hjk基于三维小波变换的视频水印嵌入与盲提取算法

hjk基于三维小波变换的视频水印嵌入与盲提取算法
hjk基于三维小波变换的视频水印嵌入与盲提取算法

数字水印算法介绍

数字水印算法列举 湖南科技大学计算机科学与工程学院 ①基于LSB 的数字水印方案(空间域、不可逆、不可见和盲检测) 嵌入步骤: (1)先把水印信息转化为二进制比特流I。 (2)根据I的长度生成密钥K,并且严格保存。密钥K是对图像载体像素位置的一个映射。 (3)把I中的每一位依次根据密钥K,置换掉原始载体图像中相应位置的像素最后一位。提取步骤: (1)根据严格保存的密钥K遍历嵌入了水印的图像中的相应像素,提取出最后一位。 (2)将提取出来的每一位重新组合成水印信息。 ②基于差分扩展的数字水印方案(变换域、可逆、不可见和盲检测) 嵌入步骤: (1)将图像M分成像素点对(x,y),将水印信息转化为二进制比特流,比特流的每一位用m 表示。 (2)根据水印信息比特流的长度随机生成信息的嵌入位置k作为密钥信息严格保存。(3)对图像M计算均值l和差值h:?????-=+=y x h y x floor l 2((floor表示向下取整) (4)将水印比特信息m以差值扩展的方法嵌入到差值h中:m h h +?='2(5)将得到的h '代入(3)中,得到新的图像像素对,形成嵌入秘密信息后的图像C。提取步骤: (1)将图像C分成像素点对(x,y),读入密钥信息K。 (2)将图像C依旧按照嵌入步骤中的(3)式计算均值l和差值h。 (3)根据密钥k找到相应位置,提取差值h的最后一位比特信息m,再将差值h进行变换得到1>>='h h 。 (4)将提取到的比特信息m进行组合可以恢复水印信息,将得到的h '代入嵌入步骤的(3)中计算新的图像像素对可以恢复原始图像载体M。 ③基于直方图修改的数字水印算法(空间域、可逆、不可见和盲检测) 嵌入步骤:(1)找到直方图的零点z和峰值点p,将z v p <<的像素值v自加1。 (2)漂移后的直方图v=p处即为嵌入水印的位置,将水印信息转化为二进制流并记为k,按顺序嵌入,即k v v +=';(3)得到的由像素值v '组成的图像就是嵌入秘密信息后的图像。同时p、z以密钥的形式保存。 提取步骤: (1)读取密钥,得到p、z的值。 (2)遍历图像的每个像素,当像素v=p时,提取信息0并保持数据不变;当v=p+1时,提取信息1并将数据减1。 (3)当vz时,数据保持不变;当p-1

subplot(132; imshow(cover_image; title('my coverimage'; cover_image=double(cover_image;%读入原始宿主图象,并转换为双精度数组 %------------------分块DCT变换,嵌入水印---------------------------- %设置水印嵌入强度% k=369; k=70; %设置嵌入位置x=3; y=5; %设定图象的分块大小为8*8 blocksize=8; c=Mc/blocksize; d=Nc/blocksize; m=c*d;%计算图象划分的图象块 %判断载体图像尺寸是否适合水印大小if n>m error('^_^ Dear classmates~~~~~~The watermark is too large to be imbeded into the coverimage,hehe~~~'; end %分块DCT变换,嵌入水印for j=1:c for i=1:d dct_block=dct2(cover_image((1+(j-1*8:j*8,(1+(i-1*8:i*8; dct_block(x,y=k*wm(j,i; watermarked_image((1+(j-1*8:j*8,(1+(i-1*8:i*8=idct2(dct_block;

基于MATLAB的数字水印算法实现

数字水印作为一门新的学科, 自 1993 年 Tirkel 等人正式提出到现在十几年里, 国内外对数字水印的研究都引起了极大的关注, 从最初的版权保护, 已扩展到多媒体技术, 广播监听, in-ternet 等多个领域。数字水印是永久镶嵌在其他数据( 主要指宿主数据) 中具有可鉴别性的数字信号或数字模式, 其存在不能影响宿主数据的正常使用。为了使数字水印技术达到一定的设计要求, 当前水印数据一般应具备不可感知性(imperceptible) 、鲁棒性(Robust) 、可证明性、自恢复性和安全保密性等特点。在数字水印技术中, 水印的数据量和鲁棒性构成了一对基本矛盾。理想的水印算法应该既能隐藏大量数据, 又可以抗各种信道噪声和信号变形。然而在实际中, 这两个指标往往不能同时实现, 实际应用往往只偏重其中的一个方面。如果是为了隐蔽通信, 数据量显然是最重要的, 由于通信方式极为隐蔽, 遭遇敌方篡改攻击的可能性很小, 因而对鲁棒性要求较为不高。但对保证数据安全来说, 情况恰恰相反, 各种保密的数据随时面临着被盗取和篡改的危险, 对鲁棒性的要求很高, 而对隐藏数据量的要求则居于次要地位。典型的数字水印系统至少包含两个组成部分- - 水印嵌入单元和水印检测与提取单元。将水印信息进行预处理后加入到载体中, 称为嵌入。从水印化数据中提取出水印信息或者检测水印信息的存在性称为水印的提取和检测。数字水印算法主要

