯片和产品。又由于开发工具的通用性、设计语言的标准化以及设计过程几乎与所用器件的硬件结构没有关系,所以设计成功的各类逻辑功能块软件有很好的兼容性和可移植性,它几乎可用于任何型号和规模的FPGA中,从而使得产品设计效率大幅度提高。FPGA显著的优势是开发周期短,投资风险小、产品上市速度快,市场适应能力强和硬件升级回旋余地大。一旦市场对所设计的产品需求量大,则可进行流片设计,形成价格更低廉的AISC 产品。

FPGA芯片都是比较特殊的ASIC芯片,除了具有SAIC的特点之外,还具有以下几个优点:

(1)集成度越来越高:随着超大规模集成电路VLSI(Very Large Scale IC)工艺的不断提高,单一芯片内部可以容纳上百万个晶闸管。FPGA芯片的规模也越来越大,其单片逻辑门数已达到上百万门,所能实现的功能越来越强,同时还可以实现系统集成。

(2)嵌入式存贮技术:在CPLD/FPGA内部嵌入一定数量的存贮器。存贮器的类型有双口SRAM、ROM、FIFO,可用于存贮信号处理的系统,中间结果等。这对设计电子系统的智能化功能提供了技术支持。

(3)时钟锁定和倍频技术:解决了时钟脉冲延迟和偏斜问题,并使PLD内部时钟更高。单个16 bit乘法器的速度可达100 MHZ以上,这正是宽带高速实时信号的需要。CPLD/FPGA的时钟延迟可达纳秒级,结合其并行工作方式,在超高速应用领域和实时测控方面有非常广阔的应用前景。

(4)系统保密性能增强:随着IP(知识产权)越来越被高度重视,带有IP内核的功能块在ASIC设计平台上的应用日益广泛。越来越多的设计人员,采用设计重用,将系统设计模块化,为设计带来了快捷和方便。并可以使每个设计人员充分利用软件。

(5)开发周期短:用户可以反复的编程、擦除、使用,或者在外围电路不动的情况下,用不同的软件就可以实现不同的功能。因此,用FPGA试制样片,能以最快的速度占领市场。FPGA软件包中有各种输入工具、仿真工具、版图设计工具及编程器等全线产品,使电路的、设计人员在很短的时间内就可完成电路的输入、编译、优化、仿真,直至最后芯片的制作。当电路有少量改动时,更能显示出FPGA的优势。电路设计人员使用FPGA进行电路设计时,不需要有专门的IC(集成电路)深层次的知识。FPGA软件易学易用,可以使设计人员集中精力进行电路设计,快速将产品推向市场。

3.3.3 Altera的FLEX10K器件

Altera公司作为目前世界上最大的可编程逻辑器件供应商之一,其产品主要有FLEX10K, FLEX8000, FLEX6000, MAX9000, MAX7000, MAX5000以及Classic等七大系列,而FLEX10K系列是ALTERA 1995年推出的一个新的产品系列,因其规模大且价格便宜,倍受人们关注,Altera的FLEX10K器件是工业界第一个嵌入式可编程器件,基于可重构的CMOS SRAM单元,这种灵活逻辑单元阵(Flexible Logic Element Matrix)具有一般门阵列的所有优点。FLEX1OK系列器件规模从1万门到25万门,它无论在密度或者速度上都可以将一定规模的子系统集成到一个芯片上,采用快速可预测连线延时的连续式布线结构,在某种意义上说,是一种将EPLD和FPGA优点结合于一体的新型器件。

FLEX10K系列器件在结构上大同小异,它们都包含有四大部分:输入输出单元IOE、逻辑阵列块(LAB)、嵌入阵列块EAB及行、快速通道(FastTrack)互连。

1、输入输出单元(IOE)

每个IOE包含一个双向I/O缓冲器和一个输入输出寄存器,可被用作输入输出或双向引脚。IOE中的输出缓冲器有可调的输出摆率,可根据需要配置成低噪音或高速度模式。此外每个引脚还可指定为集电极开路输出。

IOE中的时钟、清除、时钟使能和输出使能由称作周边控制总线的I/O控制信号网络提供。周边控制总线提供多达12个周边控制信号并用高速驱动器使穿越器件的信号偏移最小化。这些信号是可配置的,能提供最多8个输出使能信号,6个时钟使能信号,2个时钟信号和2个清零信号。每个周边控制信号可被一专用输入脚驱动,或被特定行中每个LAB的第一个LE驱动。

2、逻辑阵列块(LAB)

