傅里叶变换全部形式推导手写版

傅里叶变换全部形式推导手写版
傅里叶变换全部形式推导手写版

其中第三块中波数k和角频率w之间的讨论和经典电磁学中要满足w|k=c为光速有所不同,在量子力学中w和k没有关系的,因为在量子力学里粒子是没有速度这一说的。

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

二维傅里叶变换推倒及理解

2D 傅里叶变换理解心得 一、 目的 完整推倒2D 傅里叶变换公式,加深对2D 傅里叶变换公式的理解。 二、 内容 2维傅里叶变换,针对的信号函数是2维空间平面内的函数,2维傅里叶变换也有四种不同的形式。 1、 连续周期时域信号<---->非周期离散频谱。2D_CFS (,)XY f x y 表示2维周期连续信号,可以理解为一幅连续的图像信号(这里(,)XY f x y 可以为复数信号,但工程实践中常为实信号),(,)F k l 表示2维频谱信号,其中,k l 取-∞ +∞上的整数。 00000000002()2()00 00 2()2()0000 2()00 (,).(,).(,).1(,).,,-+X Y X Y j ku x lv y j ku x lv y XY XY X Y X Y j ku x lv y j ku x lv y X Y j ku x lv y XY f x y e dxdy f x y e dxdy F k l e e dxdy dxdy f x y e dxdy k l XY πππππ-+-++-+-+= = = ∞ ∞?? ?? ?????? 取上的实整数 其中X,Y 为(,)XY f x y 在x 坐标和y 坐标上各自的最小正周期。00,u v 表示在x 坐标和y 坐标上各自的基频率,这里有0011 ,u v X Y = =,,k l 取-∞+∞上的整数,对应不同的频率成分,(,) F k l 的图像为离散的,且在x 坐标和y 坐标上的频率间隔分别为0011 ,u v X Y = =。 002() (,)(,).,,-+j ku x lv y XY k l f x y F k l e x y π+∞ +∞ +=-∞=-∞ = ∞∞∑ ∑ 取上的实数 这里,(,)F k l 为复数。 所以得到2D_CFS (2维连续傅里叶级数) 00002() 002()(,).(,),,-+(,)(,).,,-+X Y j ku x lv y XY j ku x lv y XY k l f x y e dxdy F k l k l XY f x y F k l e x y ππ-++∞+∞ +=-∞=-∞????=∞∞???=∞∞?? ?? ∑∑取上的实整数 取上的实数

傅里叶变换性质证明

傅里叶变换性质证明 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。

由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 ? 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。

(1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 ? 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t)

X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性

C语言实现FFT(快速傅里叶变换)

C语言实现FFT(快速傅里叶变换) 函数原型:空快速傅立叶变换(Struct Compx *xin,Intn) 函数函数:对输入复数组执行快速傅立叶变换(FFT)输入参数:*xin复结构组的第一个地址指针。结构输出参数:no * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *结构compx u,w,t。 nv2 =快速傅立叶变换_ N/2;nm1 =快速傅立叶变换_ N-1;(I = 0;i

傅里叶变换性质证明

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即

叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭

本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质 2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。

(1) f(t)为实函数 对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R()=0,于是 可见,若f(t)是实奇函数,则F()是虚奇函数,即 左边反褶,右边共轭 有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。 2.6.4对称性 傅里叶变换与傅里叶反变换之间存在着对称关系,称为傅里叶变换的对称性质。若已知

快速傅里叶变换FFT的FPGA设计与实现--电科1704 郭衡

快速傅里叶变换FFT的FPGA设计与实现 学生姓名郭衡 班级电科1704 学号17419002064 指导教师谭会生 成绩 2020年5 月20 日

快速傅里叶变换FFT 的设计与实现 一、研究项目概述 非周期性连续时间信号x(t)的傅里叶变换可以表示为:= )(?X dt t j e t x ? ∞ ∞ --1 )(?,式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为: ∑-=-=-==1 02,1.....10)()(N n N j N kn N e W N k W n x K X π、、。 可以看出,DFT 需要计算大约N2次乘法和N2次加法。当N 较大时,这个计算量是很大的。利用WN 的对称性和周期性,将N 点DFT 分解为两个N /2点的DFT ,这样两个N /2点DFT 总的计算量只是原来的一半,即(N /2)2+(N /2)2=N2/2,这样可以继续分解下去,将N /2再分解为N /4点DFT 等。对于N=2m 点的DFT 都可以分解为2点的DFT ,这样其计算量可以减少为(N /2)log2N 次乘法和Nlog2N 次加法。图1为FFT 与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT 算法的优越性。 图1 FFT 与DFT 所需乘法次数比 较