是指水印的嵌入算法, 而提取算法往往被看成是嵌入算法的逆变换。 当前典型的嵌入算法主要被分为空间域水印算法和变换域水印算法。DCT 变换域算法是数字水印算法的典型代表, 也是数字水印中较为常用的一种稳健的算法。其算法思想是选择二值化灰度图像作为水印信息, 根据水印图像的二值性来选择不同的嵌入系数, 并将载体图像 ( 原始图像) 进行 8×8 的分块, 再将灰度载体图像( 原始图像) 进行 DCT变换。然后, 将数字水印信息的灰度值直接植入到载体灰度图像的 DCT 变换域中, 实现水印的嵌入。而后, 将嵌入了水印信息灰度图像进行 IDCT( 逆离散的余弦变换) 变换, 得到含有了嵌入水印信息的图像, 嵌入过程完毕。水印的提取、检测过程为嵌入过程的逆过程, 其方法和嵌入方法有所雷同不再进行介绍。 下面以 MATLAB 为工具, 给出一个在频域嵌入和提取黑白二值水印图像的实现过程。(1) 水印图像的预处理: 将水印信息图像进行灰度处理, 然后再将转换后的图像进行二值转换。而这些都是为了提高水印信息的安全性对图像所做的处理。(2) 读取原始公开图像(大小为 256×256) 和黑白水印图像(大小为 32×32, 模式为灰度) 到二维数组 I 和 J。(3) 将原始公开图像I 分割为互不覆盖的图像块, 每块大小为 8×8, 共分为 32×32 块。然后对分割后的每个小块Block- dct(x,y) 进行 DCT 变换, 得到变换后的小块 Block-dct(x, y)。(4) 取黑白水印图像中的一个元素 J(p, q) , 通过嵌入算法嵌入到原始公开图像块的中频系数中。(5) 对嵌入水印信息后的图像块Block- dct (x, y) 进行逆DCT 变换, 得到图像块 Block(x′, y′)。

彩色图像数字水印嵌入和提取模型研究

彩色图像数字水印嵌入和提取模型研究 (信阳师范学院计算机与信息技术学院,河南信阳464000) 将DCT和DWT相结合,提出了基于DWT和DCT的彩色图像版权保护数字水印模型。该模型根据离散小波变换中低频子图的人类视觉特性,用自适应方法选择色彩通道,用Logistic混沌加密方法预处理数字水印的图像,在离散小波变换的低频域进行离散余弦变换的去相关性,且用子采样技术调整对应子图间系数的大小相对性,实现数字水印的盲提取。 标签:Logistic混沌加密;水印嵌入;盲提取 在网络技术快速发展的今天,数字信息的版权保护问题,特别是彩色图像版权保护问题是摆在眼前,迫切需要解决的问题,而数字水印技术是解决这类问题的最有效和最具有潜力的技术之一。 数字水印技术主要分为嵌入和提取两部分,后者也是水印技术的一个极其重要的组成部分,因为数字水印技术的关键之处就在于能否正确有效地提取出嵌入到图像中的水印信息,这在证明数字图像的合法所有权方面起着非常重要的作用。近年来,由于需要原始图像的非盲水印提取技术在实际应用中具有很多困难,并且一些学者认为在水印提取中不使用原始图像是解决版权问题的前提,因此,无需原始图像的盲提取技术己成为数字水印研究中的焦点之一,具有更加广阔的应用前景。现在的水印算法主要集中在变换域算法上,最常见的就是基于DCT 的水印算法或者基于DWT的水印算法,而它们两个又分别是JPEG和JPEG-2000图像压缩标准的理论基础。 1 水印嵌入 文献[1]是DCT域的子采样盲水印算法,本文将该文献算法的系数选择加以改进,并加入色彩选择自适应机制,然后应用于离散小波低频域,解决离散小波低频域嵌入水印不可见性差的特点,提出了基于DWT和DCT的彩色图像数字水印嵌入和提取模型。 定义原始图像尺寸为M*N的RGB彩色图像,记为X;水印图像尺寸为K*K 有意义的二值图像(含版权相关信息),记为W。 基于DWT和DCT的彩色图像版权保护数字水印模型表示为: YEmbed(X,W,Key)。 其中,Y表示嵌入水印后重构图像;X表示原始彩色图像;W表示二值水印图像;Key为水印密钥。

音频数字水印报告+matlab程序

音频数字水印 目录 1课题背景与现状 (2) 2研究的目的和意义 (4) 3方案设计和实施计划 (8) 4研究的主要内容 (10) 5创新点和结论 (10) 6成果的应用前景 (11) 7附录:个人工作总结 ................................................................................................ 错误!未定义书签。

1课题背景与现状 数字时代的到来,多媒体数字世界丰富多彩,数字产品几乎影响到每一个人的日常生活。信息媒体的数字化为信息的存取提供了极大的便利,同时也显著地提高了信息表达的效率和准确度。计算机网络通信技术特别是互联网的蓬勃发展,使得数据的交换和传输变成了一个相对简单且快捷的过程。人们借助于计算机、数字扫描仪、打印机等电子设备可以方便、迅速地将数字信息传达到世界各地,在国际互联网上发布自己的作品,传递重要的信息,进行各种学术交流和电子商务活动等等。如何保护这些与我们息息相关的数字产品,如版权保护、信息安全、数据认证以及访问控制等等,已受到日益重视并变得迫切需要了,因此数字水印在今天的计算机和互联网时代大有可为。 数字水印技术是近十年才发展起来的,它是信息隐藏学的一个分支。随着国内信息化程度的提高和电子商务逐渐走向实用,数字水印技术将会拥有更加广阔的应用前景。鉴于信息隐藏与数字水印技术的应用前景,众多知名研究机构如麻省理工学院的多媒体实验室、剑桥大学的多媒体实验室、IBM数字实验室、日立、NEC、SONY,PHILIPS、微软等都加入到信息隐藏和数字水印技术的研究和应用并取得了一定的成果。1996年5月,第一届国际信息隐藏学术研讨会(CIHW)在英国剑桥牛顿研究所召开,至今该研讨会已举办了四届。另外,在IEEE