FLEX10K的逻辑阵列块由8个逻辑单元(LE)、与LE相连的进位链和级联链、LAB控制信号和LAB局部互连组成。

的互连上,此外构成LAB的逻辑单元内部结构也有所改进。每个LE包含一个4输入查找表(LUT),一个具有使能、预置和清零输入端的可编程寄存器,一个进位链和一个级联链。每个LE有两个输出,输出可驱动局部互连和快速通道互连。

查找表是一种函数发生器,能快速计算M个输入变量的任意函数。查找表的物理结构是静态存储器(SRAM)。M个输入项的逻辑函数可以由一个2M位容量的SRAM实现,函数值存放在SRAM中,SRAM的地址起输入线的作用,地址即输入变量值,SRAM的输出为逻辑函数值,由连线开关实现与其它功能块的连接。

查找表结构的函数功能非常强。M个输入的查找表可以实现任意一个M个输入项的组合逻辑函数,这样的函数有2M个。用查找表实现逻辑函数时,把对应函数的真值表预先存放在SRAM中,即可实现相应的函数运算。FLEX10K LAB中的LUT是一个4输入查找表,能快速实现4输入变量的任意函数。

FLEX10K的LE中的可编程触发器可设置成D,T ,JK或RS触发器。该触发器的时钟(Clock)、清除(Clear)和置位(Preset)控制信号可由专用输入引脚、通用I/O引脚或任何内部逻辑驱动。对于纯组合逻辑,可旁路LE中的触发器,将LUT的输出直接连到LE的输出端。

3、输入阵列块EAB

嵌入式阵列快是一种输入输出端带有寄存器的灵活的RAM,当实现存储器功能时,每个EAB提供2048位,可用来构成RAM,ROM,FIFO或双端口RAM。每个EAB单独使用时,可配置成以下几种尺寸之一:256×8、512×4、1024×2或2048×1。组合多个EAB可实现更大的RAM/ROM功能。Altera的Quartus II软件能够自动地组合多个EAB实现设计者对RAM规格的要求。

嵌入式阵列块也可用于实现逻辑功能,此时每个EAB可提供大约100-300个等效门,能方便地构成乘法器,矢量求模、纠错电路等功能块,并由这些功能进一步构成诸如数字滤波器、微控制器等方面的应用。逻辑功能通过配置时编程EAB为只读模型,生在一个大的LUT实现。在这个LUT中,组合功能通过查找表而不是通过计算来完成,其速度较常规逻辑运算实现时更快,且这一优势因EAB的快速访问时间而得到进一步加强。EAB的大容量使设计者能够在一个逻辑级上完成复杂的功能,避免了多个LE连接带来的连线延时。

4、快速通道(FastTrack)互连

在FLEX10K中,FastTrack互连提供不同LAB中的LE与器件I/O引脚间的互连,是贯穿整个器件长和宽的一系列水平和垂直的连续式布线通道,由若干组行连线和列连线组成。每一组行连线视器件大小不同可以有144根、216根或312根,每一组列连线均是24

根。

为了增强布线能力,行内连线由全长通道和半长通道结合组成。全长通道连接一行中所有的LAB,半长通道只与半行LAB相连接。每个EAB能被其左边的半长通道驱动,也可为全长通道驱动。FLEX10K行内连的这种改进使两个邻近的LAB相连时只占用半长行通道,保留另一半通道资源供其它LAB使用,从而增加了走线资源。

为了便于PCB板制作,Altera公司为各器件提供了诸PLCC,TQFP,RQFP,PGA和BGA等不同的封装形式,并有商业级和工业级芯片。

FLEXl0K系列器件特点:

1、嵌入阵列EAB,是一个在输入和输出端口都带有寄存器的一种灵活的RAM块,可以完成许多宏函数如存储器、查找表等。

2、全局时钟使用,可以最大限度减少时钟到各触发器的延迟,尽量使整个系统同步产生。

3、基于JTAG的边界扫描测试,2.5V(B系列),3.0V(A,V 系列)或5.0V电源。

4、低功耗,系统不工作时电流小于1mA。

5、灵活多变的行列连线资源。

6、功能丰富的I/O引脚。

7、多种封装形式。

8、基于SRAM重构。

9、强大的集成开发环境和多形式的用户接口。

3.4 EDA工具MAXPLUSⅡ

MAX+PLUSII是Altera提供的FPGA/CPLD开发集成环境,它提供了一种与结构无关的设计环境,是设计者能方便地进行设计输入、快速处理和器件编程。在 MAX+PLUS II软件提供的设计环境中可以完成设计输入、设计编译、设计仿真和器件编程四个设计阶段。在设计输入阶段,用户可以采用图形输入、文本输入和波形输入三种方式输入设计文件,但波形输入方式只能在工程设计的底层使用。在设计编译阶段,MAX+PLUS II编译器依据设计输入文件自动生成用于器件编程、波形仿真及延时分析等所需的数据文件。在设计仿真阶段,MAX+PLUS II仿真器和时延分析器利用编译器产生的数据文件自动完成逻辑功能仿真和时延特性仿真。并且可以在设计文件中加载不同的激励,观察中间结果以及输出波形。必要时,可以返回设计输入阶段,修改设计输入,达到设计要求。在器件编程阶段,MAX+PLUS II编程器将编译器生成的编程文件下载到Altera器件实现对器件编程。此后,可以将实际信号送入该器件进行时序验证。因为CPLD/FPGA芯片能够可重