X[1] 将x(n)分解为偶数与奇数的两个序列之和,即x(n)=x1(n)+x2(n)。 x1(n)和x2(n)的长度都是N /2,x1(n)是偶数序列,x2(n)是奇数序列,则 ∑∑=--=-=+2 )12(120 2)1.....,0()(2)(1)(N n k n N N n km N N k W n x W n x K X 所以)1...,0()(2)(1)(12 22120 -=+=∑∑-=-=N k W n x W W n x K X N n km N k N km N N n 由于km N N j km N j km N W e e W 2/2 /2222===--ππ ,则 )1.....,0)((2)(1)(2)(1)(12 2/120 2/-=+=+=∑∑-=-=N k k X W k X W n x W W n x K X k N N n km N k N N n kn N 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N /2点DFT 。由于X1(k)和X2(k)均以N /2为周期,且WNk+N/2=-WNk ,所以X(k)又可表示为: )12/....,1,0)((2)(1)(-=+=N k k X W k X K X k N )12/....,1,0)((2)(1)2/(-=-=+N k k X W k X N K X k N

傅里叶变换推导

2.3 快速傅立叶变换问题 1) 问题背景 在数值电路的传输中,为了避免信号干扰,需要把一个连续信号 x(t)先通过取样离散化为一列数值脉冲信号x(0), x(1), …… ,然后再通过编码送到传输电路中。如果取样间隔很小,而连续信号的时间段又很长,则所得到的数值脉冲序列将非常庞大。因此,传输这个编码信号就需要长时间的占用传输电路,相应地也需要付出昂贵的电路费用。 那么能否经过适当处理是使上述的数值脉冲序列变短,而同时又不会丧失有用的信息?的经过研究,人们发现,如果对上述数值脉冲序列作如下的变换处理: ∑-=--=-==1 0/21 ,1,...,1,0,)()(N k N nki i N n e k x n X π (1) 则所得到的新序列X(0), X(1) , ……将非常有序,其值比较大的点往往集中在某一很狭窄的序列段内,这将非常有利于编码和存储,从而达到压缩信息的目的。 公式(1)就是所谓的离散傅立叶变换,简称DFT 。现在我们来分析一下计算DFT 所需要的工作量。如果我们不考虑公式(7.1)中指数项的运算,那么计算其每一个点X (n) 需要N 次复数乘法和N-1次的复数加法。显然当N 很大时,这个工作量也非常巨大。正是由于这个原因,使得DFT 的应用范围在过去很长的时间里受到了严格的限制。注意到公式(1)是非常有规律性的,那么能否利用这种规律性来降低DFT 的计算时间? 1965年,凯莱和塔柯的提出了一种用于计算DFT 的数学方法,大大减少了DFT 的计算时间,同时又特别适用于硬件处理,这就是所谓的快速傅里叶变换,简称FFT 。鉴于DFT 的数据结构可以通过傅立叶变换的离散化获得,亦可通过三角插值得到,而本质上又同连续傅里叶分析有着极为密切的关系。下面我们从傅立叶级数级数和傅立叶积分入手,导出DFT 结构的来源和FFT 的工作原理。 2) 傅立叶变换 如果x(t)是定义在整个实轴上的实值或复值函数,则其傅立叶变换可由下式给出: ?∞ ∞ ---==1 ,)()(/2i dt e t x f X T nift (2)

