高等数学知识框架图

高等数学知识框架图
高等数学知识框架图

第一章

函数、极限、连续

(完整版)高等数学公式必背大全

高等数学必背公式 说明:这里有你想要的东西,高等数学必备公式一应俱全。 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学各章知识要点及典型例题与习题详细精解

第一章 函数、极限、连续 第1节 函数 ★基本内容学习 一 基本概念和性质 1函数的定义 设有两个变量x 和y ,变量x 的变域为D ,如果对于D 中的每一个x 值,按照一定的法则,变量y 有一个确定的值与之对应,则称变量y 为变量x 的函数,记作:()y f x =。 2函数概念的两要素 ①定义域:自变量x 的变化范围②对应关系:给定x 值,求y 值的方法。 3函数的三种表示方法 ①显式:形如()y f x =的称作显式,它最直观,也是初等函数一般采用的形式。 ②隐式:有时有些关系用显式无法完全表达,这时要用到隐式,形如(,)0F x y =,如椭圆函数 22 221x y a b +=。 ③参数式:形如平抛运动的轨迹方程212 x vt y gt =???=??称作参数式。参数式将两个变量的问题转化为 一个变量的问题,从而使很多难以处理的问题简化。 4函数的四个基本性质 ①奇偶性:设函数()f x 在对称区间X 上有定义,如果对于x X ?∈恒有()()f x f x =- (或)()()f x f x =--,则称()f x 为偶函数(或()f x 奇函数)。注:偶函数()f x 图形关于y 轴对称,奇函数()f x 的图形关于坐标原点对称。 ②有界性:设函数()f x 在区间X 上有定义,如果0M ?>,使得对一切x X ∈,恒有:()f x M ≤,则称()f x 在区间X 上有界;若不存在这样的0M >,则称()f x 在区间X 上无界.注:函数()f x 有无界是相对于某个区间而言的。

③周期性:设函数()f x 在区间X 上有定义,若存在一个与x 无关的正数T ,使对任一x X ∈,恒有()()f x T f x += 则称()f x 是以T 为周期的周期函数,把满足上式的最小正数T 称为函数()f x 的周期。 ④单调性:设函数()f x 在区间X 上有定义,如果对1212,,x x X x x ?∈<,恒有:()()12f x f x ≤(或 ()()12f x f x ≥)则称()f x 在区间X 上是单调增加(或单调减少)的;如果对于1212,,x x X x x ?∈<,恒有: ()()12f x f x < (或()()12f x f x >)则称()f x 在区间X 上是严格单调增加(或严格单调减少)的。 5其它函数定义 ①复合函数:设函数()y f u =的定义域为f D ,而函数()u x ?=的定义域是D ?值域为Z ?,若 f D Z ??≠?,则称函数()y f x ?=????为x 的复合函数,它的定义域是{x ∣()}f x D x D ??∈∈且。这里?表 示空集。 ②反函数:设函数()y f x =的值域为f Z ,如果对于f Z 中任一y 值,从关系式()y f x =中可确定唯一的一个x 值,则称变量x 为变量y 的函数,记为:()x y ?=,其中()y ?称为函数()y f x =的反函数,习惯上()y f x =的反函数记为:()1y f x -=。 6初等函数 ①常值函数 C (C 为常数),x R ∈ ②幂函数 ()y x R αα=∈,定义域由α确定,但不论α如何,在(0,)∞内总有定义。 ③指数函数 x y a =(0a >且1a ≠) x R ∈ ④对数函数 log x a y =( 0a >且1a ≠) (0,)x ∈∞ ⑤三角函数 如sin ,y x =x R ∈;cos ,y x =x R ∈;tan y x =,(,),2 2 x k k k Z ππ ππ∈-+∈; cot ,x (,(1)),x k k ππ∈+k Z ∈等 ⑥反三角函数 arcsin ,y x =[1,1]x ∈-;arccos ,y x =[1,1]x ∈-;arctan y x =,x R ∈;arccot y x =,x R ∈. 以上六类函数称基本初等函数。 由基本初等函数经有限次加、减、乘、除、复合而成的函数称初等函数。 7分段函数 一个函数在其定义域内,对应于不同的区间段有着不同的表达式,则该函数称为分段函数。分段函数仅是说函数的表示形式,并不是说它是几个函数。 常见的分段函数:

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0→x x x arcsin 1=, lim )(∞→x ?)())(11(x x ??+e =,lim 0 )(→x ?) (1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,221 ~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim )(lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)() (x g x f )() (lim x g x f a x ''=→ 基本未定式:00,∞∞ , 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+ =??→?) ()(000lim h x f h x f h ) ()(000lim -+=→

高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos( 2A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

高等数学上公式

学姐偷懒直接从网上下了一份公式总结,然后按照咱们的考试要求改了一下,特别诡异的那些公式我都删掉了,剩下的都是可能会出现的,哪些必须记哪些可以记也都写在后面了,有的出题形式我也加在知识点后面了,可以做个参考。这上面的知识点不很全,但应付考试差不多了,上面没有的学霸们可以自己再看看书哈。重点关注黑体字!!!电子版已发各部长,可以找部长要。祝大家都能考个好成绩~ ——魏亚杰 高等数学(一)上 公式总结 第一章 一元函数的极限与连续 1、一些初等函数公式:(孩子们。没办法,背吧) sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβ αβαβαβαβ αβαβ αβαββα±=±±=±±= ??±=±和差角公式: sin sin 2sin cos 22 sin sin 2cos sin 22 cos cos 2cos cos 22 cos cos 2sin sin 22 αβ αβ αβαβαβ αβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1 sin cos [sin()sin()] 21 cos sin [sin()sin()] 21 cos cos [cos()cos()] 21 sin sin [cos()cos()] 2 αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式: 222222sin 22sin cos cos 22cos 1 12sin cos sin 2tan tan 21tan cot 1 cot 22cot αααααααα α ααααα ==-=-=-= --= 倍角公式:

高等数学上册知识点

高等数学上册 第一章 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函 数、双曲函数、反双曲函数; 4、 函数的连续性与间断点; 函数)(x f 在 0x 连续 )()(lim 00 x f x f x x =→ 第一类:左右极限均存在。 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定 理、介值定理及其推论。 (二) 极限 1、 定义 1) 数列极限

εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 δδε-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x - →-= 右极限:)(lim )(0 0x f x f x x +→+ = )()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2 ) a z y n n n n ==→∞ →∞ lim lim a x n n =∞ →lim 2) 单调有界准则:单调有界数列必有极限。 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷 大量。 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无 穷小 Th1 )(~ααββαo +=?;

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

大学高数公式(考前必备)

大学高等数学公式 考前必备 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三倍角公式 sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα 半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

高等数学知识点总结

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

高数公式大全(全)

高数公式大全 1.基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+=-+±=++=+-==+= -=----11ln 21)1ln(1ln(:2 :2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

关于高等数学常用公式大全

高数常用公式 平方立方: 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot(2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina c os(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = a a cos sin 万能公式

大学高等数学的学习方法

大学高等数学的学习方法 第一,“学思习”是学习高等数学大的模式。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在学中问和问中学,才能消化数学的概念,理论。方法。所 谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考,善于思考,从厚到薄的学习数学的方法,值得我们借鉴。 所谓习,就高等数学而言,就是做练习。这一点数学有自身的特点,练习一般分为两类, 一是基础训练练习,经常附在每章每节之后。这类问题相对来说比较简单,无大难度,但 很重要,是打基础部分。知识面广些不局限于本章本节,在解决的方法上要用到多种数学 工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。 第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学 习的成败与否。高等数学本身就是数学和其他学科的基础,而高等数学又有一些重要的基 础内容,它关系的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性 质贯穿着后面一系列定理结论,初等函求导法及积分法关系到今后个学科。因此,一开始 就要下狠功夫,牢牢掌握这些基础内容。在学习高等数学时要一步一个脚印,扎扎实实地 学和练,成功的大门一定会向你开放。 第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要 方法。高等数学归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归 类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果 常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综 合训练题就会感到轻松。 第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如 果你能熟读了一本有代表性的参考书,再看其他参考书就会迎刃而解了。 第五,注意学习效率。数学的方法和理论的掌握,就实践经验表明常常需要频率大于 4否则做不到熟能生巧,触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几 个反复。 所谓“学而时习之”温故而知新”都有是指学习要经过反复多次。高等数学的记忆, 必建立在理解和熟练做题的基础上,死记硬背无济于事。在学习的道路上是没有平坦大道的,可是“学习有险阻,苦战能过关“。”人生能有几回搏?“人生总能搏几回!”每个学 子应当而且能与高等数学“搏一搏”。 在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这 时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重 要性。而刚一进入大学,由于理论体系的截然不同,使得我们会在学习开始阶段遇到不小 的麻烦,甚至会有不如意的结果出现比如考试不及格,这时就一定得坚持住,能够知难而进,继续跟随老师学习。

高等数学高数知识点总结

高数重点总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -?? ? ??-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+-=?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导 解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

高等数学重要公式(必记)

高等数学重要公式(必记) 一、导数公式: 二、基本积分表: 三、三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 π π

高数下册知识网络图

第八章 总结 向量代数 定义 定义与运算的几何表达 在直角坐标系下的表示 向量 有大小、有方向. 记作a 或AB a (,,)x y z x y z a i a j a k a a a =++= ,,x x y y z z a prj a a prj a a prj a === 模 向量a 的模记作a a 222x y z a a a =++ 和差 c a b =+ c a b =- =+c a b {},,=±±±x x y y z z a b a b a b 单位向量 0a ≠,则a a e a = a e 2 2 2 (,,)= ++x y z x y z a a a a a a 方向余弦 设a 与,,x y z 轴的夹角分别为 αβγ,,,则方向余弦分别为 cos αβγ,cos ,cos cos y x z a a a a a a αβγ== = ,cos ,cos cos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量积) θcos b a b a =?, θ为向量a 与b 的夹角 z z y y x x b a b a b a ++=?b a 叉乘(向量积) b a c ?= θsin b a c = θ为向量a 与b 的夹角 向量c 与a ,b 都垂直 z y x z y x b b b a a a k j i b a =? 定理与公式 垂直 0a b a b ⊥??= 0x x y y z z a b a b a b a b ⊥?++= 平行 //0a b a b ??= //y z x x y z a a a a b b b b ?== 交角余弦 两向量夹角余弦b a b a ?=θcos 2 2 2 2 2 2 cos x x y y z z x y z x y z a b a b a b a a a b b b θ++= ++?++ 投影 向量a 在非零向量b 上的投影 cos()b a b prj a a a b b ∧?== 2 2 2 x x y y z z b x y z a b a b a b prj a b b b ++= ++

高数重要知识点汇总

高等数学上册重要知识点 第一章 函数与极限 一. 函数的概念 1 两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x )与g (x )是同阶无穷小。 (3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x ) 2 常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二 求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=

最新高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

相关文档
最新文档