复编程,所以如果动态时序验证的结果不能满足用户的需要时,用户可以返回到设计阶段重新设计,然后重复上面的步骤,最终达到设计要求。图3.1中所示的是标准的EDA开发流程。

图3.1 MAX+PLUSII设计流程

第4章基于FPGA的正弦信号发生器

4.1 总体设计框图

输出波形

系统时钟 clk

图4.1 信号发生器结构框图

图4.1为本次设计总体结构框图,其中相位累加器和波形存储器构成信号发生器核

心部分。该部分又与频率字控制模块共同构成信号发生器主模块。而显示模块,D/A转

换器和滤波电路则作为信号发生器外围硬件设计。下面就分主模块软件设计和外围硬件

设计两大部分来说明信号发生器的设计。

4.2 主模块软件设计

4.2.1 相位累加器的设计

高W位至波形存储器

W为存储器地址线宽度)

图4.2 相位累加器

图4.2为相位累加器内部结构图,它有一个N位的全加器和一个寄存器构成。当系统

时钟上升沿到来的时候,上一个时钟周期的相位值与频率字的相加值被送入累加寄存器,并输出高W位至波形存储器的地址线,同时相位值又被送回全加器进行相位累加。

11知识讲解_正弦函数、余弦函数的性质_基础

正弦函数、余弦函数的性质 【学习目标】 1.了解周期函数、周期、最小正周期的定义; 2.理解正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等). 【要点梳理】 要点一:周期函数的定义 函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期. 要点诠释: 1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足 )()(x f T x f =+都不能说T 是)(x f y =的一个周期. 2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期. 要点二:正弦函数、余弦函数的图象和性质 (1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域. (2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求

sin()y x =-的单调递增区间时, 应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先 求定义域. 要点三:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>的性质. 函数sin()y A x ω?=+与函数cos()y A x ω?=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R (2)值域:[],A A - (3)单调区间:求形如sin()y A x ω?=+与函数cos()(,0)y A x A ω?ω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ω?+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由 )(2 22 2Z k k x k ∈+ ≤+≤- π π?ωπ π解出x 的范围所得区间即为增区间,由 )(2 3222Z k k x k ∈+≤+≤+ππ?ωππ解出x 的范围,所得区间即为减区间. (4)奇偶性:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>不一定具备奇偶性.对于函数sin()y A x ω?=+,当()k k z ?π=∈时为奇函数,当()2 k k z π ?π=±∈时为偶函数; 对于函数cos()y A x ω?=+,当()k k z ?π=∈时为偶函数,当()2 k k z π ?π=±∈时为奇函数. 要点诠释: 判断函数sin()y A x ω?=+,cos()y A x ω?=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件. (5)周期:函数sin()y A x ω?=+及函数cos()y A x ω?=+的周期与解析式中自变量x 的系数有关,其周期为2T π ω = . (6)对称轴和对称中心 与正弦函数sin y x =比较可知,当()2 x k k z π ω?π+=± ∈时,函数sin()y A x ω?=+取得最大值(或 最小值),因此函数sin()y A x ω?=+的对称轴由()2 x k k z π ω?π+=± ∈解出,其对称中心的横坐标 ()x k k z ω?π+=∈,即对称中心为,0()k k z π?ω-?? ∈ ??? .同理,cos()y A x ω?=+的对称轴由

正弦信号发生器的设计

XXXX大学现代科技学院DSP硬件电路设计基础课程设计 设计名称正弦信号发生器的设计 专业班级 学号 姓名DENG 指导教师XXXX

课程设计任务书 注: 上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 日期:2014-12-10

专业班级 XXXXXXX 学号 姓名 DENG 成绩 设计题目 正弦波信号发生器 设计目的 学会使用CCS(Code Composer Studio)集成开发环境软件,在此集成开发环境下完成工程项目创建,程序编写,编译,链接,调试以及数据的分析。同时完成一个正弦波信号发生器的程序的编写,并在集成开发环境下进行模拟运行,观察结果。 设计内容 编写一个产生正弦波信号的程序,在CCS 软件下进行模拟运行,观察输出结果。 设计原理 正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。本次课程设计只要使用泰勒级数展开法来实现正弦波信号。 1. 产生正弦波的算法 在高等数学中,正弦函数和余弦函数可以展开成泰勒级数,其表达式为 若要计算一个角度x 的正弦和余弦值,可取泰勒级数的前5项进行近似计算。 ……………………………………装………………………………………订…………………………………………线………………………………………