数字水印基本原理

介绍了数字水印技术的基本原理 随着信息技术和计算机网络的飞速发展,人们不但可以通过互联网和CD-ROM方便快捷地获得多媒体信息,还可以得到与原始数据完全相同的复制品,由此引发的盗版问题和版权纷争已成为日益严重的社会问题。因此,数字多媒体产品的水印处理技术已经成为近年来研究的热点领域之一。 虽然数字水印技术近几年得到长足发展,但方向主要集中于静止图像。由于包括时间域掩蔽效应等特性在内的更为精确的人眼视觉模型尚未完全建立,视频水印技术的发展滞后于静止图像水印技术。另一方面,由于针对视频水印的特殊攻击形式的出现,为视频水印提出了一些区别于静止图像水印的独特要求。 本文分析了MPEG—4视频结构的特点,提出了一种基于扩展频谱的视频数字水印改进方案,并给出了应用实例。 1视频数字水印技术简介 1.1数字水印技术介绍 数字水印技术通过一定的算法将一些标志性信息直接嵌入到多媒体内容当中,但不影响原内容的价值和使用,并且不能被人的感知系统觉察或注意到。与传统的加密技术不同,数字水印技术并不能阻止盗版活动的发生,但可以判别对象是否受到保护,监视被保护数据的传播,鉴别真伪,解决

版权纠纷并为法庭提供认证证据。为了给攻击者增加去除水印的难度,目前大多数水印制作方案都采用密码学中的加密体系来加强,在水印嵌入、提取时采用一种密钥,甚至几种密钥联合使用。水印嵌入和提取的一般方法如图1所示。 1.2视频数字水印设计应考虑的几个方面 水印容量:嵌入的水印信息必须足以标识多媒体内容的购买者或所有者。不可察觉性:嵌入在视频数据中的数字水印应该不可见或不可察觉。 鲁棒性?押在不明显降低视频质量的条件下,水印很难除去。 盲检测:水印检测时不需要原始视频,因为保存所有的原始视频几乎是不可能的。 篡改提示:当多媒体内容发生改变时,通过水印提取算法,能够敏感地检测到原始数据是否被篡改。 1.3视频数字水印方案选择 通过分析现有的数字视频编解码系统,可以将目前MPEG—4视频水印的嵌入与提取方案分为以下几类,如图2所示 (1)视频水印嵌入方案一:水印直接嵌入在原始视频流中。此类方案的优点是:水印嵌入的方法较多,原则上数字图像水印方案均可应用于此。

同步音频水印算法的实现

第28卷 第4期 吉首大学学报(自然科学版)Vol.28 No.4 2007年7月J ournal of J ishou University(Natural Science Edi ti on)Jul.2007 文章编号:1007-2985(2007)04-0074-04 同步音频水印算法的实现 张国武,曾巧明 (中南大学信息科学与工程学院,湖南长沙 410008) 摘 要:目前的音频水印算法缺乏有效的同步技术,笔者应用通信网同步方法,提出了一种快速重同步音频有意义音频水印算法.该算法利用时域水印技术嵌入同步信息,从而对抗音频在时间轴上可能受到的攻击,借助变换域基于小波变换增强音频的鲁棒性,水印为一幅二值图像.仿真实验表明该算法产生的水印在对抗加性Gaussian噪声、MP3压缩和裁剪等方面具有良好的稳健性,可用于数字音频产品的版权保护. 关键词:同步;小波变换;稳健性 中图分类号:TP301.6 文献标识码:A 数字水印技术是把数据(水印)嵌入到多媒体文件中去,以保护所有者对多媒体所拥有的版权.当所有者权益被侵犯时,可通过对水印的检测来得到证明.由于人的听觉系统(HAS)要比视觉系统(HVS)敏感,相对于静止图像和视频信号,在音频信号中嵌入数字水印更为困难[1].通常,音频数字水印应具有以下3个特性.(1)不可觉察性.加入水印后的语音信号比起原语音信号对人耳来讲应该是听起来无差别的;(2)鲁棒性.未被授权的个人或团体企图通过一些处理方法,去除或修改嵌入的水印信息时,会引起原语音信号音质的明显下降;而对于常见的信号处理操作,如传输、过滤、重采样、有损压缩等,嵌入的信息应损坏很小,并在一定正确概率的基础上可以被检测到;(3)可靠性.水印嵌入和检测方法对未被授权的第3方而言,应是保密且不能被轻易破解的,而那些合法的所有者或使用者,通过水印的检测过程,来证实自己的合法行为,以达到版权保护的目的.目前常用的音频水印技术[2],按水印嵌入方式来分可以分为2类:时域法和变换域法.时(空)域算法的算法简单、运行速度快,但抗干扰能力差.变换域法有离散傅里叶变换(DFT)算法、离散余弦变换(DCT)算法、离散小波变换(DWT)算法等,该类算法复杂度较高,但鲁棒性好.由于小波变换具有良好的时频局部特性,因此成为目前频域法水印的主流技术.目前,一些主要的算法,由于缺乏一种有效的同步机制,无法抵抗音频裁剪等攻击,水印的稳健性不强. 笔者研究了一种结合时域和变换域的音频水印算法,这种算法借鉴无线语音传输系统的同步技术,在时域上嵌入了同步信号,实现了语音信号受裁剪等攻击后的快速重同步.为了在满足不可感知性的前提下获得良好的抗噪声、MP3和裁剪等攻击的稳健性能,嵌入的水印信号将水印作为一幅二值图像来处理与隐藏,利用小波变换将水印嵌入到音频信息中.在水印提取时,使用了同步码检测技术,能够知道水印嵌入的起始点. 1 算法原理 由于语音信号是时间轴上的函数,剪裁等攻击会引起严重的同步错误.为了在检测时保持水印的同步,笔者提出了在隐藏有意义水印的同时,在语音信号中嵌入同步信息.一般来说,同步信息的数据量远小于水印数据量.所提出算法结合了变换域和时域水印技术.由于变换域上的水印能量能较均匀地扩散到时域上,对水印的不可感知性和稳健性比较有利,占隐藏数据量大部分的水印采用变换域方法嵌入于原始语音信号中.而为了实现快速重同步,同步信号的隐藏则采用时域水印技术. 考虑到语音信息量一般比较庞大,如果进行全局DWT变换,计算量太大.因此笔者设计的算法对原始语音信号f(t)进行分段处理.在每个分段点处嵌入同步码.水印数据则嵌入到每段语音信号.隐藏了水印的语音信号受到各种攻击(MP3、噪声、低通滤波、剪裁等)后,从中检测的水印将不可避免地发生错误.为了降低检测水印的差错率,从而提高水印的稳健性, 收稿日期:2007-05-21 作者简介:张国武(1978-),男,湖南常德人,中南大学信息科学与工程学院硕士生,主要从事ERP的研究与应用.