傅里叶变换的对称性证明

一. 序列的傅里叶变换(DTFT )的对称性 已知: [()]()j DTFT x n X e ω= **[()]()j DTFT x n X e ω-= **[()]()j DTFT x n X e ω-=(由Z 变换的性质可推出) 共轭对称序列:()()*e e x n x n =-实部是偶对称序列,虚部是奇对称序列 共轭反对称序列: ()()*o o x n x n =--实部是奇对称序列,虚部是偶对称序列 任一序列总可以表示成共轭对称序列和共轭反对称序列之和: ()()()()()()()()() **12 12e e o o x n x n x n x n x n x n x n x n x n ???=+-????=+? ???=--? ??? ()()()()()()()()()**1212j j j e j j j e o j j j o X e X e X e X e X e X e X e X e X e ω ωωωωωωωω--???=+?? ??=+? ???=-? ??? 求证: [Re(())]() [Im(())]()j e j o DTFT x n X e DTFT j x n X e ωω ?=?=? or [()]Re(()) [()]Im(())j e j o IDTFT X e x n IDTFT X e j x n ωω ?=?=? [()]Re(()) [()]Im(())j e j o DTFT x n X e DTFT x n j X e ωω ?=?=? or [Re(())]() [Im(())]()j e j o IDTFT X e x n IDTFT j X e x n ωω ?=?=? 证明: ()()()[][] ** 1 21()()21 2Re(())2 Re(())j j j e X e X e X e DTFT x n x n DTFT x n DTFT x n ωωω-?? = +? ???= +??== ()()( )[][]* * 121()()2 1 2I m (())2 I m (())j j j o X e X e X e D T F T x n x n D T F T j x n D T F T j x n ωω ω- ??= -? ? ??= -??==

C语言实现FFT(快速傅里叶变换)

#include #include /********************************************************************* 快速福利叶变换C函数 函数简介:此函数是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。此函数采用联合体的形式表示一个复数,输入为自然顺序的复 数(输入实数是可令复数虚部为0),输出为经过FFT变换的自然顺序的 复数 使用说明:使用此函数只需更改宏定义FFT_N的值即可实现点数的改变,FFT_N的应该为2的N次方,不满足此条件时应在后面补0 函数调用:FFT(s); 时间:2010-2-20 版本:Ver1.0 参考文献: **********************************************************************/ #include #define PI 3.1415926535897932384626433832795028841971 //定义圆周率值#define FFT_N 128 //定义福利叶变换的点数 struct compx {float real,imag;}; //定义一个复数结构struct compx s[FFT_N]; //FFT输入和输出:从S[1]开始存放,根据大小自己定义 /******************************************************************* 函数原型:struct compx EE(struct compx b1,struct compx b2) 函数功能:对两个复数进行乘法运算 输入参数:两个以联合体定义的复数a,b 输出参数:a和b的乘积,以联合体的形式输出 *******************************************************************/ struct compx EE(struct compx a,struct compx b) { struct compx c; c.real=a.real*b.real-a.imag*b.imag; c.imag=a.real*b.imag+a.imag*b.real; return(c); } /***************************************************************** 函数原型:void FFT(struct compx *xin,int N)

图像的二维傅里叶变换

图像傅立叶变换(二维傅立叶变换fourier, 二维DFT, 2d-fft)的原理和物理意义 图像傅立叶变换 图像的傅立叶变换,原始图像由N行N列构成,N必须是基2的,把这个N*N个包含图像的点称为实部,另外还需要N*N个点称为虚部,因为FFT是基于复数的,如下图所示: 计算图像傅立叶变换的过程很简单:首先对每一行做一维FFT,然后对每一列做一维FFT。具体来说,先对第0行的N个点做FFT(实部有值,虚部为0),将FFT输出的实部放回原来第0行的实部,FFT输出的虚部放回第0行的虚部,这样计算完全部行之后,图像的实部和虚部包含的是中间数据,然后用相同的办法进行列方向上的FFT变换,这样N*N的图像经过FFT得到一个N*N的频谱。 下面展示了一副图像的二维FFT变换:

频域中可以包含负值,图像中灰色表示0,黑色表示负值,白色表示正值。可以看到4个角上的黑色更黑,白色更白,表示其幅度更大,其实4个角上的系数表示的是图像的低频组成部分,而中心则是图像的高频组成部分。除此以外,FFT的系数显得杂乱无章,基本看不出什么。 将上述直角坐标转换为极坐标的形式,稍微比较容易理解一点,幅度中4个角上白色的区域表示幅度较大,而相位中高频和低频基本看不出什么区别来。