由上述两个式子可以推导出递推公式,即 sin(nx)=2cos(x)sin[(n-1)x]-sin[(n-2)x] cos(nx)=2cos(x)sin[(n-1)x]-cos[(n-2)x] 由递推公式可以看出,在计算正弦和余弦值时,不仅需要已知cos(x),而且还需要sin[(n-1)x]、sin[(n-2)x]和cos[(n-2)x]。 2. 正弦波的实现 ⑴计算一个角度的正弦值 利用泰勒级数的展开式,可计算一个角度x的正弦值,并采用子程序的调用方式。在调用前先在数据存储器d_xs单元中存放x的弧度值,计算结果存放在d_sinx单元中。 ⑵计算一个角度的余弦值 利用余弦函数展开的泰勒级数的前五项计算一个角度的余弦值,可采用子程序的调用方式来实现。调用前先将x弧度值放在数据存储器d_xc单元中,计算结果存放在d_cosx单元中。 ⑶正弦波的实现 利用计算一个角度的正弦值和余弦值程序可实现正弦波。其实现步骤如下:第一步:利用sin_start和cos_start 子程序,计算 45°~0°(间隔为 0.5°)的正弦和余弦值; 第二步:利用sin(2x)=2sin(x)cos(x)公式,计算 90°~0°的正弦值(间隔为1°);第三步:通过复制,获得359°~0°的正弦值; 第四步:将359°~0°的正弦值重复从PA口输出,便可得到正弦波。 在实际应用中,正弦波是通过D/A口输出的。选择每个正弦周期中的样点数、改变每个样点之间的延迟,就能够产生不同频率的波形,也可以利用软件改变波形的幅度以及起始相位。 总体方案设计 1. 总体实现方案 我们知道一个角度为x的正弦和余弦函数,都可以展开为泰勒级数,且其前五项可以看为:

方波-三角波-正弦波函数信号发生器

课程设计说明书 课程设计名称:电子课程设计 课程设计题目:设计制作一个产生方波-三角波-正弦波函数转换器学院名称:信息工程学院 专业:电子信息科学与技术班级: xxxxxxxx 学号: xxxxxxx 姓名: xxxxx 评分:教师: xxxxxx 20 13 年 10 月 15 日

电子课程设计 课程设计任务书 20 13 -20 14 学年 第 1 学期 第 1 周- 3 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

摘要 当今世界在以电子信息技术为前提下推动了社会跨越式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。由此可见科技已成为各国竞争的核心,尤其是电子通信方面更显得尤为重要,在国民生产各部门都得到了广泛的应用,而各种仪器在科技的作用性也非常重要,如信号发生器、单片机、集成电路等。 信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和 教学实验等领域。常用超低频信号发生器的输出只有几种固定的波形,有方波、 三角波、正弦波、锯齿波等,不能更改信号发生器作为一种常见的应用电子仪器 设备,传统的可以完全由硬件电路搭接而成,如采用LM324振荡电路发生正弦波、 三角波和方波的电路便是可取的路径之一,不用依靠单片机。 本系统本课题将介绍由LM324集成电路组成的方波——三角波——正弦波 函数信号发生器的设计方法,了解多功能函数信号发生器的功能及特点,进一步 掌握波形参数的测试方法,制作这种低频的函数信号发生器成本较低,适合学生 学习电子技术测量使用。制作时只需要个别的外部元件就能产生正弦波、三角波、 方波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。 关键字:信号发生器、波形转换、LM324

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

正弦信号发生器2

正弦信号发生器[2005年电子大赛一等奖] 文章来源:凌阳科技教育推广中心 作者:华中科技大学(华中科技大学曹震陈国英孟芳宇)发布时间:2006-4-21 17:33:13 本系统基于直接数字频率合成技术;以凌阳SPCE061A单片机为控制核心;采用宽带运放AD811和AGC技术使得50Ω负载上峰值达到6V±1V;由模拟乘法器AD835产生调幅信号;由数控电位器程控调制度;通过单片机改变频率字实现调频信号,最大频偏可控;通过模拟开关产生ASK、PSK信号。系统的频率范围在100Hz~12MHz,稳定度优于10-5,最小步进为10Hz。 一、方案论证 根据题目要求和本系统的设计思想,系统主要包括图1.1所示的模块。 图1.1 系统模块框图

