红外光谱口诀

红外光谱口诀
红外光谱口诀

红外光谱口诀

红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。1470碳氢弯,1380甲基显。二个甲基同一碳,1380分二半。

面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。顺式二氢690,反式移至970;

单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。 1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。五氢吸收有两峰,700和750;

四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢

醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。若与π键紧相连,二个吸收要看准,

1050对称峰,1250反对称。苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,

九百上下反对称,八百左右最特征。缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、

酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰, 1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。 1180甲酸酯,1190是丙酸,

1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。

氮氢伸展三千四,每氢一峰很分明。羰基伸展酰胺I,1660有强峰;

N-H变形酰胺II,1600分伯仲。伯胺频高易重叠,仲酰固态1550;

碳氮伸展酰胺III,1400强峰显。

胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。

八百左右面内摇,确定最好变成盐。伸展弯曲互靠近,伯胺盐三千强峰宽,

仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可见。

硝基伸缩吸收大,相连基团可弄清。 1350、1500,分为对称反对称。

氨基酸,成内盐,3100~2100峰形宽。 1600、1400酸根展,1630、1510碳氢弯。

盐酸盐,羧基显,钠盐蛋白三千三。

矿物组成杂而乱,振动光谱远红端。钝盐类,较简单,吸收峰,少而宽。

注意羟基水和铵,先记几种普通盐。1100是硫酸根,1380硝酸盐,

1450碳酸根,一千左右看磷酸。硅酸盐,一峰宽,1000真壮观。

勤学苦练多实践,红外识谱不算难。红外谱图数据库

首先应该对各官能团的特征吸收熟记于心,

因为官能团特征吸收是解析谱图的基础。

对一张已经拿到手的红外谱图:

(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:

不饱和度=F+1+(T-O)/2 其中:

F:化合价为4价的原子个数(主要是C原子),

T:化合价为3价的原子个数(主要是N原子),

O:化合价为1价的原子个数(主要是H原子),

我以前本科上谱学导论时老师给过公式,但字母都被我改了:F、T、O分别是英文4,3

1的首字母,这样我记起来就不会忘了:)。

举个例子:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好

为4个不饱和度;

(2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^-1为不

饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱

和C-H伸缩振动吸收;

(3)若在稍高于3000cm^-1有吸收,则应在 2250~1450cm^-1频区,分析不饱和碳碳键的伸

缩振动吸收特征峰,其中:

炔 2200~2100 cm^-1

烯 1680~1640 cm^-1

芳环 1600,1580,1500,1450 cm^-1

若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区 ,以

确定取代基个数和位置(顺反,邻、间、对);

(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判

定化合物

的官能团;

(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820 ,2720和1750~1700cm^-1的三个峰,说明醛基的存在。

解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都

有比较详细的介绍的,这里就不唠叨了。

这是一个令人头疼的问题,有事没事就记一两个吧:

1.烷烃:C-H伸缩振动(3000-2850cm^-1)

C-H弯曲振动(1465-1340cm^-1)

一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm^-1)

C=C伸缩(1675~1640 cm^-1)

烯烃C-H面外弯曲振动(1000~675cm^1)。

3.炔烃:伸缩振动(2250~2100cm^-1)

炔烃C-H伸缩振动(3300cm^-1附近)。

4.芳烃:3100~3000cm^-1 芳环上C-H伸缩振动

1600~1450cm^-1 C=C 骨架振动

880~680cm^-1 C-H面外弯曲振动

芳香化合物重要特征:一般在1600,1580,1500和1450cm^-1可能出现强度不等的4个峰。

880~680cm^-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化 ,在

芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。

5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,

O-H 自由羟基O-H的伸缩振动:3650~3600cm^-1,为尖锐的吸收峰,

分子间氢键O-H伸缩振动:3500~3200cm^-1,为宽的吸收峰;

C-O 伸缩振动: 1300~1000cm^-1

O-H 面外弯曲: 769-659cm^-1

可以按如下步骤来:

(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:

F:化合价为4价的原子个数(主要是C原子),

T:化合价为3价的原子个数(主要是N原子),

O:化合价为1价的原子个数(主要是H原子),

例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;

(2)分析3300~2800 cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000 cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,

而低于3000 cm-1一般为饱和C-H伸缩振动吸收;

(3)若在稍高于3000 cm-1有吸收,则应在 2250~1450 cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:

炔 2200~2100 cm-1

烯 1680~1640 cm-1

芳环 1600,1580,1500,1450 cm-1

若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650 cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对);

(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;

(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700 cm-1的三个峰,说明醛基的存在。

至此,分析基本搞定,剩下的就是背一些常见常用的健值了!