一种新的灰度水印嵌入算法

一种新的灰度水印嵌入算法 马义德,王涛 兰州大学信息与科学学院 甘肃 兰州 730000 E-mail:wtboyman@https://www.360docs.net/doc/1210782363.html, 摘 要:数字水印技术作为数字产品版权保护的一项新技术,已受到越来越多的关注.为保证水印的鲁棒性,利用人类的视觉特性,文章提出一种基于离散小波变换数字水印技术,并给出了攻击分析。其中,采用灰度图像作为数字水印,具有二维信号可视化的优点。实验表明,该算法能够经受住噪声、高斯滤波、压缩、直方图均衡化、增加对比度等的处理,具有较强的鲁棒性, 是一种行之有效的水印嵌入方法. 关键词:小波变换 灰度水印 人类视觉特性 量化 引言 随着以微电子技术为代表的信息产业的飞速发展,文字、图形图像、音视频等信息可以通过数字媒体广泛地传播。数字产品(如电子出版物,电子绘画,音视频产品等)的侵权、盗版和随意篡改,严重侵犯了作者及版权所有者的利益。人们对数字化作品的知识产权保护引起了高度关注,并已成为目前的一个研究焦点。 现有的许多先进数字技术已被用于防止非法盗版,例如密码技术,包括密钥加密系统(如RAS 系统),但仅采用密码技术并不能完全解决这一问题。 传统的加密技术是防止窃取信息的重要手段,但是它应用于数字图像中有五个缺点: (1)经过加密后,只有少数被授权持有解密密钥的人,才可以存取数据; (2)多媒体信息仅仅在加密状态下才受到保护,一旦被解密,多媒体信息就以明文形式存在; (3)没有办法追踪多媒体信息的复制、传播状况; (4)加密大数据量的多媒体信息时,运算量大,处理效率低; (5)密文形式的图像很容易引起攻击者的注意。 数字水印技术作为信息隐藏技术研究领域的重要分支,已成为信息安全领域的一个热点。它为数字化产品的版权侵犯、非法复制、分发、泄密和完整性等诸多问题提供了一种可行的解决途径。一般地,数字水印应具有以下基本特征: (1)可验证性:水印应能为受到版权保护的信息产品的归属提供完全可靠的证据,即通过水印算法嵌入到被保护数据中的版权信息应能在需要的时候被提取出来。 (2)不可感知性:不可感知性包含两方面的意思,一方面指视觉上的不可见,另一方面指水印对统计方法也是不可见的。 (3)鲁棒性:鲁棒性对水印而言极为重要。一个嵌入水印的图像,应该能承受大量不同的物理和几何失真,包括有意的或无意的攻击。在经过这些攻击后,鲁棒性强的水印算法仍然能从水印图像中提取出水印或证明其存在。 本文根据人眼视觉对图像感知的特点,提出了一种根据人眼视觉特性和 DWT 多尺度分解小波树原理相结合来隐藏水印的新方法,本文的特点还在于该方法所隐藏的不是传统的序列码或二值图像,而是将灰度图像作为水印来处理及隐藏,这样的水印所含信息量更丰富、直观,鲁棒性也更好。 1 基本理论分析 1.1离散小波变换分析基础 作为调和分析的一个分支,小波理论为各种信号和图像处理提供了统一的分析框架。一个图像信号的离散小波变换(DWT)可以看作是分别对两维信号的列和行进行高通和低通滤波,相当于一个四通道滤波运算,可以得到两维信号在子带LL1、LH1、HL1和HH1 上的变换系数。根据需要可以对

