等离子体CH4-CO2重整制合成气动力学分析

收稿日期:!""#$%%$%!;基金来源:国家自然科学基金资助(批准号:%"&’("#");作者简介:王彧婕(%)*!$),女,硕士生;

!联系人:电邮+,,-"#’(./012341。等离子体56&$57!重整制合成气动力学分析

王彧婕,李8洁,龙华丽,代8伟,印永祥!,戴晓雁

(四川大学化工学院,成都#%""#()

摘要:对大气压反常辉光放电条件下56&$57!重整制合成气反应过程进行了数值模拟。针对实际的过程特征,合理地估计了反应停留时间、电子温度、电子密度作为模拟计算的输入参数,建立了包含%)个组分、#"个化学反应式的反应动力学基本模型。对基本模型进行简化,得到了仅包含!’个基元反应的简化模型。模拟表明,基本模型、简化模型与实验结果吻合良好。在此基础上对主要产品的生成路线和机理进行了分析,得出57的生成主要依靠57!裂解和56&氧化脱氢;6!的生成主要依靠56&的裂解和脱氢。

关键词:大气压反常辉光放电;合成气;动力学模拟;基本模型;简化模型

中图分类号:7#&9888文献标识码::888文章编号:%""%$)!%)(!""’)"!$!#$"#

88等离子体过程提供了一种独特的诱导气相化学反应的途径,因此,近年来被广泛运用于甲烷转化制

5!烃和合成气的实验研究[%$9]

。但是由于有机物化

学键的相似性和等离子体的高活化能力,等离子体反应体系中反应速率虽快,但产物、尤其是中间产物复杂,大多情况下无法通过直接测量得知反应过程和中间产物的准确信息。尤其对于反应方向和路径的描述至今也没有做出令人满意的解释。近年来,随着计算机技术的发展,利用数值计算方法模拟等离子体中各种过程发生的机制和规律,已成为该研究领域中一种重要的手段。

;353<=>?21@和:3A3B02C,等[&$#]

,DE1D21>[’,*],何方方等[)]

均采用全混流假定,分别对微

波放电F !等离子体辉光下游的56&G F !反应体系和介质阻挡放电转化甲烷制高碳烃过程结果均不同程度地通过实验得到印证。

在利用等离子体重整甲烷和二氧化碳制备合成

气实验研究[%]

的基础上,根据反应器特征,合理估

计了模拟计算的初始参数,本文对该过程进行数值模拟。首先选择#"个基元反应,利用质量作用定律建立包含%)种反应物、中间产物和最终产物在内的基本动力学方程组进行模拟,得到了与实验研究一致的结果。为了便于分析反应机理和主要反应路

线,将基本模型简化为仅有!’个主要反应的简化模型。在简化模型得到了与基本模型几乎完全相同的结果的基础上,分析了等离子体反应历程的主要线索。

%8模拟选择的化学反应

在反常辉光放电诱导的重整反应中,首先是高能电子与甲烷和二氧化碳碰撞,生成自由基,然后再进行自由基反应生成产物。对于甲烷裂解,本文采用文献[&$#]的模型。在高能电子碰撞下,甲烷首先转化为一种超激发态,然后通过能量在化学键之间的传递,按一定的几率离解成自由基。其路径如下所示:

!H 56&"$%"

!H 56!

&$

!H 569H 6………………""%(I "J (K "")!H 56!H 6!H 6…………""!(I "J 9K "")!H 56H 6!H 6…………""9(I "J %K "")!H 5H !6!………………""&(I "J %K ""{

(%)

6!与电子碰撞的基元反应如下:

!!H 6!"$%"(

!H 6H 6

(!)

式中,速率常数""和""(来源于文献[’]

,其中""

I (J (""K%"’,#L I $L %M L =-N ($&L G %=),%=电子温度。

电子与57!、

57碰撞裂解,!!H 57!$57H 7H !(9)!!H 57$5H 7H !

(&)

其速率常数通过麦克斯韦电子能量分布函数

#!8天然气化工!""’年第9!卷

万方数据

天然气制甲醇工艺总结word精品

天然气制甲醇工艺技术总结 中化二建集团有限公司王瑞军 工程名 称:内蒙古天野化工油改气联产20万吨/年甲醇项目 工程地点:内蒙古呼和浩特巾 开工日期:2004年5月 竣工日期:2005年11月 投资金 额: 约6亿元人民币 1甲醇装置简介 1.1内蒙古天野化工集团为调整产品结构,开拓碳一化工领域产品,增强企业参与市场的竞争能力,解决企业生存发展问题,以天然气取代重油为原料,采用非催化部分氧化技术对现有的30万吨/年合成氨生产装置进行技术改造,同时增建一套以天然气为原料年产20万吨的甲醇装置。 1.2 本项目由中国五环科技有限公司设计,中化二建集团有限公司承建。所采用的技术均为国产。所选用的设备除三台天然气压缩机组为进口外,其余均为国产。设计日产甲醇667吨,日耗天然气608500立方米。装置采用:变频电机驱动离心式天然气压缩、 2.5MPa 补碳一段蒸汽转化炉、蒸汽透平驱动离心式合成气压缩机、8.0MPa林达均温合成塔、三塔 精馏、普里森膜分离氢回收、MEA二氧化碳回收工艺。另外还为合成氨配套一台蒸汽透平驱动离心式天然气压缩机。 2甲醇装置工艺特点 2.1 天然气压缩工序 天然气压缩工序是将1.25MPa( A)天然气压缩至蒸汽转化要求的压力2.85MPa(A)。天然气压缩机组采用德国阿特拉斯生产的电机驱动的离心式压缩机组?离心压缩机的显著 特点是单机打气量大。运转平稳无脉冲、维修少、无需备用,与蒸汽透平驱动相比投资少,占地面积较小。 2.2 天然气转化工序 2.2.1天然气转化工序是通过天然气和蒸汽转化反应生产甲醇合成需要的合成气。天然气转化工序只设一段转化炉,转化炉采用顶烧方箱炉,对流段为水平布置,水碳比为 3.2, 转化炉出口转化气温度855E,压力2.19MPa,甲烷含量约2.5% (干基)。 2.2.2 原料天然气脱硫采用钻钼加氢串氧化锌脱硫工艺,氧化锌脱硫槽采用双塔,可并联可串联保证天然气中总硫小于O.IPPn,同时脱硫剂更换不影响生产。