1.烷烃:C-H伸缩振动(3000-2850 cm-1)

C-H弯曲振动(1465-1340 cm-1)

一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010 cm-1)

C=C伸缩(1675~1640 cm-1)

烯烃C-H面外弯曲振动(1000~675 cm-1)。

3.炔烃:伸缩振动(2250~2100 cm-1)

炔烃C-H伸缩振动(3300 cm-1附近)。

4.芳烃:3100~3000 cm-1 芳环上C-H伸缩振动

1600~1450 cm-1 C=C 骨架振动

880~680 cm-1 C-H面外弯曲振动

芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4个峰。

880~680 cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。

5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,

O-H 自由羟基O-H的伸缩振动:3650~3600 cm-1,为尖锐的吸收峰,分子间氢键O-H伸缩振动:3500~3200 cm-1,为宽的吸收峰;

C-O 伸缩振动:1300~1000 cm-1

O-H 面外弯曲:769-659 cm-1

6. 醚特征吸收:1300~1000 cm-1 的伸缩振动

脂肪醚:1150~1060 cm-1 一个强的吸收峰

芳香醚:两个C-O伸缩振动吸收:1270~1230 cm-1(为Ar-O伸缩)1050~1000 cm-1(为R-O伸缩)

7.醛和酮:醛的主要特征吸收:1750~1700 cm-1(C=O伸缩)2820,2720 cm-1(醛基C-H伸缩)

脂肪酮:1715 cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共轭会使吸收频率降低

8.羧酸:羧酸二聚体:3300~2500 cm-1 宽,强的O-H伸缩吸收

1720~1706 cm-1 C=O 吸收

1320~1210 cm-1 C-O伸缩

920 cm-1 成键的O-H键的面外弯曲振动

9.酯:饱和脂肪族酯(除甲酸酯外)的C=O 吸收谱带:1750~1735 cm-1区域

饱和酯C-C(=O)-O谱带:1210~1163 cm-1 区域为强吸收

10.胺:3500~3100 cm-1,N-H 伸缩振动吸收

1350~1000 cm-1,C-N 伸缩振动吸收

N-H变形振动相当于CH2的剪式振动方式,其吸收带在:1640~1560 cm-1,面外弯曲振动在900~650 cm-1.

11.腈:腈类的光谱特征:三键伸缩振动区域,有弱到中等的吸收

脂肪族腈 2260-2240 cm-1

芳香族腈 2240-2222 cm-1

12.酰胺:3500-3100 cm-1 N-H伸缩振动

1680-1630 cm-1 C=O 伸缩振动

1655-1590 cm-1 N-H弯曲振动

1420-1400 cm-1 C-N伸缩

13.有机卤化物:

C-X 伸缩脂肪族

C-F 1400-730 cm-1

C-Cl 850-550 cm-1

C-Br 690-515 cm-1

C-I 600-500 cm-1

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

波谱解析 第一章 紫外光谱习题参考答案

习题参考答案 第一章紫外光谱 1. (1) 饱和化合物,吸收在远紫外区,故在近紫外区无吸收峰; (2) 结构可看成乙烯中引入了助色基团甲氧基,吸收波长红移,但吸收峰仍在远紫外区,近紫外区无吸收峰; (3) π→π*跃迁。氨基为助色团,其孤对电子与苯环发生p→π共轭,所以E带和B带均发生红移,E1吸收位于远紫外区,E2带(230 nm)和B带(280 nm)处在近紫外区。 (4)取代基与苯环形成大的共轭体系,有π→π*跃迁;结构中含有羰基,有n→π*跃迁。吸收带有K带、B带和R带; (5) 取代基与苯环形成大的共轭体系,π→π*跃迁,主要吸收带为K带和B带; (6) 羰基有n→π*跃迁,为R带吸收。(该结构的烯醇异构体有K带和R带) (7) 该结构为α,β-不饱和羰基化合物,有π→π*跃迁和n→π*跃迁,吸收带为K带和R带。 2. (1) a为饱和烷烃,仅有σ→σ*跃迁,吸收位于远紫外;b有两个双键,但未共轭,吸收位于远紫外;c为共轭二烯,吸收在近紫外;所以最大吸收波长c>b>a;(2) a为同环共轭双烯,波长最大,c和b相比,结构中多了一个甲基,存在超共轭效应,吸收红移。综上所述,a>c>b; (3) a, c为共轭体系,吸收波长均高于b。a和c相比,结构中拥有更多的取代甲基,存在超共轭效应,吸收红移。综上所述,a>c>b; 3. (1) 同环共轭双烯基本值253 4个烷基取代+ 4×5 2个环外双键+ 2×5 计算值283(nm)

(3) (4) (5) (6) 骈环异环共轭双烯基本值214 4个烷基取代+ 4×5 2个环外双键+ 2×5 计算值244(nm) 同环共轭双烯基本值253 4个烷基取代+ 4×5 计算值273(nm) 直链α,β-不饱和酮基本值215 1个烷基α取代+ 10 计算值225(nm) 五元环α,β-不饱和酮基本值202 1个烷基α取代+ 10 2个烷基β取代+12×2 2个环外双键+5×2 计算值246(nm) 六元环α,β-不饱和酮基本值215 1个烷基α取代+ 10 2个烷基β取代+12×2 计算值249(nm)

红外吸附光谱法

红外吸附光谱法的学习 吸附研究方法多种多样,经典的方法有吸热法,比表面积,吸附等温线等。近代研究方法增加了红外光谱法,表面电压法,紫外光电子能谱等多个新研究方法技术。我主要对红外吸附光谱法进行了学习。 红外吸附法可提供吸附质及吸附剂—固体键的资料。通过吸附质在吸附前后红外吸收光谱地位移,考察表面吸附情况。不同的振动频率代表了吸附分子中不同的原子和表面成键。该方法有助于区别物理吸附和化学吸附。物理吸附靠范德华力,一般只能观察到谱带位移,不产生新谱带;而化学吸附形成新的化学键,能出现新谱带。该方法还能确定化学吸附分子的构型,如采用红外光谱测定CO在Pd上的吸附构型,表明覆盖率增加直线式结构增强。下面将具体介绍利用红外光谱仪测定CO在Pd/ Al 2O3 催化剂及载体上的吸附性能。 实验用催化剂系将一定浓度的含活性组分的混合溶液,浸渍于载体,然后经干燥、还原和活化而成。在红外测定前,将样品充分还原后,研磨成小颗粒,置于可用于吸附态测定的漫反射池中。采用 NaCl 做吸收池窗片。首先在高纯氮气吹扫下以 2 ℃ / mi n 的升温速率升至 180 ℃脱气,跟踪记录样品表面脱附情况 , 直至观测到的红外光谱图基本不变化。降至室温后切换为 CO 吸附气,并开始跟踪记录红外光谱图的变化。为防止催化剂表面吸附的物质对下次实验造成影响,每次实验均更换为新鲜催化剂。 首先是CO在载体Al2O3上吸附的红外光谱。众所周知 ,载体的作用不仅是稀释、支撑、分散金属活性组分 ,而且也具有明显的吸附剂特征。图 1 为 120 ℃时 CO 在载体Al2O3上吸附的红外-光谱图。从图 1 中可以看出 , CO 在Al2O3表面上有 HCOO-的形成 ( 1600 cm-1、 1383 cm-1) ,这是由于在Al2O3表面上存在不同的表面OH-可与-吸附在载体上的 CO 生成羧基等表面吸附态 , 即CO + O H-→ HCOO-。另外 , 在Al2O3上不可避免地会吸附少量的水 , 也可促进 HCOO-的生成。从图1还可发现 , 在Al2O3上有少量吸附态HCO3-的生成( 1465 cm-1,1254 cm-1)。 比较不同温度下 CO 在Al2O3上吸附的红外光谱 , 如图 2 所示 , 在室温时 , 可以发现少量的HCO3-吸收峰 ( 1656 cm-1、 1465 cm-1和1254cm-1 ,随着温度升高 , HCO3-吸收峰强度逐-渐减弱。温度至 100 ℃时 ,在 1600 cm-1处出现了一个新峰 , 且随温度的升高而逐渐增强。同时 ,1383 cm-1峰附近的 1349 cm-1处峰也随温度升-高逐渐增大 , 到100 ℃时强度已明显超出 1383cm-1处峰。 1600 cm-1和 1383 cm-1峰分别对应于HCOO-的不对称和对称伸缩振动 , 这说明HCO3-在升温过程中转变为 HCOO-, 至 120 ℃-时催化剂表面只有少量的HCO3-吸附态。 其次是CO 在催化剂Pd表面上吸附的红外光谱研究。图 3 为反应温度 120 ℃时 CO 在 Pd/ Al2O3催-化剂表面上吸附的红外光谱图。图 3 中的 2176cm-1、 2116 cm-1-处峰为