数字水印算法的C 实现

实验报告 实验名称:数字水印算法实现 数字水印算法的C++实现 [摘要]通过在原始数据中嵌入秘密信息--水印来证实数据的所有权。这种被嵌入的水印可以是一段文字、标识、序列号等,而且这种水印通常是不可见或不可察的,它与原始数据紧密结合并隐藏其中,并可以经历一些不破坏源数据使用价值或商用价值的操作而能保存下来。 数字水印技术除了应具备信息隐藏技术的一般特点外,还有着其固有的特点和研究方法。在数字水印系统中,隐藏信息的丢失,即意味着版权信息的丢失,从而也就失去了版权保护的功能,也就是说,这一系统就是失败的。由此可见,数字水印技术必须具有较强的鲁棒性、安全性和透明性。本文是关于在24位宿主图像的文档说明。 [关键词]数字水印标识安全性宿主图像水印图像 1.算法实现思路 1.1数字水印的提出及研究现状 1994年在一次国际重要学术会议上由Tirkel等人发表了题目为“A digital watermark”的第一篇有关数字水印的文章,当时他们已经意识到了数字水印的重要性,提出了数字水印的概念及可能的应用,并针对灰度图像提出了两种向图像最低有效位中嵌入水印的算法。1996年在英国剑桥牛顿研究所召开了第一届国际信息隐藏学术研讨会,标志着信息隐藏学的诞生,而作为信息隐藏学主要分支之一的数字水印技术的研究也得到了迅速的发展。到1999年第三届国际信息隐藏学术研讨会,数字水印成为主旋律,全部33篇文章中有18篇是关于数字水印的研究。 我国近年来已有少数的研究所和大学开展了对水印技术的研究工作,如:中科院自动化研究所的模式识别国家重点实验室、天津大学图像信息中心等。数字水印的研究引起了各种学科的研究人员的兴趣,但受关注的程度不及国外,研究的人员不多,研究的领域不广,从理论和实际成果两方面来看,国内在数字水印方面的研究工作还处于刚起步阶段。我国已明确表示:所有的知识产权保护和安全认证问题不可能依靠国外的力量,必须由我们自主开

几种水印算法详解-入门必备

水印算法 近年来,数字水印技术研究取得了很大的进步,下面对一些典型的算法进行了分析,除特别指明外,这些算法主要针对图像数据(某些算法也适合视频和音频数据)。 空域算法 该类算法中典型的水印算法是将信息嵌入到随机选择的图像点中最不重要的像素位(LSB:least significant bits)上,这可保证嵌入的水印是不可见的。但是由于使用了图像不重要的像素位,算法的鲁棒性差,水印信息很容易为滤波、图像量化、几何变形的操作破坏。另外一个常用方法是利用像素的统计特征将信息嵌入像素的亮度值中。 Patchwork算法 方法是随机选择N对像素点(ai,bi) ,然后将每个ai点的亮度值加 1 ,每个bi点的亮度值减1,这样整个图像的平均亮度保持不变。适当地调整参数,Patchwork方法对JPEG压缩、FIR滤波以及图像裁剪有一定的抵抗力,但该方法嵌入的信息量有限。为了嵌入更多的水印信息,可以将图像分块,然后对每一个图像块进行嵌入操作。 变换域算法 该类算法中,大部分水印算法采用了扩展频谱通信(spread spectrum communication)技术。算法实现过程为:先计算图像的离散余弦变换(DCT),然后将水印叠加到DCT域中幅值最大的前k系数上(不包括直流分量),通常为图像的低频分量。若DCT系数的前k个最大分量表示为D=,i=1 ,… ,k,水印是服从高斯分布的随机实数序列W =,i=1 ,… ,k,那么水印的嵌入算法为di = di(1 + awi),其中常数a为尺度因子,控制水印添加的强度。然后用新的系数做反变换得到水印图像I。解码函数则分别计算原始图像I和水印图像I*的离散余弦变换,并提取嵌入的水印W*,再做相关检验以确定水印的存在与否。该方法即使当水印图像经过一些通用的几何变形和信号处理操作而产生比较明显的变形后仍然能够提取出一个可信赖的水印拷贝。一个简单改进是不将水印嵌入到DCT域的低频分量上,而是嵌入到中频分量上以调节水印的顽健性与不可见性之间的矛盾。另外,还可以将数字图像的空间域数据通过离散傅里叶变换(DFT)

毕业设计----VC实现数字水印的加入与提取设计

计算机科学与技术学院信科专业综合实践设计报告 专业:电子信息科学与技术 班级:信科07-4班 设计题目: VC实现数字水印的加入与提取 成员: 指导教师: 2010年10月14日

课程设计指导教师评阅书 指导教师评语: 成绩:指导教师签字: 年月日

【摘要】: 当前,数字图像技术的主要研究热点之一是数字水印的应用。本文介绍了LSB算法的思想,利用 VC技术对数字图像水印LSB算法进行实现,并总结LSB算法的利弊,提出了可行的改进措施。 关键词:VC;图像处理;数字水印;LSB算法