天然气制合成气的新技术

天然气制合成气的新技术 摘要:伴随煤炭石油等能源的日益枯竭,天然气等新型能源进入到人们的视野当中,如何更有效的利用天然气成为关键。本文简单介绍了国内外天然气的化工利用情况,并介绍了天然气为原料制成的合成物,最后分析了天然气制合成气的新技术。 关键词:天然气催化工艺 天然气作为一种新兴重要能源,一般情况下不能直接利用,在合成燃料前会先合成气,而在整个天然气转化为使用能源的过程当中,合成气的步骤耗费相当大的成本,能够占到全程的百分之六十左右,因此天然气制合成气工艺的改善是一个巨大挑战。近年来国外发展了自然重整,非催化部分氧化和联合重整等制合成气新工艺。 一、国内外天然气的化工利用 上世纪初西方国家首次铺设了天然气管道为化工使用,自此天然气成功加入了世界能源的行列,各个国家开始了天然气的开发使用,并在相当长时间段内有着飞速发展,从1940年发展速度的开始提升至1960年达到鼎盛,天然气利用技术趋于成熟,转化成各类能源物,一定程度上促进了各国的发展。至70年代,由于石油化工廉价化,天然气研发的脚步减慢,但仍有着较为稳定的发展速度。目前,石油供给短缺,价格不断上升,世界石油局势紧张,而天然气作为一种新兴能源,处于开发的初级阶段,且储量巨大,国际能源机构认为,天然气产量增加,并且今后将会作为主要能源之一。 作为21世纪新兴能源,天然气合成燃料的工艺备受关注,不断得到改善,被应用到工业化工中去。企业中的天然气转化工艺,可分为以下两种方法: 1.直接转化法 在制作乙烯过程中,当利用甲烷作氧化剂时,可以选择氧化制甲醇和甲醛。 2.间接转化法 天然气制燃料常用的就是间接转化法,利用转化器将天然气进行转化,合成的合成气,应用于工业化工上,将之彻底转变成燃料、化肥等。 二、以天然气为原料的化工合成物 1.合成氨 氨肥是化肥工业中的主导产品,世界各国对化工氨需求量大,氨的产量直接

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气 的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。 目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。 蒸气转化法 蒸气转化法是目前天然气制备合成气的主要途径。蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成CO H 、2等混合气,其主反应为: 2243H CO O H CH +=+,mol /206298KJ H =?Θ 该反应是强吸热的,需要外界供热。因为天然气中甲烷含量在90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化反应和化学平衡 甲烷水蒸气转化过程的主要反应有: 2243H CO O H CH +?+,mol /206298KJ H =?Θ 222442H CO O H CH +?+,mol /165298KJ H =?Θ 222H CO O H CO +?+,mol /9.74298KJ H =?Θ 可能发生的副反应主要是析碳反应,它们是: 242H C CH +?,mol /9.74298KJ H =?Θ 22CO C CO +?,mol /5.172-298KJ H =?Θ O H C H CO 22+?+,mol /4.131-298KJ H =?Θ

外国等离子体技术公司

英国Tetronics公司 使用中间包加热装置的直接优点如下: (1).由于过热度低,通过回收冷包装料提高了收得率; (2).由于降低了钢水熔炼的过热度,节约了成本; (3).改善了大包和熔炼炉耐火材料的使用寿命,降低了出钢温度; (4).中间包的钢水温度控制精确,可生产洁净、质量稳定、细质等轴晶粒组织的优质钢。 英国TETRONICS公司是国际上一家知名的专营中间包加热装置的公司。过去的中间包加热装置是一种常用的单极火焰喷嘴,这种方式的装置,电极必须浸入在钢水中,以提供电弧电流的输出通道。这种系统需要整改中间包和中间包小车。现在,取而代之,TETRONICS 公司使用了一种双火焰喷嘴加热装置。 这种双火焰喷嘴加热装置,是一对正、负电极火焰喷嘴,它们位于中间包钢水熔池的上方,双火焰喷嘴提供电弧电流的输入和输出通道,不需要对中间包做任何大的整改。这种双火焰喷嘴加热装置的紧凑型设计还减少了热损失,加快了电能到热能的转换。该装置的投资成本收回周期为6个月。

美国Retech公司 https://www.360docs.net/doc/1a9742763.html,.tw/1_file/moeaidb/012844/2004071308.pdf Retech公司開發之專利技術PACT處理系統係利用傳輸型電弧電漿火炬(Transferred Arc Plasma Torch)產生1,400到1,700℃之高溫,直接加熱一定量之金屬及其氧化物以形成slag bath 。 此一高溫slag bath則保留在轉速為10到50 rpm之離心式爐體內,作為熔融處理之liquid bath, 在爐內負壓之環境下,進一步處理其他有害事業廢棄物。 PACT處理系統爐體之設計運用採電漿火炬離心式運轉,而非固定爐床式。 其相關之週邊系統設備,如進料系統、能源回收系統、空氣污染防治系統均與一般焚化系統並無太大差異,其處理系統流程如圖所示。 PACT處理系統流程圖