波谱解析习题

第一节:紫外光谱(UV) 一、简答 (p36 1-3) 1.丙酮的羰基有几种类型的价电子。并说明能产生何种电子跃迁各种跃迁可在何区域波长处产生吸收 答:有n 电子和π电子。能够发生n →π*跃迁。从n 轨道向π反键轨道跃迁。能产生R 带。跃迁波长在250—500nm 之内。 2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π* 跃迁) (2) (1) 及 NHR 3 CH CH OCH 3 CH 及CH 3 CH CH 2 答:(1)的后者能发生n →π*跃迁,吸收较长。(2)后者的氮原子能与苯环发生P →π共轭,所以或者吸收较长。 3.与化合物(A )的电子光谱相比,解释化合物(B )与(C )的电子光谱发生变化的原因(在乙醇中)。 (C)(B) (A)入max =420 εmax =18600 入max =438 εmax =22000 入max =475 εmax =320003 N N N NO HC 32(CH )2 N N N NO H C 32(CH )2 2 32(CH )(CH )23N N N NO 答:B 、C 发生了明显的蓝移,主要原因是空间位阻效应。 二、分析比较(书里5-6) 1.指出下列两个化合物在近紫外区中的区别: CH CH 3 2 (A)(B)

答:(A)和(B)中各有两个双键。(A)的两个双键中间隔了一个单键,这两个双键就能发生π→π共轭。而(B)这两个双键中隔了两个单键,则不能产生共轭。所以(A)的紫外波长比较长,(B)则比较短。 2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n→π*跃迁及π→π*跃迁有何影响答:对n→π*跃迁来讲,随着溶剂极性的增大,它的最大吸收波长会发生紫移。而π→π*跃迁中,成键轨道下,π反键轨道跃迁,随着溶剂极性的增大,它会发生红移。 三、试回答下列各问题 *跃迁还是π→π* 1.某酮类化合物λhexane max=305nm,其λEtOH max=307nm,试问,该吸收是由n→π 跃迁引起的(p37-7) 答:乙醇比正己烷的极性要强的多,随着溶剂极性的增大,最大吸收波长从305nm变动到307nm,随着溶剂极性增大,它发生了红移。化合物当中应当是π→π反键轨道的跃迁。 四.计算下述化合物的λ : max 1. 计算下列化合物的λmax:(p37 -11) 五、结构判定 1. 一化合物初步推断其结构不是A就是B,经测定UV λEtOH max=352nm,试问其结构为何 O O (A)(B)

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1 处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为~1eV 。