上述以一种不同的方法展示了图像频谱,它将低频部分平移到了频谱的中心。这个其实很好理解,因为经2D-FFT的信号是离散图像,其2D-FFT的输出就是周期信号,也就是将前面一张图周期性平铺,取了一张以低频为中心的图。将原点放在中心有很多好处,比如更加直观更符合周期性的原理,但在这节中还是以未平移之前的图来解释。 行N/2和列N/2将频域分成四块。对实部和幅度来说,右上角和左下角成镜像关系,左上角和右下角也是镜像关系;对虚部和相位来说,也是类似的,只是符号要取反,这种对称性和1维傅立叶变换是类似的,你可以往前看看。 为简单起见,先考虑4*4的像素,右边是其灰度值,对这些灰度值进行2维fft变换。 h和k的范围在-N/2到N/2-1之间。 通常I(n,m)是实数,F(0,0)总是实数,并且F(h,k)具有对偶性。 如果写成指数形式,即: -------------------------------- 图像傅立叶变换的物理意义

fft快速傅里叶变换 c语言实现

#include #include #include #define N 1000 /*定义复数类型*/ typedef struct{ double real; double img; }complex; complex x[N], *W; /*输入序列,变换核*/ int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/ void fft(); /*快速傅里叶变换*/ void initW(); /*初始化变换核*/ void change(); /*变址*/ void add(complex ,complex ,complex *); /*复数加法*/ void mul(complex ,complex ,complex *); /*复数乘法*/ void sub(complex ,complex ,complex *); /*复数减法*/ void output(); int main(){ int i; /*输出结果*/ system("cls"); PI=atan(1)*4; printf("Please input the size of x:\n"); scanf("%d",&size_x); printf("Please input the data in x[N]:\n"); for(i=0;i

快速傅里叶变换FFT算法源码经典

快速傅里叶变换FFT算法及其应用 摘要 本文较为系统地阐述了快速傅里叶变换的算法原理及其在数字信号处理等 工程技术中的应用。根据抽取方法的不同,一维基2 FFT算法分为两种:频域抽取的FFT算法和时频域抽取的FFT算法。第1节阐述了这两种FFT算法的原理。第2节给出了两种算法的编程思想和步骤。第3节阐述了一维非基2 FFT的两种算法:Cooley-tukey FFT算法和素因子算法(Prime Factor Algorithm)的思想原理,给出了在把一维非基2 DFT的多层分解式转化为二层分解的过程中,如何综合运用这两种算法以达到总运算次数最少的方案;并以20点DFT为例描述了非基2 FFT算法实现的一般步骤。第4节介绍了一维FFT算法在计算连续时间信号的傅里叶变换、离散信号的线性卷积、离散信号压缩和滤波等数字信号处理中的典型应用。第5节把一维FFT变换推广到二维FFT变换,并在一维FFT算法的基础上,给出了二维FFT算法的原理和实现过程。最后在附录中给出了一维DFT 的基2 FFT 算法(包括频域抽取的FFT和IFFT算法、时域抽取的FFT和IFFT 算法),一维任意非基2 FFT算法,二维DFT的基2 FFT 算法以及二维DFT的任意非基2 FFT 算法的详细的Visual C++程序。 本文通过各种流程图和表格,较为深入系统地阐述了FFT的算法原理;运用Matlab编程,通过大量生动的实例,图文并茂地列举出了FFT算法的各种应用,并在每个实例中都附上了完整的Matlab程序,可供读者参考。由于篇幅所限,本文未涉及FFT变换以及其应用的数学理论背景知识。 关键词:FFT算法的应用,一维基2 FFT算法,频域抽取,时域抽取,非基2 FFT算法,Cooley-Tukey算法,素因子算法,线形卷积,信号压缩和滤波,二维FFT算法

傅里叶变换性质证明

2.6 傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶

f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质

2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数 对比式(2-33)与(2-34),由FT的唯一性可得 (1.1)f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ( 1.2)f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故这时R()=0,于是