一、前言 (9) 1.1背景 (10) 1.2数字水印的现状 (11) 2.3数字水印的应用 (12) 二、数字水印技术 (14) 2.1数字水印的起源、概念和基本原理 (14) 2.2数字水印的嵌入和提取 (15) 三、数字水印的典型算法 (16) 3.1最低有效位算法(LSB) (16) 3.2 Patchwork 算法 (16) 3.3纹理块映射编码 (16) 3.4 其他 (17) 四、LSB算法的VC实现 (17) 五、实验体会 (21) 参考书目: (21) 附录1:算法设计说明书 (21) 附录二:主要原程序 (23)

一、前言

1.1背景 随着网络通信的普及,许多传统媒体内容都向数字化转变,并且在电子商务中即将占据巨大的市场份额,如mP3的网上销售,数字影院的大力推行,网上图片、电子书籍销售等等。在无线领域,随着移动网络由第二代到第三代的演变,移动用户将能方便快速的访问因特网上数字媒体内容,基于有线或无线网络的数字媒体内容的影院即将是信息时代新的趋势。但是,数字媒体内容的安全问题恰恰制约着信息化进程,虽然成熟的密码学可以解决安全传递和访问控制,但是一旦解密后,数字媒体内容便可以随意的被拷贝、传播,它给媒体内容制造商造成了巨大的损失;同时,密文信息的传递也容易引起攻击者的注意。因此如何安全的传送信息就成了其中的关键,数字水印技术就成为开启这一难点的钥匙。 数字水印(digital water marking)是实现版权保护的有效办法,已成为多媒体信息安全研究领域的一个热点,也是信息隐藏技术研究领域的重要分支。它通过在原始数据中嵌入秘密信息—水印(water mark)来证实该数据的所有权。被嵌入的水印可以是一段文字、标识、序列号等。水印通常是不可见的或不可察的,它与原始数据(如图像、音频、视频数据等)紧密结合并隐藏其中,成为源数据不可分离的一部分,并可以经历一些不破坏源数据使用价值或商用价值的操作而存活下来。 数字水印技术除具备信息隐藏技术的一般特点外,还有着其固有的特点和研究方法。例如,从信息安全的保密角度而言,隐藏的信息如果被破坏掉,系统可以视为安全的,因为秘密信息并未泄露;但是,在数字水印系统中,隐藏信息的丢失意味着版权信息的丢失,从而失去了版权保护的功能,这一系统就是失败的。因此数字水印技术必须具有以下特性:安全性(嵌入在宿主数据中的水印是不可删除的,且能够提供完全的版权证据)、鲁棒性(水印对有意或无意的图像操作与失真具有一定的抵抗力)以及不可觉察性(水印对人的感觉器官应是不可觉察的,或者说是透明的)。水印算法识别被嵌入到保护对象中的所有者的有关信息(如注册的用户号码、产品标志或有意义的文字等),并能在需要的时候将其提取出来。水印可以用来判别对象是否受到保护,并能够监视被保护数据的传播、真伪鉴别以及非法拷贝控制等,这实际上是发展数字水印的基本动力。尽管版权保护是发展数字水印最重要的源动力,事实上人们还发现数字水印在真伪鉴别、隐藏通信、

音频水印的评价标准

音频水印的评价标准 水印算法的质量是音频水印最为重要的一个因素,而具体评判一个水印算法的质量的好坏,现在也没有统一的标准。因此,本文从水印的一些基本特征出发对于水印算法的质量的好坏进行度量,也就是从水印算法的不可感知性,以及水印算法的鲁棒性二个方面来考虑水印算法的质量的好坏(刘应,2014)。 1、水印算法的不可感知性 水印算法的不可感知性也即是在一个音频信号加入了水印之后,对于加入水印之后的音频信号的感知程度,加入水印之后的音频信号的感知程度越低,说明水印算法的不可感知性越好,加入水印之后的音频信号越接近于原信号,水印算法就越好。而具体的水印算法的不可感知性得评判标准一般又分为二种,也就是主观不可感知性的评判标准以及客观不可感知性的评判标准。 主观不可感知性的评判标准: 顾名思义,也就是选取听众将没有加入水印的音频信号,与加入了水印的音频信号同时听一遍,从个人主观的程度上给出相应水印算法的不可感知性的评价。主观不可感知性得评判标准(SDG)具体的评判标准如下表2.1所示: 表2.1 主观不可感知性得评判标准(SDG) 从表2.1 主观不可感知性得评判标准(SDG)可以看出来,个人主观的程度上给出相应水印算法的不可感知性的评价,评价越接近于0,主观不可感知性越好,水印算法越好。 客观不可感知性的评判标准: 而对于具体的客观不可感知性的评判标准其实方法有很多,本文选取信噪比(SNR)来进行评判。具体的信噪比(SNR)评价方式如下:

2 12 1 10lg (1) n k n k x SNR x x ===-∑∑ (2-1) 其中,x 表示没有加入水印之前的音频,x1表示加入水印之后的音频,n 为 采样点数。 2、水印算法的鲁棒性 在对于水印算法具体的嵌入过程的时候,甚至是水印相关的信号在进行存储,与在进行传输的时候都会受到一定的干扰,导致水印本身所含有的信息可能发生一定的改变,所以对于水印算法的评判,水印算法的鲁棒性也是一个不能够忽略的点,具体本文对于水印算法的鲁棒性的度量选用的是归一化相关系数(NC )进行相关的评判的。归一化相关系数定义如下式子2-2所示: ()() ,*1,m n w i j w i j NC = ∑∑ (2-2) 其中, 具体表示的是原始水印信, 具体表示的是提取的相关 的水印信息。M*N 是信息的维度。 () ,w i j () 1,w i j