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

近红外光谱

近红外光谱在果蔬品质无损检测中的应用研究进展 摘要 本论文介绍了近红外光谱无损检测机理,近红外光谱在果实品质的定量分析和定性分析的研究概况,并对近红外光谱对果实品质无损检测存在问题及前景做了简单的分析。 关键词 无损检测;近红外光谱;内部品质;果蔬 1 引言 1.1 果蔬无损检测研究概况 果蔬品质主要是指果蔬形态、颜色、密度、硬度以及含糖量、水分、酸度、病变等。果蔬品质检测技术作为保障果蔬质量、提升产品市场竞争力的一种手段,可以分为有损检测和无损检测两种。有损检测一般需要借助传统的化学分析测定方法或是现代仪器分析方法( 如高效液相色谱分析、气相色谱分析、质谱分析等) ,测定过程比较烦琐、人力物力耗费大、检测成本非常高。无损检测又称为非破坏性检测,是利用果蔬的物理性质,如力学性质、热学性质、电学性质、光学性质和声学性质等,在获取样品信息的同时保证了样品的完整性,检测速度较传统的化学方法迅速,且能有效地判断出从外观无法获得的样品内部品质信息。目前,果蔬品质与安全的无损检测技术主要包括: 光谱分析技术、光谱成像技术、机器视觉技术、介电特性检测技术、声学特性及超声波检测技术、力学检测技术、核磁共振检测技术、生物传感器技术、电子鼻与电子舌技术等等。针对不同的检测对象和检测指标,这些无损检测技术各具优势。 1.2 近红外光谱无损检测研究概况 近红外光谱分析( Near Infrared Spectroscopy,NIR) 技术是近十年来发展最为迅速的高新分析技术之一,以其快速、简便、高效等优势已被人们认识和接受,并且其应用范围也由谷物、饲料扩展到食品和果蔬等领域。水果是重要的农产品,消费者在选购水果时对于内部品质如口感、糖度和酸度等极为看重。而近红外光谱分析技术将其用于水果内部品质检测具有快速、非破坏性、无需前处

红外光谱特征吸收峰

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 一、基团频率区和指纹区 (一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之 间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域: (1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;-

近红外光谱分析仪

图2 滤光片近红外光谱分析仪光路图 近红外光谱分析仪 现代近红外光谱分析技术始于上世纪80年代末,90年代初,至今已有20余年的快速发展,该分析技术日臻成熟,已经在各个领域中发挥了巨大作用。近红外光谱分析技术具有分析速度快、同时测量多种性质、测量精度高、操作简单、仪器种类多的特点,适合化验室、在线和现场便携等使用。 近红外光谱测量方式可归结为:透射,漫反射和衰减全反射,如图1所示。 (a )透射 (b )漫反射 (c )ATR 图1 近红外光谱测量方式 1 常见近红外分析仪器产品种类 近红外分析仪器是光谱仪器,在结构上,与紫外-可见分光光度计、红外光谱仪类似,具有光源、分光、检测和电路控制等单元。根据分光方式,近红外光谱仪器可划分为滤光片近红外分析仪、光电发光二极管近红外分析仪、光栅扫描近红外光谱仪、傅里叶近红外光谱仪、阵列 检测近红外光谱仪、声光过滤调制近红外光 谱仪和MEMS 近红外光谱仪。按照仪器用途 和功能,近红外光谱仪器可分为便携近红外 分析仪、实验室台式近红外光谱仪、在线近 红外光谱仪以及专用分析仪。这些光谱仪器 的分光原理和功能具有显著不同,在结构、 性能和用途上差别很大。 1.1 滤光片近红外分析仪 光源发出的复合光中部分窄波段光通过滤光片。不同的滤光片可提供系列窄波段,通常多达8~9种滤光片。这类仪器结构相对简单(如图2所示), 成本低,

适合用于便携和专用分析仪。虽然光谱分辨率低,但对很多应用如水分分析等,可以满足常规分析要求。如同其他类型的近红外光谱仪,这类仪器对温度要求也非常苛刻。 1.2 光栅扫描近红外光谱仪 图3 光栅扫描近红外光谱仪光路示意 这是最为经典的光谱仪器,如图3所示,通过单色器(一般为光栅)将复合光色散为单色光,各单色光通过转动光栅按照波长顺序依次通过出射狭缝,通过样品,到达检测器检测。这类仪器的光谱范围取决于选用的光栅和检测器,可以是短波(700~1100nm,硅检测器)或是长波(1100~2500nm,硫化铅,或砷镓铟)。现代扫描光谱仪采用波长编码技术,可以取得较快扫描速度(几张光谱/s)。虽然在构造上如同紫外-可见光谱仪,但是对光谱的重复性和信噪比的要求却很高。 1.3 傅里叶近红外光谱仪 傅里叶近红外光谱仪采用光干涉原理将复合光分为单色光。最为常用的是迈克尔逊干涉仪,如图4所示,从光源发出的复合光,通过分束器分为透射光束和反射光束,这两束光再分别经过定镜和动镜反射后,又汇合为一束光,随着动镜的位移,两束光之间存在着光程差,产生干涉现象,得到干涉图,通过傅立叶数学变换,将干涉图转变为光谱图。由于无须光学狭缝,光通量很高,具有很高的信噪比。采用He-Ne激光干涉图零点确定扫描波长,具有很高波长精度,扫描速度也很快。光谱范围一般为1100~2500nm,分辨率高。不同光谱仪的分辨率由干涉仪的光程差决定。广泛用于实验室台式仪器。