等离子体的应用

等离子体技术与应用 学号 队别 专业 姓名

摘要 等离子体作为物质存在的一种基本形态,自18世纪中期被发现以来,对它的认识和利用不断深化。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。目前,等离子体技术已被广泛的用于国防、工业、农业、环境、通信等一系列国民经济发展领域,极大地推动了信息产业的发展,促进了工业科技进步。 关键词等离子体微波放电隐身技术材料的表面改性微波等离子灯 引言 等离子体是由带电的正粒子、负粒子(其中包括正离子、负离子、电子、自由基和各种活性基团等)组成的集合体,其中正电荷和负电荷电量相等故称等离子体。他们在宏观上呈电中性的电离态气体(也有你液态、固态)。当温度足够高时,构成分子的原子也获得足够大的的动能,开始彼此分离,这一过程称为离解。在此基础上进一步提高温度,就会出现一种全新的现象,原子的外层电子将摆脱原子核的束缚而成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离。等离子体指的就是这种电离气体,它通常由光子、电子、基态原子(或分子)、激发态原子(或分子)以及正离子和负离子六种基本粒子构成的集合体。因此,等离子体也被称为物质的第四态。 内容 一、等离子的性质 物质的第四态等离子体有着许多独特的物理、化学性质。只要表现如下: 1) 温度高、粒子动能大。 2) 作为带电粒子的集合体,具有类似金属的导电性能。等离子体从整体上看是一种导体电流体。 3) 化学性质活泼,容易发生化学反应。 4) 发光特性,可以作光源。 二、等离子技术的应用 2.1微波放电等离子体技术与应用 通常,低气压、低温等离子体是在1~100pa的气体中进行直流或射频放电产生的。直流辉光发电首先被研究和应用,但该等离子体是有极放电,而且密度低、电离度低、运行气压高,这就限制了其应用的广泛性。随后,射频放电技术逐步被发展起来,这是一种无极放电,且等离子体工作与控制参数比辉光放电有所提高,因而获得了较广泛的应用。但是其密度和电离度仍较低,应用范围依然受到限制。 微波放电初始阶段的物理过程如下。微波引入反应腔中建立起电磁场,反应气体中的电子在微波场作用下获得能量,与气体分子碰撞使其电离,从而得到更多的

超音速翼型气动力特性研究汇总

超音速翼型气动力特性研究 摘要: 本文研究方程为0.3(1)z x x =±-的轴对称超音速翼形在马赫数为 2,攻角 分别为0°,2°情形下的气动力特性,基于对翼型进行离散化处理得到该翼型的物理参数及气动力的近似解,并逐步减小空间步长x ?来提高解的精度。在步长数分别为5、20、50及攻角为0°、2°的条件下,计算求得翼型头部斜激波后的流动参数,并由此求解各分区相应参数,列出:表面压力Cp 分布曲线Cp -x ,及表面密度、温度分布曲线ρ/ρ∞-x 、T/T ∞-x 。在不同条件下得出的轴向力Ca 、法向力Cn 、升力Cl 、阻力Cd 及绕头部顶点俯仰力矩Cm 的表格。最终分析了编程计算的准确性与精度,分析了压力系数、温度、密度沿该翼型的分布特性,并分析了不同攻角对该翼型气动特性的影响。 问题描述 已知方程为0.3(1)z x x =±- 的薄翼形,求该翼型在来流马赫数为2,攻角 分别为0°,2°情形下的受力情况。对x 范围(0,1)内分别按5等份、20等份和50等份进行离散计算,得到表面压力Cp 分布曲线Cp -x ,表面密度、温度分别曲线ρ/ρ∞、T/T ∞ 。计算得出出轴向力Ca 、法向力Cn 、绕头部顶点俯仰力矩Cm 及升力Cl 、阻力Cd 。 计算方案: (一)计算思路: 超音速来流以一定攻角遇到类似于楔形体的机翼前缘,在上下面都有可能产生附体斜激波,要是攻角过大也有可能不产生附体斜激波,这里首先需要根据斜激波的

θβ - 关系曲线图来作出判断。经判断,如果顶点处产生斜激波,即使用斜激波前后的马赫数、密度、温度、压强计算公式计算出顶点斜激波后的各项物理参数。 接着,根据翼型的形状可知,气流在通过膨胀波之后会经过一系列的向外的转折角,根据普朗特-迈耶膨胀波理论,超音速气流经过每一个折角都会产生膨胀波。 根据数值计算的基本原理,计算机不能处理连续曲线上随x值变化而连续变化的折角,所以在计算之前必须对翼型的几何结构进行离散化处理。 离散化之后即可根据膨胀波前后马赫数的关系公式计算出每一个折角处膨胀波后的马赫数,然后根据膨胀波前后密度、温度、压强的计算公式计算出每一个膨胀波后的密度、温度、压强。 得到以上基本的物理参数之后,即可用压强P的分布计算出压力系数Cp的分布进而计算出翼型所受的轴向力、法向力、升力、阻力及力矩系数。 在进行以上计算之前的首要工作是编制P-M表、等熵流动角度与马赫数的关系表。在具体操作中可使用已知的显示函数式进行编制,无需手动输入。 (二)基本假设: 实际上的翼型气动力会受到很多因素的干扰,用激波-膨胀波法计算时对实际的物理模型做了一些简化,假设: 1、离散化之后任意两个离散点之间的物理参数是均匀分布的。 2、不考虑斜激波、膨胀波的相交与反射。 3、翼型端部的斜激波不会在上部削弱,即斜激波不会滑移。 (三)坐标系建立 建立坐标系时,以机翼的前段点为原点O,弦线为x轴,垂直于弦线的直线为y 轴,x轴正向指向机翼尾缘,y轴正向垂直于x轴向上,如图所示:

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。 目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。 蒸气转化法 蒸气转化法是目前天然气制备合成气的主要途径。蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成 H2、CO等混合气,其主反应为: CH4 + 出0 =C0+3战,人H% =206KJ/mol 该反应是强吸热的,需要外界供热。因为天然气中甲烷含量在 90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化反应和化学平衡 甲烷水蒸气转化过程的主要反应有: CH4 +日2。= CO+3H2,A^29^206KJ/mol CH4+2H2O= CO2+4H2,AH % =165KJ/mol CO + H 2O u CO2+ H2,△H % = 74.9KJ / mol 可能发生的副反应主要是析碳反应,它们是: CH4=C+2H2,也Hd98 =74.9KJ/mol 2CO U C+CO2,心Hd98 =-172.5KJ/mol CO + H2U C + H2O,心H 色98 =-131.4KJ /mol

14553_抽气式涡轮帆的气动力学分析研究

SHIP ENGINEERING 船舶工程Vol.37 No.2 2015 总第37卷,2015年第2期抽气式涡轮帆的气动力学分析研究 栾泳立,胡以怀,李志球 (上海海事大学商船学院,上海201306) 摘要:介绍了抽气式涡轮帆的结构和工作原理。使用Gambit软件建立了涡轮帆的模型。采用RNG k-ε湍流模型描述了涡轮帆的动力学特性。利用Fluent软件对抽气式涡轮帆进行了数值模拟计算,并与风洞试验数据进行了对比,升阻力系数的模拟结果与试验数据变化趋势基本一致。计算了特定情况下椭圆筒不同偏转角时的升阻力系数,并模拟了不同旋转角下吸气强度以及旋转角为0时分流板位置对涡轮帆升阻力系数的影响,为涡轮帆的优化选择提供了依据。 关键词:抽气式涡轮帆;升阻力系数;旋转角;吸气强度;分流板位置 中图分类号:U664; TK89 文献标志码:A 【DOI】10.13788/https://www.360docs.net/doc/1a9742763.html,ki.cbgc.2015.02.001 Kinetic Analysis of Exhaust Turbine Sails LUAN Yong-li, HU Yi-huai, LI Zhi-qiu (Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China) Abstract: The structure and working principle of the exhaust turbine sails are introduced in this paper. The turbine sails’ model is made by gambit and its dynamic characteristics is described by the RNG k-ε turbulence model. The numerical simulation is calculated by fluent software, and the results are the same trends with the ones that were made by the wind tunnel test. Then the lift and drag coefficients are calculated when the rotation angle of the turbine sails changes while the other factors are same. In the end, how the strength of suction and the position of manifold influent the lift and drag coefficients is analyzed. Key words:exhaust turbine sails; lift and drag coefficients; rotation angle; strength of suction; position of manifold 0 引言 当今世界上90%的货物由船舶承运,而船舶的主要推进装置仍以柴油机为主。随着全球的能源问题越来越突出,海事法规对船舶排放的要求越来越苛刻,风帆助航成为各国政府和各大航运企业研究的热点。 传统风帆工作效率低,适用范围狭窄。翼型帆气动性能较好,工作效率较高,但是占用空间大,节能效率低[1]。抽气式涡轮帆占用面积小,通过抽气,升力系数可以达到6.5~7.5,使节能效率大大提高。法国的ALCYONE号抽气涡轮帆船实船试验表明,在12.8m/s的有利风速下,节能效果可达50%左右[2]。抽气式涡轮帆有着很好的性能,但是影响因素很多,国内对于此种帆的研究甚少。本文通过CFD模拟,分析了帆的旋转角、吸气强度及分流板位置对涡轮帆的性能的影响。 1 抽气式涡轮帆的原理 当流线形物体处于均匀流场时,将会受到一个由物体后方形成的漩涡脱落产生的阻力。流线越差,漩涡越容易形成和脱落,阻力也就越大。在漩涡没有发生分离脱落以前,物体边界上基本为层流。发生脱落后,如果在分离点附近抽吸流体减压,或者使流体加速,便可以使物体边界上由层流状态变为紊流状态,延缓漩涡的分离或使漩涡不再形成[3]。经过这样的边界层控制后,在物体上将会产生垂直于气流方向的升力和气流方向的阻力。抽气式涡轮帆便是依此原理来提供动力。 抽气式涡轮帆的结构如图1所示。其主体为一个 收稿日期:2014-09-05;修回日期:2014-10-10 基金项目:上海市科委资助项目“远洋船舶风帆助航应用研究”(编号:08210511800) 作者简介:栾泳立(1990-),男,硕士。研究方向:船舶动力装置。 通讯作者:胡以怀(1964.1-),男,教授,研究方向:船舶动力装置振动分析、故障诊断,系统仿真,船舶新能源等。