快速傅里叶变换 (FFT) 实现

§2.4 快速傅里叶变换 (FFT) 实现 一、实验目的 1. 掌握FFT 算法的基本原理; 2. 掌握用C 语言编写DSP 程序的方法。 二、实验设备 1. 一台装有CCS3.3软件的计算机; 2. DSP 实验箱的TMS320F2812主控板; 3. DSP 硬件仿真器。 三、实验原理 傅里叶变换是一种将信号从时域变换到频域的变换形式,是信号处理的重要分析工具。离散傅里叶变换(DFT )是傅里叶变换在离散系统中的表示形式。但是DFT 的计算量非常大, FFT 就是DFT 的一种快速算法, FFT 将DFT 的N 2 步运算减少至 ( N/2 )log 2N 步。 离散信号x(n)的傅里叶变换可以表示为 ∑=-=1 0][)(N N nk N W n x k X , N j N e W /2π-= 式中的W N 称为蝶形因子,利用它的对称性和周期性可以减少运算量。一般而言,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两大类。两者的区别是蝶形因子出现的位置不同,前者中蝶形因子出现在输入端,后者中出现在输出端。本实验以时间抽取方法为例。 时间抽取FFT 是将N 点输入序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。这样x(n) 的N 点DFT 可写成: ()()∑++∑=-=+-=1 2/0 )12(1 2/0 2122)(N n k n N N n nk N W n x W n x k X 考虑到W N 的性质,即 2/)2//(22/)2(2][N N j N j N W e e W ===--ππ 因此有: ()()∑++∑=-=-=1 2/0 2/1 2/0 2 /122)(N n nk N k N N n nk N W n x W W n x k X 或者写成: ()()k Z W k Y k X k N +=)( 由于Y(k) 与Z(k) 的周期为N/2,并且利用W N 的对称性和周期性,即: k N N k N W W -=+2/

快速傅里叶变换(FFT)的DSP实现

目录 一、前言 二、设计题目 三、设计要求 3.1 设计目的 3.2 设计要求 四、设计内容 五、设计原理 5.2 离散傅里叶变换DFT 5.3 快速傅里叶变换FFT 六、总体方案设计 6.1 设计有关程序流程图 6.2 在CCS环境下加载、调试源程序 七、主要参数 八、实验结果分析 九、设计总结

一、前言 随着数字电子技术的发展,数字信号处理的理论和技术广泛的应用于通讯、语音处理、计算机和多媒体等领域。快速傅里叶变换(FFT)使离散傅里叶变换的时间缩短了几个数量级。在数字信号处理领域被广泛的应用。FFT已经成为现代化信号处理的重要手段之一。 本次课程设计主要运用CCS这一工具。CCS(Code Composer Studio)是一种针对TM320系列DSP的集成开发环境,在Windows操作系统下,采用图形接口界面,提供环境配置、源文件编辑、程序调试、跟踪和分析等工具,可以帮助用户在一个软件环境下完成编辑、编译、链接、调试和数据分析等工作。 CCS有两种工作模式,即软件仿真器和硬件在线编程。软件仿真器工作模式可以脱离DSP芯片,在PC上模拟DSP的指令集和工作机制,主要用于前期算法实现和调试。硬件在线编程可以实时运行在DSP芯片上,与硬件开发板相结合进行在线编程和调试应用程序。二、设计题目 快速傅里叶变换(FFT)的DSP实现 三、设计要求 3.1设计目的 ⑴加深对DFT算法原理和基本性质的理解; ⑵熟悉FFT的算法原理和FFT子程序的算法流程和应用; ⑶学习用FFT对连续信号和时域信号进行频谱分析的方法; ⑷学习DSP中FFT的设计和编程思想;

⑸学习使用CCS 的波形观察器观察波形和频谱情况; 3.2 基本要求 ⑴研究FFT 原理以及利用DSP 实现的方法; ⑵编写FFT 程序; ⑶调试程序,观察结果。 四、 设计内容 ⑴用DSP 汇编语言及C 语言进行编程; ⑵实现FFT 运算、对输入信号进行频谱分析。 五、 设计原理 快速傅里叶变换FFT 快速傅里叶变换(FFT )是一种高效实现离散傅里叶变换(DFT )的快速算法,是数字信号处理中最为重要的工具之一,它在声学,语音,电信和信号处理等领域有着广泛的应用。 5.1. 离散傅里叶变换DFT 对于长度为N 的有限长序列x(n),它的离散傅里叶变换(DFT )为 (1) 式中, ,称为旋转因子或蝶形因子。 从DFT 的定义可以看出,在x(n)为复数序列的情况下,对某个k 值,直接按(1)式计算X(k) 只需要N 次复数乘法和(N-1)次复数加法。因此,对所有N 个k 值,共需要N2次复数乘法和N(N-1)次复数加法。对于一些相当大有N 值(如1024点)来说,直接计算它的DFT 所需要的计算量是很大的,因此DFT 运算的应用受到了很大 1 ,1,0,)()(1 -== ∑-=N k W n x k X n n nk N N j N e W /2π-=