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1 。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1 。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1 。C C ≡ν峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1 和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动( =C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动( c=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动( =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及OH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的 OH 峰位在955~915 cm -1 范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外光谱特征峰解析常识

红外光谱特征峰解析常识 编写李炎平 红外特征光谱峰存在一定特征规律,正确的记录了化学结构和特征,识记特征波谱峰有助于我们解析红外光谱。下面我将一些特征波谱峰简要罗列如下,如有疏漏之处还望批评指出。 , 羟基:特征峰范围(3650~3200)cmˉ1,一般在 3600cmˉ1处有较强峰。 , 羧基:特征峰范围(3500~2500)cmˉ1,一般峰波 数小于羟基。 , 饱和烷烃—C—H :特征峰小于3000cmˉ1,一般在 (2950~2850)cm处,如有峰在(1390~1360)cmˉ1 处,则说明有—CH,如有峰在1450cmˉ1处,则说3 明有——, CH2 , 不抱和烷烃:特征峰大于3000cmˉ1,对于烯烃 _C,C,H在3050 cmˉ1处和(1600~1330)cmˉ1 ,C,C,H处有峰,对于炔烃在(3360~3250)cmˉ1 处有峰,在(700~600)cmˉ1处有枪宽峰。 C,C, 对于:在(1700~1645)cmˉ1处有特征峰,不 过不太明显,只具有指示作用。 ,CHO,,COC,,,COOC,, 对于在(1900~1600)cm处有强峰。 ,C,O,,,C,O,C,,,C,N,,,C,O,C,, 指纹区:等,在 (1330~900)cmˉ1处有中强峰, , 对于:在(900~400)cmˉ1处有中强或弱峰。 (CH)2n

, 对于醛类:特征范围为羰基峰+(2900~2700)cmˉ1。 , 对于:在(1300~900)cmˉ1处有两强峰(可,C,O,C, 能有一个弱峰)。 , 特征区范围(4400~1330)cmˉ1,指纹区范围(1330~400)cmˉ1。 , 通常将中红外光谱区域划分为四个部 分。 1)4000~2500cm-1,为含氢基团的伸 缩振动区,通常称为“氢键区”。 2)2500~2000cm-1叁键和累积双键区。 3)2000~1500cm-1,双键区。 4)小于1500cm-1,单键区。