1、单片机选型 方案一:采用现在比较通用的51系列单片机。51系列单片机的发展已经有比较长的时间,应用比较广泛,各种技术都比较成熟,但此系列单片机是8位机,处理速度不是很快,资源不够充足,而且其最小系统的外围电路都要自己设计和制作,使用起来不是很方便,故不采用。 方案二:选用凌阳公司的SPCE061A单片机。SPCE061A单片机是16位的处理器,主频可以达到49MHz,速度很快,再加上其方便的ADC接口,非常适合对高频信号进行数字调频,如果对音频信号进行A/D采样,经过数字调频并发射,完全可以达到调频广播的效果。 结合题目的要求及SPCE061A单片机的特点,本系统选用凌阳公司的此款单片机。 2、频率合成模块 方案一:锁相环频率合成。如图1.2,锁相环主要由压控LC振荡器,环路滤波器,鉴相器,可编程分频器,晶振构成。且频率稳定度与晶振的稳定度相同,达10-5,集成度高,稳定性好;但是锁相环锁定频率较慢,且有稳态相位误差,故不采用。 图1.2 锁相环的基本原理 方案二: 直接数字频率合成。直接数字频率合成DDFS(Direct Digital Frequency Synthesizer)基于Nyquist定理,将模拟信号采集,量化后存入存储器中,通过寻址查表输出波形数据,再经D/A转

正弦余弦函数的性质定义值域

正弦函数、余弦函数的性质 ——定义域与值域 目的:要求学生掌握正、余弦函数的定义域与值域,尤其能灵活运用有界性 求函数的最值和值域。 过程: 一、复习:正弦和余弦函数图象的作法 二、研究性质: 1.定义域:y=sinx, y=cosx 的定义域为R 2.值域: 1?引导回忆单位圆中的三角函数线,结论:|sinx|≤1, |cosx|≤1 (有界性) 再看正弦函数线(图象)验证上述结论 ∴y=sinx, y=cosx 的值域为[-1,1] 2?对于y=sinx 当且仅当x=2k π+ 2 π k ∈Z 时 y max =1 当且仅当时x=2k π-2 π k ∈Z 时 y min =-1 对于y=cosx 当且仅当x=2k π k ∈Z 时 y max =1 当且仅当x=2k π+π k ∈Z 时 y min =-1 3.观察R 上的y=sinx,和y=cosx 的图象可知 当2k π0 当(2k-1)π0 当2k π+ 2π

【B402】正弦函数与余弦函数的定义

高一同步之每日一题【B402】 正弦函数与余弦函数的定义 B4021.若点(P -在角α的终边上,则角α的最小正值为______. 解:由点在(P -在第二象限可知角α的终边在第二象限. 由于||4OP ==,因此21cos cos12042 α-==-=?. 所以,角α的最小正值为120?. B4022.已知角θ的终边经过点(,3)P x ,其中0x ≠,且cos x θ=,求sin θ与cos θ的值. 解:由||OP = cos 10 x θ==. 解得1x =-,或1x =. 当1x =-时,sin 10θ==,cos θ=; 当1x =时,sin θ= =,cos θ= B4023.已知角θ的终边上的点均在直线3y x =上,点(,)P m n 在角θ的 终边上,且||OP =,求sin θ与cos θ的值. 解:由题意可知3n m =,且||OP == 解得m n ==-或m n = = 当m n ==-, sin 10θ= =-cos 10θ==-; 当m n ==, sin 10θ==,cos 10 θ==.

B4024.若角α的终边上一点的坐标为(sin135,cos135)P ??,则角α的最小正值为______. 解:由于点(sin135,cos135)P ??即为点P , 因为角α的终边在第四象限的角平分线上. 所以角α的最小正值为315?. B4025.若角α的终边上一点的坐标为22(cos ,sin )33P ππ-,则角α的最小正值为______. 解:由于点22(cos ,sin )33 P ππ-即为点1(,22P --, 因为角α的终边在第三象限,且1cos240,sin 2402?=- ?=所以角α的最小正值为240?. B4026.若角α的终边上一点的坐标为22(cos ,sin )55P ππ-,则角α的最小正值为______. 解:因为22cos cos(2)55πππ=-,22sin sin(2)55 πππ-=-, 且2802255 ππππ<-=<. 所以角α的最小正值为85 π. B4027.若角α的终边上一点的坐标为22(sin ,cos )55P ππ,则角α的最小正值为______. 解:因为22sin cos()525πππ=-,22cos sin()525 πππ=-, 且2022510 ππππ<-=<. 所以角α的最小正值为10 π.