CH4与CO2重整制合成气研究的研究报告

CH4与CO2重整制合成气研究的研究报告 杨真一1 ,胡莹梦2,徐艳3 ,郑先坤4 (1:2009级化学工程与工艺四班,学号:0943084137 2::2009级化学工程与工艺三班,学号:0943084141 3:2009级化学工程与工艺三班,学号:0943084136 4:2009级化学工程与工艺三班,学号:0943084008) 摘要:二氧化碳和甲烷既是温室气体的主要组成,又是丰富的碳资源。在石油资源日益匮乏以及环境问题日益严重的今天,二氧化碳的资源化利用已受到了广泛的关注,二氧化碳与甲烷重整制合成气的方法也越来越多,从传统的催化重整反应到现今受到更多研究的等离子体重整CH4-CO2技术,还有等离子体协同催化剂重整技术,都有大量的研究基础,本文就目前常用的几种甲烷-二氧化碳重整技术进行了调研研究并对热等离子体重整制合成气的实验方法进行了简要说明与探讨。 关键词:甲烷二氧化碳重整合成气 研究二氧化碳和甲烷的化学转化和利用对于降低甲烷使用量、消除温室气体等具有重大意义;而合成气又是合成众多化工产品以及环境友好型清洁能源的重要原料。以天然气和CO 2 为原料制备合成气,与其他方法相比较,在获得同量碳 值的合成气情况下,不仅可以减少天然气消耗量50%,还有利于减排CO 2 。目前利用二氧化碳和甲烷重整制备合成气的方法主要有三种:(1)利用催化剂催化重 整制合成气;(2)利用等离子体技术重整CH 4-CO 2 ;(3)前两种方法的综合利用。 一、催化重整反应 在催化剂的作用下,发生CH4与CO2重整的反应。而其使用的催化剂则为重点研究对象。 (1)活性组分第ⅤⅢ族过渡金属除Os 外均具有重整活性,其中贵金属催化剂

国内外天然气制合成气的技术研究进展

国内外天然气制合成气技术进展 徐俊忠 (西南石油大学化学化学化工学院,四川成都610500) 摘要:本文综述了国内外天然气制合成气技术的研究进展,主要介绍了甲烷部分氧化技术(包括固定床工艺、流化床工艺和陶瓷膜工艺),甲烷临氧化制备合成气技术(包括甲烷临氧CO 2重整制合成气、甲烷临氧自热三重整制合成气和甲烷临氧水蒸气重整制合成气),水蒸气转化制备合成气,CO 2转化法制合成气,自热式转化法制合成气,以及新出现的激光促进表面反应技术和等离子体技术。 关键词:天然气,制备,合成气,技术进展 T hermal cracking gas of h ydrocarbon separation method were reviewed Xu Junzhong (College of Chemistry and Chemical Engineering,Southwest Petroleum University,Chengdu 610500) Abstract:In the paper,the progress on preparation of synthetic gas from natural gas using different processes were described.methane partial oxidation process was introduced(Including fixed-bed process,fluidized-bed process and ceramic membrane process),the preparation of methane oxidation syngas technology(autothermal CO 2reforming(ATR-CO 2),triple-reforming of methane and autothermal H 2O reforming (ATR-H 2O)),water vapor into syngas preparation,CO 2into syngas preparation,self-heating transformation ssyngas preparation,the recent discovery of laser surface reaction to promote technology and plasma technology. Key words :Natural gas,preparation,synthetic gas,technology progress 1引言 根据17届世界石油会议提供的调查数据,全球现已探明的天然气储量为3141071.1m ×,按油当量计这与全球探明的石油储量十分接近。但因石油的储采比天然气的储采比高,预计石油资源40年后就会枯竭,天然气资源可维持约60年。我国在2005年探明的天然气储量约为312103m ×,我国天然气的人均占有量仅为全球的十分之一。对我国来讲,如何好喝的利用这些珍贵的天然气资源具有十分重要的意义。[1]

合成气的制备方法

二甲醚原料----合成气 合成气的主要组分为CO和H2,可作为化学工业的基础原料,亦可作为制氢气和发电的原料。经过多年的发展,目前以天然气、煤为原料的合成气制备工艺已很成熟,以合成气为原料的合成氨、含氧化物、烃类及碳一化工生产技术均已投入商业运行。清洁高效的煤气化联合循环发电系统的成功开发,进一步促进了合成气制备技术的发展。合成气的用途广泛,廉价、清洁的合成气制备过程是实现绿色化工、合成液体燃料和优质冶金 产品的基础。 1合成气的制备工艺 根据所用原料和设备的不同,合成气制备工艺可以分为不同的类型,目前大多数合成气制备工艺是以处理天然气和煤这2种原料的工艺为基础发展起来的。 以天然气为原料的合成气制备工艺 以天然气为原料制备合成气是一个复杂的反应过程,其主要的反应包括天然气的蒸汽转化反应(1)、部分氧化反应(2)、完全燃烧反应(3)、一氧化碳变换反应(4)和甲烷与二氧化碳重整反应(5)。 CH4+H2O CO+3H2 +206 kJ/mol (1) CH4+0·5O2 CO+2H2 -36 kJ/mol (2) CH4+2O2 CO2+2H2O -802 kJ/mol (3) CO+H2O CO2+H2 -41 kJ/mol (4) CH4+CO2 2CO+2H2 +247 kJ/mol (5) 这几个主要反应的不同组合、不同的实施方式和生产装置,形成了天然气转化制备合成气的多种工艺。从工艺特征上来讲,目前成熟的天然气转化制备合成气的工艺可分为管式炉蒸汽转化法、部分氧化法和两者的组合方法等三大类。 甲烷蒸汽转化 甲烷蒸汽转化的代表反应式为(1)。工业上使用以Ni为活性组分,载体可用硅铝酸钙、铝酸钙以及难熔的耐火氧化物为催化剂,生成的合成气中H2/CO体积比约为3:0,适合于制备合成氨和氢气为主产品的工艺。此工艺能耗高,燃料天然气约占天然气总用量的1/3,高温下催化剂易失活,设备庞大,投资和操作费用高。 甲烷非催化部分氧化 甲烷非催化部分氧化的代表反应式为(2)。CH4与O2的混合气体在1 000~1 500℃下反应,伴有燃烧反应进行,生产的合成气中H2/CO体积比约为2:0,适合于甲醇、F-T合成生产。此工艺对反应器材质要求苛刻,耐高温金属管的投资高,需要复杂的热回收和除尘装置。