近红外光谱快速鉴别酸奶的品种

近红外光谱快速鉴别酸奶的品种 提出了一种用近红外光谱技术快速鉴别酸奶品种的新方法。首先应用光谱仪获得5种典型酸奶品种的光谱曲线,用主成分分析法对5种酸奶品种进行聚类分析,建立模型后进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98.986%,前7个主成分的累积可信度达到99.197%。本实验选择前7个主成分的输入,建立模型。每个品种各27个样本,5个品种共135个样本用来建立模型,余下每个品种各5个共25个用于预测。建模品种的拟合率和预测品种的识别率均为100%。说明该方法能快速无损的检测酸奶品种,为酸奶的品种鉴别提供了一种新方法。 酸奶所含有的蛋白质经一定程度的分解后易于被人体消化吸收,有较高的营养价值和口味,也具有健美和减肥等功效,深受广大的消费群体(儿童、青少年、中青年女性等)喜爱。近年来我国一批大中型乳品企业在市场竞争中奇迹般地崛起,市场超市中的酸奶品种也五花八门,但市场中也不乏各种假冒产品。一些学者利用近红外光谱技术在牛奶的脂肪、蛋白质和乳糖等含量方面做了一些研究,但是对于酸奶品种鉴别方面的研究还做得很少,主要是在实验室进行。随着市场上酸奶品种的加速发展,品种鉴别将越来越凸现出它的必要性,所以研究一种简单、快速、无损的酸奶品种鉴别方法很有必要。 由于近红外光谱分析技术具有速度快、效率高、成本低、测试重现性好、测试方便等特点,已经被越来越多地应用于食品工业、石油化工、制药工业等领域。但进行光谱测试后如何从大量的信息中获取有效信息是研究的一个热点。主成分分析是多元统计中的一种数据挖掘技术。在不丢失主要光谱信息的前提下选择为数较少的新变量来代替原来较多的变量,解决了由于谱带的重叠而无法分析的困难。我们选用主成分分析(PCA)建立不同品种酸奶品种的近红外光谱鉴别模型。 一.仪器条件: 仪器为近红外光谱仪,主要部件包括:单色仪、集成电脑、电源适配器,置顶旋转测样系统。采集处理软件,建模软件。测样方式:漫反射方式;检测方法:置顶旋转测样系统;实验所用的参数设置为:波长范围:1400nm~2500nm,波长步长:1.0nm,平均次数:60次。二.实验方法: 从超市买来生产日期为同一天的三种原味酸奶,分别是蒙牛(内蒙古)、光明(上海)、伊利(内蒙古),每种酸奶各取30样本,共计90个样本。为减少实验过程中的操作误差,酸奶装样容器均采用直径为4cm,高度为,4cm的样品杯,装好的酸奶的样品杯放置于光谱仪置上方,通过样品杯的旋转,对每个样品扫描60次,取平均值。

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

红外吸收光谱法

红外吸收光谱法 第六章红外吸收光谱法 一、选择题 1.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( ) (1) 向高波数方向移动 (2) 向低波数方向移动 (3) 不移动 (4) 稍有振动 2. 红外吸收光谱的产生是由于 ( ) (1) 分子外层电子、振动、转动能级的跃迁 (2) 原子外层电子、振动、转动能级的跃迁 (3) 分子振动-转动能级的跃迁 (4) 分子外层电子的能级跃迁 3. 色散型红外分光光度计检测器多用 ( ) (1) 电子倍增器 (2) 光电倍增管 (3) 高真空热电偶 (4) 无线电线圈 4.一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 -15.一个含氧化合物的红外光谱图在3600,3200cm有吸收峰, 下列化合物最可能 的是 ( ) (1) CH,CHO (2) CH,CO-CH 333 (3) CH,CHOH-CH (4) CH,O-CH-CH 33 323 6. Cl分子在红外光谱图上基频吸收峰的数目为 ( ) 2

(1) 0 (2) 1 (3) 2 (4) 3 7. 下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的 (2) 极性键的伸缩和变形振动都是红外活性的 (3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动 (4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是 8. 羰基化合物中, C=O伸缩振动频率最高者为 ( ) O RC) R(1 O C) R F(2 O C) R Cl(3 O C) R Br(4 9.用红外吸收光谱法测定有机物结构时, 试样应该是 ( ) (1) 单质 (2) 纯物质 (3) 混合物 (4) 任何试样 10 以下四种气体不吸收红外光的是 ( ) (1)HO (2)CO (3)HCl (4)N 222 11. 红外光谱法, 试样状态可以是 ( ) (1) 气体状态 (2) 固体状态

红外吸收光谱的解析分解

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。

第二节 红外吸收光谱的基本原理 一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原 子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以 外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外 界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此 在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测 得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子 分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键 长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之 间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以 把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力 学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简 化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就 大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红 外的高频率区。 2、多原子分子的振动 1πμ2c K m 1m 2m 1m2+ K μ