离散傅里叶变换性质证明

1. [][]()()j j ax n by n aX e bX e ωω+?+ Proof: ([][])[][]()() j n j n j n j j ax n by n e a x n e b y n e aX e bX e ωωωωω∞ --∞ ∞∞ ---∞-∞ +=+=+∑∑∑ 2. (1)[]()d j n j d x n n X e e ωω--? Proof: ()[][].()d d j n d n j n n j n d n j n j x n n e x n n e e X e e ωωωωω∞-=-∞∞---=-∞--=-=∑ ∑ (2) 00()[]()j n j e x n X e ωωω-? Proof: 000()()[][]()j n j n j n j n n e x n e x n e X e ωωωωωω∞∞ ----=-∞=-∞==∑ ∑ 3. []()j x n X e ω--? Proof: ()[][]()j n j n j n n x n e x n e X e ωωω∞∞ ---=-∞=-∞-=-=∑ ∑ if []x n is real ()j X e ω-=*()j X e ω 4. ()[]j dX e nx n j d ωω? Proof: ()[]() ()[]()[]j j n n j j n n j j n n X e x n e dX e jn x n e d dX e j nx n e d ωωωωωωωω∞-=-∞∞-=-∞∞-=-∞=?=-?=∑∑∑

5. (1)22 1|[]||()|2j n x n X e d πωπωπ∞ =-∞-=∑ ? Proof: 2*2221 |()|21 ()()21 [][]21 |[]|21 |[]| 2|[]|j j j j n j n n n n n n X e d X e X e d x n e x n e d x n d x n d x n πωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞=-∞ -∞=-∞ -∞=-∞ =====??∑∑?∑?∑ ?∑ (2) **1[][]()()2j j n x n y n X e Y e d π ωωπωπ∞=-∞-=∑ ? Proof: *****1 ()()21 ()()21 [][]21[][]21 [][] 2[][] j j j j j n j n n n n n n n X e Y e d X e Y e d x n e y n e d x n y n d x n y n d x n y n πωωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞ =-∞-∞ ∞=-∞ =-∞-∞=-∞====??∑∑?∑?∑ ∑?∑ 6. []*[]()()j j x n y n X e Y e ωω? Proof:

快速傅里叶变换

第四章快速傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换(FFT). 1965年,Cooley和Tukey提出了计算离散傅里叶变换(DFT)的快速算法,将DFT的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT)算法的研究便不断深入,数字信号处理这门新兴学科也随FFT的出现和发展而迅速发展。根据对序列分解与选取方法的不同而产生了FFT的多种算法,基本算法是基2DIT和基2DIF。FFT在离散傅里叶反变换、线性卷积和线性相关等方面也有重要应用。 快速傅里叶变换(FFT)是计算离散傅里叶变换(DFT)的快速算法。 DFT的定义式为

)(k X =)()(1 k R W n x N N n kn N ∑-= 在所有复指数值kn N W 的值全部已算好的情况 下,要计算一个)(k X 需要N 次复数乘法和N -1次复数加法。算出全部N 点)(k X 共需2 N 次 复数乘法和)1(-N N 次复数加法。即计算量是与2 N 成正比的。 FFT 的基本思想:将大点数的DFT 分解为若干个小点数DFT 的组合,从而减少运算量。 N W 因子具有以下两个特性,可使 DFT 运算 量尽量分解为小点数的DFT 运算: (1) 周期性:k N n N kn N n N k N W W W )()(++== (2) 对称性:k N N k N W W -=+)2/( 利用这两个性质,可以使DFT 运算中有些项合并,以减少乘法次数。例子:求当N =4时,X(2)的值 通过合并,使乘法次数由4次减少到1次,运算量减少。 FFT 的算法形式有很多种,但基本上可以