汽车空气动力学仿真

汽车空气动力学仿真
Vehicle Aerodynamics Simulation
张扬军
Zhang Yang-Jun
清华大学汽车工程系应用空气动力学组 汽车安全与节能国家重点实验室
Applied Aerodynamics Group, Dept of Auto Eng., Tsinghua Univ. State Key Lab of Automotive Safety and Energy

Vehicle Aerodynamics Simulation
汽车空气动力学仿真
1 2 3 4 5 6
汽车空气动力学概述 汽车空气动力学仿真特点 汽车空气动力学仿真难点 汽车空气动力学仿真平台 仿真平台(VASS)应用 总结与展望
1 2 3 4 5 6
Introduction to Road Vehicle Aerodynamics Some Salient Features of Road Vehicle Flow Simulation Main Difficulties of Road Vehicle Flow Simulation Vehicle Aerodynamics Simulation System (VASS) VASS Applications Conclusions and Open Features

1 汽车空气动力学概述
1.1 空气动力学对汽车性能的影响 1.2 汽车空气动力学性能 1.3 汽车空气动力学特点 1.4 空气动力学研究方法
Introduction to Vehicle Aerodynamics
1.1 1.2 1.3 1.4
Vehicle Attributes Affected by Aerodynamics Vehicle Aerodynamics Characteristics Peculiarities of Road Vehicle Aerodynamics Methods for Vehicle Aerodynamic

低温等离子体技术介绍

技术介绍 --低温等离子体 低温等离子体是继固态、液态、气态之后的物质的第四态,当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到分解污染物的目的。 “QHDD-Ⅱ”低温等离子体工业废气处理成套设备和技术作为一种新型的气态污染物的治理技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性电子化学技术,由于能很容易使污染物分子高效分解且处理能耗低等特点,是目前国内外大气污染治理中最富有前景、最行之有效的技术方法之一,其使用和推广前景广阔,为工业领域VOC类有机废气及恶臭气体的治理开辟了一条新的思路。 低温等离子体废气处理技术与其他废气治理方法优缺点对比 表1-2 几种废气处理工艺的适用范围及优缺点 工艺名称原理适用范围优点缺点 掩蔽法采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收适用于需立即、暂时地消除低浓度恶臭气体影响地场合,恶臭强度左右,无组织排放源可尽快消除恶臭影响,灵活性大,费用低恶臭成分并没有被去除,麻痹了对原有污染物的感知 热力燃烧法在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用于处理高浓度、小气量的可燃性气体净化效率高,恶臭物质被彻底氧化分解设备易腐蚀,消耗燃料,处理成本高,易形成二次污染,催化剂中毒 催化燃烧法

水吸收法利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的水溶性、有组织排放源的恶臭气体工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对水溶性差的物质等处理效果差 药液吸收法利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分适用于处理大气量、高中浓度的臭气能够有针对性处理某些臭气成分,工艺较成熟净化效率不高,消耗吸收剂,易形成而二次污染 吸附法利用吸附剂的吸附功能使恶臭物质由气相转移至固相适用于处理低浓度,高净化要求的恶臭气体净化效率很高,可以处理多组分恶臭气体吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量 生物滤池恶臭气体经过除尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法,又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。净化效率高,处理费用低占地面积大,易堵塞,填料需定期更换,脱臭过程很难控制,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 生物滴滤池原理同生物滤池式类似,不过使用的滤料是诸如聚丙烯小球、陶瓷、木炭、塑料等不能提供营养物的惰性材料。只有针对某些恶臭物质而降解的微生物附着在填料上,而不会出现生物滤池中混和微生物群同时消耗滤料有机质的情况池内微生物数量大,能承受比生物滤池大的污染负荷,惰性滤料可以不用更换,造成压力损失小,而且操作条件极易控制占地面积大,需不断投加营养物质,而且操作复杂,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 洗涤式活性污泥脱臭法将恶臭物质和含悬浮物泥浆的混和液充分接触,使之在吸收器中从臭气中去除掉,洗涤液再送到反应器中,通过悬浮生长的微生物代谢活动降解溶解的恶臭物质有较大的适用范围可以处理大气量的臭气,同时操作条件易于控制,占地面积小设备费用大,操作复杂而且需要投加营养物质 曝气式活性污泥脱臭法将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广,目前日本已用于粪便处理场、污水处理厂的臭气处理活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达%以上。受到曝气强度的限制,该法的应用还有一定局限

天然气转化合成甲醇的工艺

天然气转化合成甲醇的工艺综述 2015-6-24 专业:化工12-3班 学号: 学生姓名:劳慧 指导教师:刘峥

一.前言 (1) 二.主体部分 (2) 1. 天然气合成甲醇的原理 (2) 2. 高压法合成甲醇的原理及工艺流程 (2) 3. 低压法合成甲醇的原理及工艺流程 (3) 4. 中压法合成甲醇的原理及流程 (4) 5. 三者的比较 (4) 6. 以天然气合成甲醇的优势和现状 (6) 7. 其他原料合成甲醇与天然气合成甲醇的比较 (6) 三.结论部分 (8) 1. 对天然气合成甲醇的认识和了解 (8) 2. 对天然气转化合成甲醇提出我的观点和见解 (8) 四.参考文献 (8)