木材种类的近红外光谱和模式识别

第39卷,第3期2 0 19年3月 光谱学与光谱分析 Spectroscopy and Spectral Analysis Vol. 39,No. 3,pp705-710 March,2019 木材种类的近红外光谱和模式识别 郝勇、商庆园、饶敏胡远- 1.华东交通大学机电与车辆工程学院,江西南昌330013 2.赣州出人境检验检疫局,江西赣州341001 摘要木材的种类识别是木材加工和贸易的一个重要环节,传统的木材种类识别方法主要有显微检测法 和木材纹理识别法,其操作繁琐,耗时长,成本高,不能满足当前需求。本研究利用木材的近红外光谱 (N IR S)结合模式识别方法,以期实现木材种类的快速准确识别。采用近红外光谱结合主成分分析法(P C A)、 偏最小二乘判别分析法(P L SD A)和簇类独立软模式法(SIM C A)三种模式识别对58种木材进行种类鉴别研 究&5点平滑、标准正态变量变换(S N V)、多元散射校正(M SC)、SaviPky-Golay —阶导数(S G1st-Der)和小 波导数(W D)五种光谱预处理方法用于木材光谱的预处理&校正集和测试集样品的正确识别率(C R R)用于模 型的评价。采用P C A方法,通过样品的前三个主成分空间分布图分辨木材种类的聚类情况。在建立PLSDA 模型,原始光谱的正确识别率最高,分别为88. 2g和88.2% &5点平滑处理的光谱校正集和测试集的CRR 分别为88. 1g和88. 2g&S N V处理的光谱校正集和测试集的C R R分别为84. 4g和84. 5g&M S C处理的光 谱校正集和测试集的C R R分别为83. 1%和84. 2% &S G1st-D er处理的光谱校正集和测试集的C R R分别为 81. 8%和82. 7% &WD(小波基为“Haar”,分解尺度为80)处理的光谱校正集和测试集的C R R分别为87. 3% 和87.2%。可知,在P L S D A模型中,木材光谱未经预处理种类识别效果最后好。在建立S IM C A模型过程 中,原始光谱的校正集和测试集的C R R分别为99. 7%和99.4% &5点平滑处理的光谱校正集和测试集的 C R R分别为100%和100%;S N V处理的光谱校正集和测试集的C R R分别为99.5%和99.1%;M S C处理 的光谱校正集和测试集的C R R分别为99.0%和98.4%& S G1st-D e r的光谱校正集和测试集的C R R分别为 81. 8%和82. 7% &W D处理的光谱校正集和测试集的C R R分别为100%和100%。可知,在S IM C A模型中, 木材光谱经平滑和小波导数处理后的识别效果最好,且光谱的校正集和测试集C R R都为100%。采用三种 模式结合五种不同的预处理方法对木材近红外光谱进行定性建模识别时,由于木材样本属性复杂,主成分 分布图相互交织,P C A无法识别出58种木材&原始光谱的P L S D A模型可以得到较好的判别模型,但校正 集和测试集的C R R只有88. 2%和88. 2% &木材光谱经过5点平滑或W D预处理后的S IM C A模型可达到最 好的识别效果,校正集和测试集的C R R均为100%,且W D-SIM CA模型因子数比5点平滑S IM C A模型小, 模型更为简化,故W D-SIM CA为58种木材种类识别的最优模型。研究表明光谱预处理方法可以有效的提 高木材种类识别精度,有监督模式识别方法S IM C A可以用来建立有效的木材识别模型,近红外光谱结合模 式识别可以为木材种类的识别提供一种快速简便的分析方法。 关键词近红外光谱&木材种类识别&光谱预处理&偏最小二乘判别分析法&簇类独立软模式法 中图分类号!S79 文献标识码:A DOI: 10. 3964". issn. 1000-0593(2019)03-0705-06 个重要环节。现阶段木材种类识别方法主要有显微检测法和弓1言图像纹理识别法[12],此两种方法易受环境的干扰,操作步 骤繁琐,处理较复杂。近红外吸收谱带可以反映出大多数有我国木材资源丰富且种类繁多,然而人均占有率较低,机物分子的结构信息,近红外光谱具有快速、非破坏性以及每年需要进口大量的木材。木材种类识别是加工和贸易的一精度高等优势被广泛应用36]。近年来,近红外光谱检测技收稿日期:2018-01-11,修订日期!2018-04-21 基金项目:国家自然科学基金项目(21265006),国家质量监督检验检疫总局科技计划项目(2015IK160),江西省自然科学基金项目(2015Z B A B201003)资助 作者筒介:郝勇,1978年生,华东交通大学机电与车辆工程学院副教授e-m a il: h ao n m@163.co m

相关文档
最新文档