正弦信号发生器(参考2)

正弦信号发生器 作者:曾立丁运鸿陈亮 赛前辅导及文稿整理辅导教师:肖看 摘要 本系统以51单片机及FPGA为控制核心,由正弦信号发生模块、功率放大模块、调幅(AM)、调频(FM)模块、数字键控(ASK,PSK)模块以及测试信号发生模块组成。采用数控的方法控制DDS芯片AD9851产生5Hz-20MHz正弦信号,经滤波、放大和功放模块放大至6v并具有一定的驱动能力。测试信号发生模块产生的1kHz正弦信号经过调幅(AM)模块、调频(FM)模块,对高频载波进行调幅或调频。二进制基带序列信号送入数字键控模块,产生二进制PSK或ASK 信号,同时对ASK信号进行解调,恢复出原始数字序列。另外,本系统还配备有液晶显示屏、遥控键盘,提供了友好的人机交互界面。 ABSTRACT This system is in the core of Micro-Processor and FPGA (Field Programmable Gate Array), consist of sine signal generating module, Power amplifier, Amplitude Modulator, Frequency Modulator, ASK/PSK module and test signal generating module. The AD9851 controlled by Micro-Process in digital way to generate sine signal with the bandwidth 5Hz to 20MHz adjustable per 1Hz. After processing by LPF & power amplifier, the output signal has a peak value of move than 6V. The sine signal at 1 KHz was send to AM and FM module to modulate the high frequency carrier waveform. The binary sequential was send to the relative module to generate ASK and PSK signal. At last demodulate module demodulate the ASK signal and got the same binary sequential as set before. In order to provide a friendly user interface, the LCD and remote infrared control keyboard was introduced in this system.

第二节 正弦函数和余弦函数的定义及诱导公式

第二节 正弦函数和余弦函数的定义及诱导公式 A 组 1.若cos α=-35,α∈(π2 ,π),则tan α=________. 解析:cos α=-35,α∈(π2,π),所以sin α=45,∴tan α=sinαcosα=-43 . 答案:-43 2.(2009年高考北京卷)若sin θ=-45 ,tan θ>0,则cos θ=________. 解析:由sin θ=-45<0,tan θ>0知,θ是第三象限角,故cos θ=-35 . 答案:-35 3.若sin(π6+α)=35,则cos(π3 -α)=________. 解析:cos(π3-α)=cos[π2-(π6+α)]=sin(π6+α)=35.答案:35 4.(2010年合肥质检)已知sin x =2cos x ,则5sinx -cosx 2sinx +cosx =______. 解析:∵sin x =2cos x ,∴tan x =2,∴5sinx -cosx 2sinx +cosx =5tanx -12tanx +1=95 . 答案:95 5.(原创题)若cos2θ+cos θ=0,则sin2θ+sin θ=________. 解析:由cos2θ+cos θ=0,得2cos 2θ-1+cos θ=0,所以cos θ=-1或cos θ=12 ,当cos θ=-1时,有sin θ=0,当cos θ=12时,有sin θ=±32 .于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或3或- 3 6.已知sin(π-α)cos(-8π-α)=60169,且α∈(π4,π2 ),求cos α,sin α的值. 解:由题意,得2sin αcos α=120169 .①又∵sin 2α+cos 2α=1,② ①+②得:(sin α+cos α)2=289169,②-①得:(sin α-cos α)2=49169 . 又∵α∈(π4,π2 ),∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713.③sin α-cos α=713 ,④ ③+④得:sin α=1213.③-④得:cos α=513 . B 组 1.已知sin x =2cos x ,则sin 2x +1=________. 解析:由已知,得tan x =2,所以sin 2x +1=2sin 2x +cos 2x =2sin2x +cos2x sin2x +cos2x =2tan2x +1tan2x +1=95 .答案:95 2.(2010年南京调研)cos 10π3 =________. 解析:cos 10π3=cos 4π3=-cos π3=-12.答案:-12 3.(2010年西安调研)已知sin α=35,且α∈(π2,π),那么sin2αcos2α 的值等于________.

EDA课程设计-正弦信号发生器的设计

《EDA技术》设计报告 设计题目正弦信号发生器的设计 院系:信息工程学院 专业:通信工程____ 学号: 姓名:__________

一.设计任务及要求 1.设计任务: 利用实验箱上的D/A 转换器和示波器设计正弦波发生器,可以在示波器上观察到正弦波 2.设计要求: (1) 用VHDL 编写正弦波扫描驱动电路 (2)设计可以产生正弦波信号的电路 (3)连接实验箱上的D/A 转换器和示波器,观察正弦波波形 二.设计方案 (1)设计能存储数据的ROM 模块,将正弦波的正弦信号数据存储在在ROM 中,通过地址发生器读取,将正弦波信号输入八位D/A 转化器,在示波器上观察波形 (2)用VHDL 编写正弦波信号数据,将正弦波信号输入八位D/A 转化器,在示波器上观察波形 三.设计框图 图 1 设计框图 信号发生器主要由以下几个部分构成:计数器用于对数据进行采样,ROM 用于存储待采样的波形幅度数值,TLV5620用于将采集的到正弦波数字量变为模拟量,最后通过示波器进行测量获得的波形。其中,ROM 设置为7根地址线,8个数据位,8位并行输出。TLV5260为串行输入的D/A 转换芯片,因此要把ROM 中并行输出的数据进行并转串。 四.实现步骤 1.定制ROM 计 数 器 7根地址线 8 位 R O M 并转串输出 CLK TLV5620D/A 转换 RST