天然气转化合成甲醇的工艺 一.前言 20世纪60年代,石油和天然气作为一次能源与煤炭一起成为主要能源。与此同时,以石油和天然气为原料的化学工业也迅猛发展起来。与石油不同的是,天然气的成分主要是低分子量的烷烃。因此,天然气化工在发展中逐步成为一个体系。天然气是储量十分丰富的资源和能源,同时也是主要的温室气体之一,合理地利用天然气不仅关系到未来的资源配置和能源利用,而且也是可持续发展的重要战略发展方向之一。 天然气可以合成多种化工原料产品,比如生产合成氨还有甲醇,其中甲醇是最重要的。甲醇是一种重要的基础化工产品和化工原料,主要用于生产甲醛。醋酸、甲苯胺、氯甲烷、乙二醇及各种酸的酯类和维尼纶等,并在很多工业部门中广泛用作溶剂。甲醇在气田开发中用作防冻剂,添在汽油中可提高汽油的辛烷值,甲醇还可直接用作燃料用于发动机。 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料。天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行。由天然气制合成气进而合成甲醇是制甲醇产品一条重要的工艺路线。

天然气制造合成气

5.2由天然气制造合成气 一概述 天然气(Natural Gas)天然气是埋藏在地下的古生物经过亿万年的高温和高压等作用而形成的可燃气,是一种无色无味无毒、热值高、燃烧稳定、洁净环保的优质能源。天然气其主要成分为甲烷,热值为8500大卡/米3是一种主要由甲烷组成的气态化石燃料。它主要存在于油田和天然气田,也有少量出于煤层。 当非化石的有机物质经过厌氧腐烂时,会产生富含甲烷的气体,这种气体就被称作生物气(沼气)。生物气的来源地包括森林和草地间的沼泽、垃圾填埋场、下水道中的淤泥、粪肥,由细菌的厌氧分解而产生。生物气还包括胃肠涨气,胃肠气最通常来自于牛羊等家畜。 当甲烷散逸到大气层中时,它将是一种直接促使全球变暖愈演愈烈的温室气体。这种飘散的甲烷,就会被视作一种污染物,而不是一种有用的能源。然而,在大气中的甲烷一旦与臭氧发生氧化反应,就会变成二氧化碳和水,因此排放甲烷所导致的温室效应相对短暂。而且就燃烧而言,天然气要比煤这类石炭纪燃料产生的二氧化碳要少得多。甲烷的重要生物形式来源是白蚁、反刍动物(如牛羊)和人类对土地的耕种。据估计,这三者的散发量分别是每年15、75和100百万吨(年散发总量约为1亿吨)。 二天然气制合成气的工艺技术及其进展 目前已实现工业化的以天然气为原料生产合成气技术有部分氧化法和蒸汽转化法。部分氧化法需要使用纯氧为气化剂,目前已较少采用。蒸汽转化法又有一段蒸汽转化法,加热型两段蒸汽转化法和换热式两段转化法之分。一段转化法由于流程短,投资省,应用最广泛。加热型两段转化法第一段用蒸汽转化,第二段用纯氧或富氧作气化剂,但用于制氨时可用空气替代纯氧作气化剂,同时又可减少一段炉的负荷,节省高镍合金钢,故广泛应用于制氨。换热式两段转化工艺最有发展前途。其二段转化炉出口高温气体热量供一段炉所需的热量,故可大幅度减少燃料天然气的热用量,存在的问题是副产蒸汽量减少。但从节能的角度来看,这种方法最有竞争能力,是今后大型装置的主要发展方向。用天然气两段转化制合成气,含氢量高但碳量不足,因此一段转化炉采用副产的二氧化碳作为气化剂来增碳,不仅可改善合成氨的氢碳比,同时减少了工厂二氧化碳的排放,因此也是值得推广的一种工艺技术。 三天然气蒸气转化过程工艺研究 甲烷在天然气中的含量最大,另外甲烷在烷烃中是热力学最稳定的,其他烃类较易反应,因此只讨论甲烷与水蒸气的反应。 1.甲烷水蒸气转化反应和化学平衡 甲烷水蒸气转化的主、副反应都是可逆反应。另外甲烷水蒸气转化反应是在催化剂存在下才能发生反应,才有了反应速率。副反应主要是析碳反应,如果操作条件不适当,如温度、压力、催化剂不适合,析碳反应就会发生,生成的碳产生不利影响。因此应严格操作条件,防止析碳。

空气弹簧动力学特性分析

空气弹簧是一种在柔性密闭橡胶气囊中冲入压缩空气,利用空气的压缩弹性进行工作的非金属弹性元件,它的的振动固有频率较低,且不同载荷下几乎保持不变,是一种隔振性能优良的隔振器。担架支架是伤员运送车辆在行驶途中承载、固定卧姿伤病员担架的主要设备。担架支架的隔振系统设计在很大程度上决定了伤病员在运送途中的乘卧舒适性。性能优异的担架支架隔振系统能有效提高伤员运送车辆的运送能力。空气弹簧是较为合适的可用于担架支架系统的隔振器,它是利用空气的压缩弹性进行工作的非金属弹性元件。作为隔振元件,空气弹簧具有非线性变刚度特性,通过内压的调整,可以得到不同的承载能力;承受轴向载荷和径向载荷,可产生相对较好的缓冲隔振效果;还具有结构简单、安装高度低、更换方便、工作可靠、质量轻、单位质量储能量高等优点。将空气弹簧增加附加气室能显著降低空气弹簧的刚度及固有频率。本文对应用于急救车担架支架装置的空气弹簧隔振器的动态特性进行了理论分析、实验测试、实验建模等方面的研究,为今后进一步研究半主动控制的空气弹簧隔振系统提供了参考依据。本文首先介绍了空气弹簧的研究与发展现状,对空气弹簧的性能和优缺点进行了比较。并对空气弹簧的动力学特性进行研究,推导了空气弹簧动刚度计算公式,分析了其动力学特性的影响因素,建立了带附加气室与不带附加气室空气弹簧的力学模型。其次做了空气弹簧的动力学特性实验,得到如下结论:不带附加气室时,当初始气压、激振振幅增加时,空气弹簧动刚度随之增加;当激振频率增加时,空气弹簧的动刚度随之减小。空气弹簧的固有频率几乎保持不变。而带附加气室空气弹簧在节流孔孔径4-7mm范围内,当孔径增大时,空气弹簧动刚度随之减小;当初始气压、激振频率、激振振幅增加时,空气弹簧动刚度随之增加。在高频(8Hz)左右时,振幅、频率的变化对动刚度的改变已不明显。在低频率时,带附加气室能显著降低空气弹簧的动刚度,而在较高频率时,带附加气室会使空气弹簧的动刚度增加。最后对带附加气室空气弹簧力学模型进行了简化,通过实验数据运用最小二乘法对模型参数进行了识别,并用四个指标对模型拟合精度进行了评价。分析结果表明误差较小,模型能够比较准确的反映出应用空气弹簧隔振器的力学特性。