二维离散傅立叶变换

图像的二维离散傅立叶变换 一、实验目的 掌握图像的二维离散傅立叶变换以及性质 二、实验要求 1) 建立输入图像,在64?64的黑色图像矩阵的中心建立16?16的白色矩形图像点阵, 形成图像文件。对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。 2) 调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中 心化)都显示于屏幕上,比较变换结果。 3) 调整输入图像中白色矩形的尺寸(40?40,4?4),再进行变换,将原始图像及变 换图像(三维、中心化)都显示于屏幕上,比较变换结果。 三、实验仪器设备及软件 HP D538、MATLAB 四、实验原理 设),(y x f 是在空间域上等间隔采样得到的M ×N 的二维离散信号,x 和y 是离散实变量,u 和v 为离散频率变量,则二维离散傅里叶变换对一般地定义为 ∑∑-=-=+-=1010)],(2exp[),(1),(M x N y N yu M xu j y x f MN v u F π,1,0=u …,M-1;y=0,1,…N-1 ∑∑-=-=+=101 0)],( 2e x p [),(),(M x N y N uy M ux j v u F y x f π ,1,0=x …,M-1;y=0,1,…N-1 在图像处理中,有事为了讨论上的方便,取M=N ,这样二维离散傅里叶变换对就定义为,])(2exp[),(1),(1010∑∑-=-=+-=N x N y N yu xu j y x f N v u F π 1,0,=v u …,N-1 ,])(2exp[),(1),(1010∑∑-=-=+=N u N v N vy ux j v u F N y x f π 1,0,=y x ,…,N-1 其中,]/)(2exp[N yv xu j +-π是正变换核,]/)(2exp[N vy ux j +π是反变换核。 将二维离散傅里叶变换的频谱的平方定义为),(y x f 的功率谱,记为

快速傅里叶变换(FFT)的计算机实现信号与系统课程设计Word

华中科技大学 信号与系统课程设论文 快速傅里叶变换(FFT)的计算机实现 学院: 班级: 学号: 姓名: 指导老师: 二〇一三年八月

摘要 用C语言编程完成对输入波形的时域采样的FFT变换以及频域分析,同时用DFT 变换来验证FFT变换结果的正确性。时域信号的输入有两种方式:一种是依次输入时域信号(仅支持多个正弦及余弦信号之和的形式)各谐波分量的幅值和角频率值,另一种是直接输入时域信号的采样值。然后进行DFT变换和FFT变换,两者结果应该是一样的。DFT变换的实现直接脱胎于定义,FFT变换采用的是基2时间抽取算法,用倒位序算法和蝶形算法实现。 关键词:傅里叶变换;DFT; FFT;倒位序

1背景知识 1.1 为什么要进行傅里叶变换 在进行科学研究的过程中,很重要的一点就是为一个系列的问题找到一个通法,从而为实际的应用打下基础。 在信号分析这个方向,如果直接对时域信号进行分析,那么我们将发现,很难找到一种固定的方法来进行分析,这是因为信号对时间t的函数形式存在无数种,我们是无法将这些函数以及这些函数的各种形式的组合都统一起来进行研究的。而进行傅里叶变换之后,我们就能很好达到这个目的——用一种方法来研究所有的信号(这些信号也需要满足一定的条件,但范围是非常广的)。 那么为什么傅里叶变换可以达到这样的目的呢?对于一个时域信号,我们习惯从时间的角度进行理解,也就是以时间为自变量,以信号值为因变量,一个信号是该信号在所有的时间点的值的叠加,每个信号分量在时间域上只占据了一个点,要想得到这个信号的所有信息,我们需要知道这个信号在时间轴上每一点的值,缺一不可。傅里叶变换之后,依然是一个叠加的问题,只不过由时间角度的叠加变成了频率角度的叠加,这时每一个信号分量都覆盖了一个时间域上的整个区间,并且每一个信号分量都是周期性的(三角函数的周期性),这样,只需要知道每个信号分量的幅值、频率、相位就能在时间轴上得到它的所有信息,而所有信号分量的叠加就得到了原来的信号。并且我们并非需要将所有信号分量都叠加起来,这是因为傅里叶变换之后,随着信号分量频率值的上升,信号分量幅值呈一个较快的下降趋势,在精度允许的范围内,我们并不需要去考虑频率值超出某个范围的那部分信号分量,我们所考虑的那个频率区间的信号分量的叠加已经能够很好的还原出原信号,而这个频率区间只占据了频率轴很少的部分,从而简化了后面的分析过程。同时,若原信号是周期性的,那该信号在频率轴上将只占据有限个点,分析难度更是大大减小。 1.2傅里叶级数 1.2.1频率分量与频率成分 对于时域信号来说,频率含量就是信号被分成的正弦波簇所确定的所有频率分量。例如,有 (1-1) 式中,N rad/s 正弦波的相位。 根据式(1-1)其 1-1)定义的信号完全由 频率,振幅和相信的相位所确定。 由式(1-1)定义的信号特征,可以通过对组成该信号的正弦频率,振幅,相位来研究。 1.2.2周期信号的三角傅里叶级数 式:

相关文档
最新文档