ROM的数据位选择为8位,数据数选择128个。利用megawizard plug-in manager定制正弦信号数据ROM宏功能块,并将上面的波形数据加载于此ROM中。如图3所示。 图2 ROM存储的数据 图3 调入ROM初始化数据文件并选择在系统读写功能 2.设计顶层

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

正弦余弦函数的定义教学反思

《任意角正弦、余弦函数的定义》公开课后的教学反思2017年4月12日,在数学组备课组长、教研组长及所有组内同事的共同指导与帮助下,我有幸在高一1605班上了一节《任意角正弦、余弦函数的定义》的公开课。本节内容是北师大版高一数学必修四第一章第三节的内容,该节内容是对推广后任意角的正弦、余弦函数的重新定义,理论性较强,虽然学生在初中有学习过相应的函数知识,但由于任意角的推广,学生对于任意角的正弦、余弦函数就不那么容易理解了。整节课讲授之后,我才发现学生的学习情况并没有自己想象中的那么理想与完美,因此,对于这节课,我做出以下几点教学反思: 1.对“数学概念”的反思——学会数学的思考 对一名高中数学教师而言教学反思首先是对数学概念的反思。 对于学生来说,学习数学的一个重要目的是要学会数学的思想,用数学的眼光去看世界去了解世界:用数学的精神来学习。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,去挖掘、发现新的问题,解决新的问题。因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。 2.对“备学生”的反思---学会课前多“备学生” 教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来,这样我们才能更充分了解学生的思想,掌握他们的学习情况。因此,课前充分去“备学生”—--备学生的思想,备学生的差异,备学生的基础都是很有必要的。 3.对“备教材”的反思----学会课前多听课 由于我是今年开学初才接任的高中数学科教学任务,教学时间短,经验不是很足,因此,在备教材的时候,感觉自己也有点力不从心。整节课的内容,虽然我花了很长的时间去备课,但到了真正的课堂,在和学生一起探究正弦、余弦函数定义的环节时,我发现自己仍存在一定的问题,比如:如何引导学生通过构造

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型LED 显示器 可调DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit);>10Vp-p (加50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共7 档) 频率控制Separate coarse and fine tuning

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz;< 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz;95%100kHz~2MHz 对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ(±10%) 交流100V/120V/220V/230V ±10%, 50/60Hz 电源线×1, 操作手册×1, 测试线GTL-101 ×1

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》 江西省铜鼓县铜鼓中学漆赣湘(336200) 教材:北师大版高一数学必修四第一章第四节第一小节 一、教学目标 1.知识与技能目标 (1)了解任意角的正弦函数、余弦函数定义产生的背景和应用; (2)掌握任意角的正弦函数与余弦函数的定义,正确理解三角函数是以实数为自变量的函数,并能应用. 2.过程与方法目标 (1)通过参与知识的“发现”与“形成”的过程,培养合理猜测的能力,体会函数模型思想,数形结合思想. (2)培养观察、分析、探索、归纳、类比及解决问题的能力.3.情感、态度、价值观目标 在学习中感悟数学概念的合理性、严谨性、科学性.感悟数学的本质,培养追求真理的精神.通过本节的学习,使同学们对正弦函数与余弦函数有了一个全新的认识,通过对定义的应用,提高学生分析、解决问题的能力. 二、教学重难点 教学重点: 任意角的正弦函数与余弦函数的定义(包括定义域和函数值在各象限的符号)及其应用. 难点: 任意角的正弦函数与余弦函数的定义及其构建过程的理解. 三、教学方法与教学手段 问题教学法、合作学习法结合多媒体课件 四、教学过程