等离子体表面处理技术

等离子体表面处理技术的原理及应用 前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。 一、等离子体表面改性的原理 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。 二、等离子体表面处理技术的应用 1、在工艺产业方面的应用 1)、在测量被处理材料的表面张力 表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。最主要的表面测定方式包括测试墨水,接触角测量以及动态测量 评价表面状态 低表面能, 低于28 mN/m良好的表面附着能力,高表面能 2)预处理–Openair? 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺 常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。 使用Openair?等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

合成气的生产过程

第五章合成气的生产过程 5.1 概述 合成气是指一氧化碳和氢气的混和气,英文缩写是Syngas。其H2/ CO (摩尔比)由1/2 到3/1。合成气在化学工业中有着重要作用。 5.1.1 合成气的生产方法 (1) 以煤为原料的生产方法:有间歇和连续两种操作方式。煤制合成气中H2/ CO 比值较低,适于合成有机化合物。 (2) 以天然气为原料的生产方法:主要有转化法和部分氧化法。目前工业上多采用水蒸气转化法( steam reforming ),该法制得的合成气中H2/ CO 比值理论上是3,有利于用来制造合成氨或氢气。 (3) 以重油或渣油为原料的生产方法:主要采用部分氧化法( partial oxidation )。 5.1.2.1 工业化的主要产品 (1) 合成氨 (2) 合成甲醇 (3) 合成醋酸 (4) 烯烃的氢甲酰化产品 (5) 合成天然气、汽油和柴油 5.1.2.2 合成气应用新途径 (1) 直接合成乙烯等低碳烯烃 (2) 合成气经甲醇再转化为烃类 (3) 甲醇同系化制乙烯 (4) 合成低碳醇 (5) 合成乙二醇 (6) 合成气与烯烃衍生物羰基化产物

5.2由煤制合成气 以煤或焦炭为原料,以氧气(空气、富氧或纯氧) 、水蒸气等为气化剂,在高温条件下 通过化学反应把煤或焦炭中的可燃部分转化为气体的过程, 其有效成分包括一氧化碳、氢气 和甲烷等。 5.2.1.1煤气化的基本反应 煤气化过程的主要反应有: 原反应也是重要的气化反应。气化生成的混合气称为水煤气。总过程为强吸热的。 提高反应温度对煤气化有利 ,但不利于甲烷的生成。 当温度高于900C 时,CH 4和CO 2 的平衡浓度接近于零。低压有利于 CO 和H 2生成,反之,增大压力有利于 CH 4生成。 5.2.1.2煤气化的反应条件 (1) 温度 一般操作温度在1100 C 以上。 (2) 压力 一般为2.5?3.2MPa 。 (3) 水蒸气和氧气的比例 H 2O/O 2比值要视采用的煤气化生产方法来定。 5.2.2煤气化的生产方法及主要设备 气化过程按操作方式来分, 有间歇式和连续式。目前最通用的分类方法是按反应器分类, 分为固定床(移动床)、流化床、气流床和熔融床。至今熔融床还处于中试阶段,而固定床 (移动床)、流化床和气流床是工业化或建立示范装置的方法。 5.2.2.1固定床间歇式气化制水煤气法 该法的操作育式为燃烧2制气分阶段进行,在实厢生产中,为了防止空气在高温下接 触水煤气而发生爆炸,同时保证煤吒质量?一个工作睛环由以下六个阶段粗成’ P 吹区 亠 恚寬吹净 亠一】忠上唏瓯 亠T 吹制耳 亠 二次上吹帛帆 亠 空耳吹浄d (空气自下而上M 蒸汽目下而上) (黄汽自上而下)〔轰汽自下而上H 自下而上川 屮f I 5.2.2.2固定床连续式气化制水煤气法 此法由德国鲁奇公司开发。目前鲁奇炉已发展到 MarkV 型,炉径5m ,每台炉煤气(标 准状态)的生产能力达 100000m3/h 。鲁奇法制的水煤气中甲烷和二氧化碳含量较高,而一 氧化碳含量 较低,在 C1 化工中的应用受到一定限制,适合于做城市煤气 。 C +丄0之QCO 2丄 o+q =co 3 C + H.OttCO+H. C + 2H a O?CC 2+2H a c+cq SCO c+込 ? CH 4 上眼-12%J7翻加 入弧-40弘7 F 用刃 第 90 3V/^/ 劈 Y72&J 皿J 此反应为强吸热过程。碳与二氧化碳的还

相关文档
最新文档