基于LSB算法的数字水印嵌入与提取方法

1设计目的 (1)了解数字水印的基本概念,深入理解基于LSB算法的数字水印嵌入与提取方法。(2)运用MATLAB语言编程实现图像水印的嵌入和提取。 (3)能够显示水印嵌入前后的载体图像,能够显示嵌入与提取的水印。 2设计方案 2.1 数字水印的相关知识数字水印的相关知识 数字水印(Digital Watermark)技术是指用信号处理的方法在数字化的多媒体数据中嵌入隐蔽的标记,这种标记通常是不可见的,只有通过专用的检测器或阅读器才能提取。数字水印是信息隐藏技术的一个重要研究方向。 在数字水印技术中,水印的数据量和鲁棒性构成了一对基本矛盾。从主观上讲,理想的水印算法应该既能隐藏大量数据,又可以抗各种信道噪声和信号变形。然而在实际中,这两个指标往往不能同时实现,不过这并不会影响数字水印技术的应用,因为实际应用一般只偏重其中的一个方面。如果是为了隐蔽通信,数据量显然是最重要的,由于通信方式极为隐蔽,遭遇敌方篡改攻击的可能性很小,因而对鲁棒性要求不高。但对保证数据安全来说,情况恰恰相反,各种保密的数据随时面临着被盗取和篡改的危险,所以鲁棒性是十分重要的,此时,隐藏数据量的要求居于次要地位。数字水印技术是通过一定的算法将一些标志性信息直接嵌到多媒体内容当中,但不影响原内容的价值和使用,并且不能被人的知觉系统觉察或注意到。水印信息可以是作者的序列号、公司标志、有特殊意义的文本等,可用来识别文件、图像或音乐制品的来源、版本、原作者、拥有者、发行人、合法使用人对数字产品的拥有权。与加密技术不同,数字水印技术并不能阻止盗版活动的发生,但它可以判别对象是否受到保护,监视被保护数据的传播、真伪鉴别和非法拷贝、解决版权纠纷并为法庭提供证据。为了给攻击者增加去除水印的难度,目前大多数水印制作方案都采用密码学中的加密(包括公开密钥、私有密钥)体系来加强,在水印的嵌入、提取时采用一种密钥,甚至几种密钥联合使用。

基于Patchwork算法的数字水印嵌入技术

本科学生毕业论文 论文题目:基于Patchwork算法的数字水印嵌入技 术 学院:电子工程学院 年级:2008级 专业:电子信息科学与技术 姓名:贾仁旭 学号:20086600 指导教师:王晓飞 2012年4月30日

摘要 当今社会随着数字媒体信息使用的增长,使得人们可以快捷方便地获得数字信息和在线服务。但同时,盗版也变得更加容易,对数字内容的管理和保护成为迫切需要解决的问题。 本文介绍了数字水印技术的发展情况及数字水印的研究的重要性,对数字水印的应用及算法做了简单的介绍。着重介绍了数字水印Patchwork算法,并且利用Matlab编程实现了这一算法。通过实验验证了嵌入水印后的图像和原始图像几乎毫无差别,说明水印达到了很好的隐藏效果,充分证实了数字水印的不可感知性。 关键词 信息隐藏;数字水印;空域图像水印技术;Patchwork

Abstract Today's society the use of digital media is growing rapidly, making it quick and easy access to digital information and online services. But at the same time, piracy has become easier, the digital content management and protection of the urgent need to address the problem. This article describes the development of digital watermarking technology and the importance of the study of digital watermarking, digital watermarking applications and algorithms to do a brief introduction. Focuses on digital watermarking Patchwork algorithm, and the use of Matlab programming algorithm. Verified by experiments almost no difference in the watermarked image and original image, a watermark to reach the hidden, fully confirmed by digital watermark imperceptibility. Key words Information hiding; digital watermark; airspace image watermarking technology; Patchwork