(一)问题引入【投影展示】 问题1:初中我们学过锐角α的正弦函数与余弦函数,同学们还记得它是怎样表示的吗? 借助右图直角三角形,复习回顾. sin s r α α==的对边 斜边 , cos h r α== α的邻边 斜边 . 问题2:锐角三角函数就是以锐角为自变量,以比值为函数值的 函数,那么该比值会随着三角形的大小而改变吗?为什么?(根据相似三角形的知识可知该比值不会发生改变) (二)新知探究 我们所学角的范围已经扩充到任意角,如果角α为任意角,显然初中正弦函数与余弦函数的定义已经不能满足我们的需求,我们必须重新定义正弦函数、余弦函数.今天,我们将在直角坐标系中,对此作深入探讨. 【投影展示】问题3:如图,在直角坐标系中,我们作出一个以原点为圆心,以单位长度为半径的圆,该圆称为单位圆.设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,终边与单位圆交于点(,) P u v,你能求出sinα与cosα的值吗?该值与点P的坐标有什么关系呢? 由学生自己探究,得出结论,sin v v r α==, cos u u r α==. 归纳总结:一般地,在直角坐标系中,给定 α r x y (,) P u v O α M

正弦波信号发生器设计(课设)

课程设计I(论文)说明书 (正弦波信号发生器设计) 2010年1月19日

摘要 正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。 本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。以op07和555定时器构成正弦波和方波的发生系统。Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。正弦波方波可以通过示波器检验所产生的信号。测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。 关键词:正弦波方波 op07 555定时器

目录 引言 (2) 1 发生器系统设计 (2) 1.1系统设计目标 (2) 1.2 总体设计 (2) 1.3具体参数设计 (4) 2 发生器系统的仿真论证 (4) 3 系统硬件的制作 (4) 4 系统调试 (5) 5 结论 (5) 参考文献 (6) 附录 (7) 1

引言 正弦波和方波是在教学中经常遇到的两种波形。本文简单介绍正弦波和方波产生的一种方式。在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。 1、发生器系统的设计 1.1发生器系统的设计目标 设计正弦波和方波发生器,性能指标要求如下: 1)频率范围100Hz-1KHz ; 2)输出电压p p V ->1V ; 3)波形特性:非线性失真~γ<5%。 1.2总体设计 (1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网 络组成。

2 图1.1 正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1; φa+φb=±2nπ;A=X。/Xid; F=Xf/X。;正弦波振荡电路必须有基本放大电路, 本设计以op07芯片作为其基本放大电路。 基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。反馈网络中 两个反向二极管起到稳压的作用。振荡电路的振荡频率f0是由相位平衡条件决 定的。一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含 一个具有选频特性的选频网络。f0=1/2πRC。要实现频率可调,在电容C不变的 情况下电阻R可调就可以实现频率f0的变化。 (2)方波设计:方波可以把正弦波通过斯密特触发器整形后产生。基于555定时器接成的斯密特触发器。 设斯密特触发器输出波形为V1,V2且V1>V2。 输入正弦波v1从0逐渐升高的过程:v1<1/3Vcc时,输出v0=V1; 当1/3Vcc2/3Vcc时,v0=V2; 输入正弦波v1从高于2/3Vcc开始下降的过程:当1/3Vcc

方波——三角波——正弦波函数信号发生器

1函数发生器的总方案及原理框图(1) 1.1电路设计原理框图(1) 1.2 电路设计方案设计(1) 2 设计的目的及任务(2) 2.1 课程设计的目的(2) 2.2课程设计的任务与要求(2) 2.3课程设计的技术指标(2) 3 各部分电路设计(3) 3.1方波发生电路的工作原理(3) 3.2方波---三角波转换电路的工作原理(3) 3.3三角波---正弦波转换电路的工作原理,,,,,,,(6) 3.4电路的参数选择及计算(8) 3.5 总电路图(10) 4 电路仿真(11) 4.1方波---三角波发生电路的仿真(11) 4.2三角波---正弦波转换电路的仿真(12) 5 电路的安装与调试(13) 5.1方波---三角波发生电路的安装与调试(13) 5.2三角波---正弦波转换电路的安装与调试,,,,,,,(13) 5.3总电路的安装与调试(13) 5.4电路安装与调试中遇到的问题及分析解决方法,,,,(13) 6 电路的实验结果(14) 6.1方波---三角波发生电路的实验结果(14) 6.2三角波---正弦波转换电路的实验结果(14) 6.3实测电路波形、误差分析及改进方法(15) ,,,,,,,,,,,,,,,,,,,,,,,, (17)7 实验总结 8 仪器仪表明细清单(18) 9 参考文献(19)

1. 函数发生器总方案及原理框图 1.1原理框图 1.2函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管), 也可以采用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波一三角波一正弦波函数发生器的设计方法。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波一方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波一三角波,再将三角波变换成正弦波的电路设计方法, 本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波一三角波产生电路,比较器输出的方波经积分器 得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形 变换的原理是利用差分放大器传输特性曲线的非线性。

正弦函数和余弦函数图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法

相关文档
最新文档