讨论音频数字水印算法

1.4各种数字水印算法 近几年来数字水印技术研究取得了很大的进步,见诸于文献的水印算法很多,这里对一些典型的算法进行了分析。 1. 空间域算法 数字水印直接加载在原始数据上,还可以细分为如下几种方法: (1) 最低有效位方法(LSB) 这是一种典型的空间域数据隐藏算法,L.F.Tumer与R.G.VanSchyadel等先后利用此方法将特定的标记隐藏于数字音频和数字图像内。该方法是利用原始数据的最低几位来隐藏信息(具体取多少位,以人的听觉或视觉系统无法察觉为原则)。LSB 方法的优点是有较大的信息隐藏量,但采用此方法实现的数字水印是很脆弱的,无法经受一些无损和有损的信息处理,而且如果确切地知道水印隐藏在几位LSB中,数字水印很容易被擦除或绕过。 (2) Patchwork方法及纹理块映射编码方法 这两种方法都是Bender等提出的。Patchwork是一种基于统计的数字水印,其嵌入方法是任意选择N对图像点,在增加一点亮度的同时,降低另一点的亮度值。该算法的隐藏性较好,并且对有损的JPEG和滤波!压缩和扭转等操作具有抵抗能力,但仅适用于具有大量任意纹理区域的图像,而且不能完全自动完成。 2.变换域算法 基于变换域的技术可以嵌入大量比特数据而不会导致可察觉的缺陷,往往采用类似扩频图像的技术来隐藏数字水印信息。这类技术一般基于常用的图像变换,基于局部或是全部的变换,这些变换包括离散余弦变换(DCT)、小波变换(WT)、傅氏变换(FT或FFT)以及哈达马变换(Hadamardtransform)等等。其中基于分块的DCT是最常用的变换之一,现在所采用的静止图像压缩标准JPEG也是基于分块DCT的。最早的基于分块DCT的一种数字水印技术方案是由一个密钥随机地选择图像的一些分块,在频域的中频上稍稍改变一个三元组以隐藏二进制序列信息。选择在中频分量编码是因为在高频编码易于被各种信号处理方法所破坏,而在低频编码则由于人的视觉对低频分量很敏感,对低频分量的改变易于被察觉。该数字水印算法对有损压缩和低通滤波是稳健的。另一种DCT数字水印算法是首先把图像分成8×8的不重叠像素块,在经过分块DCT变换后,即得到由DCT系数组成的频率块,然后随机选取一些频率块,将水印信号嵌入到由密钥控制选择的一些DCT系数中。该算法是通过对选定的DCT系数进行微小变换以满足特定的关系,以此来表示一个比特的信息。在水印信息提取时,则选取相同的DCT系数,并根据系数之间的关系抽取比特信息。除了上述有代表性的变换域算法外,还有一些变换域数字水印方法,它们当中有相

数字水印图像的嵌入与提取源代码

clear all; close all; clc; M=256;%原图像长度 N=64; %水印长度 [filename1,pathname]=uigetfile('*.*','select the image'); image1=imread(num2str(filename1)); subplot(2,2,1); imshow(image1); title('原图'); % orginal image for watermarking image1=double(image1); imagew=imread('shuiyin.bmp'); imagew=im2bw(imagew,0.5); subplot(2,2,2);imshow(imagew);title('原水印'); %original watermark %嵌入水印 [ca,ch,cv,cd] = dwt2(image1,'db1'); [cas,chs,cvs,cds] = dwt2(ca,'db1'); for i=1:N for j=1:N if imagew(i,j)==0 a=-1; else a=1; end Ca(i,j)=cas(i,j)*(1+a*0.03); end end IM= idwt2(Ca,chs,cvs,cds,'db1') ; markedimage=double(idwt2(IM,ch,cv,cd,'db1')); %显示嵌入后水印图像 subplot(2,2,3);colormap(gray(256));image(markedimage);title('含水印图'); imwrite(markedimage,gray(256),'watermarked.bmp','bmp'); %提取水印 image1=imread(num2str(filename1));image1=double(image1); imaged=imread('watermarked.bmp'); [ca,ch,cv,cd] = dwt2(image1,'db1'); [cas,chs,cvs,cds]=dwt2(ca,'db1'); [caa,chh,cvv,cdd]=dwt2(imaged,'db1'); [caas,chhs,cvvs,cdds]=dwt2(caa,'db1'); for p=1:N for q=1:N a=caas(p,q)/cas(p,q)-1; if a<0 W(p,q)=0; else

一种基于能量的水印嵌入和提取算法及实现

龙源期刊网 https://www.360docs.net/doc/1210782363.html, 一种基于能量的水印嵌入和提取算法及实现作者:李洋 来源:《电子技术与软件工程》2015年第09期 摘要本文采用了一种基于能量关系的嵌入算法,在 Visual C++ 6.0开发环境下利用该算法实现了数字水印的嵌入和提取,并对嵌入、提取前后的图像分析后发现该水印算法的不可见性较差,并对该问题进行了分析。 【关键词】数字水印盲检测 DCT 1 引言 为实现在水印检测算法中仅用到加载水印后的图像就能检测出水印的存在和水印所含的信息,许多学者提出基于关系的嵌入方式。目前已采用的关系主要包括:块内DCT系数间的关系(主要是直流和交流系数关系),块间、通道间(对于彩色图像是RGB三通道)DCT系数间的关系,各频带能量关系,位置和量化系数奇偶关系等等。本文采用的水印嵌入算法是基于能量关系的嵌入算法。 2 基于能量关系的水印系统的基本结构 水印嵌入过程为:首先将载体图像I的像素分成8×8的像素块,然后对每块进行二维DCT 变换得到DCT系数,再根据基于能量关系的水印嵌入算法,选择DCT块及块中的DCT系数遵循一定规则进行修改,从而将水印信息W嵌入到载体图像中。之后再进行IDCT变换,就 得到了含水印的图像。 水印系统的水印提取过程为:先将含水印的图像进行DCT变换,再根据水印提取算法,提取水印信息W,再将水印信息W转换为水印图像像素的RGB值,从而最终得到水印图像M。提取过程中不需要载体图像,实现了盲检测。 3 算法简介 基于能量的嵌入算法是一种利用DCT系数块不同区域能量关系的水印嵌入方案。首先同非自适应加性嵌入算法选取DCT块的方法一样选取DCT块,然后从选取的8×8 DCT系数块 的中频部分取出三个区域。 嵌入算法的基本思想如下: 输入:载体图像,水印图像 输出:含水印图像

相关文档
最新文档