基于两自由度模型的汽车制动钳振动稳定性分析

基于两自由度模型的汽车制动钳振动稳定性分析
基于两自由度模型的汽车制动钳振动稳定性分析

详细步骤MATLAB车辆两自由度操纵稳定性模型分析

基于MATLAB的车辆两自由度操纵稳定性模型及分析 汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。 车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。 1二自由度汽车模 为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自由度的汽车模型,忽略转向系统的影响,直接一前轮转角作为输入;忽略悬架的作用,认为汽车车厢只作用于地面的平面运动。

2 运动学分析 确定汽车质心的(绝对)加速度在车辆坐标系的分量 和。Ox 与Oy 为车辆坐标系的纵轴与横轴。质心速度 与t 时刻在Ox 轴上 的分量为u ,在oy 轴上的分量为v 。 2.1 沿Ox 轴速度分量的变化为: ()()cos sin cos cos sin sin u u u v v u u u v v θθ θθθθ+??--+??=?+??---?? 考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便 是汽车质心绝对加速度在车辆坐标系。

沿Ox 轴速度分量的变化为: u x r d d v u v dt dt a θω=-=- 同理,汽车质心绝对加速度沿横轴oy 上的分量为:y r v u a ω=+ 2.2 二自由度动力学方程 二自由度汽车受到的外力沿y 轴方向的合力与绕质心的力矩和为: 12 12cos a cos Y Y Y Z Y Y b F F F M F F δδ=+=-∑∑ 式中,,为地面对前后轮的侧向反作用力;为前轮转角。 考虑到很小,上式可以写上: 11221122 a Y Z b k k F k k M αα αα=+=-∑∑ 根据坐标系的规定,前后侧偏角为: ()12r r r a u v b b u u δξβδβωαωωα=--=+ --==- 由此,可以列出外力,外力矩与汽车参数的关系式为: 1212r r Y r r Z a b u u a b a b u u k k F k k M βδββδβωωωω????=+-+- ? ?????????=+--- ? ????? ∑∑ 所以,二自由度汽车的运动微分方程为: ()1212r r r r r z r a b m v u u u a b a b u u k k k k I βδββδβωωωωωω????+-+-=+ ? ?????????+---= ? ???? ? 上式可以变形为:

七自由度车辆图和数学模型

图一.七自由度车辆动力学模型

纵向力平衡方程: 121234 ()()cos ()sin x y x x y y x x m V r V F F F F F F δδ? -?=+-+++侧向力平衡方程: 121234 ()()sin ()cos y x x x y y y y m V r V F F F F F F δδ? +?=+++++绕Z 轴力矩平衡方程: 1 121221122 4334[()sin ()cos ][()cos ()sin ] 2 ()()2 w z x x y y x x y y w x x y y t I r F F F F a F F F F t F F F F b δδδδ? ?=++++-+-+--+四个车轮的力矩平衡方程: tw w xi bi di I R F T T i w ? ?=-?-+ 上述方程中:δ为前轮转角;Vx ,Vy 分别为纵向、横向车速;β为质心侧偏角;γ为横摆角速度;Fxi 、Fyi 、Fzi 分别为轮胎纵向力、侧向力、垂向力;i=1、2、3、4,为分别对应的车轮;m 为整车质量;ms 为悬挂质量;a 、b 为前后轴到质 心的距离;l=a+b 为前后轴距;tw1为前轴轮距;tw2为后轴轮距;d= 12 2 tw tw +为 平均轮距;Iz 为整车绕Z 轴的转动惯量;h 为质心到地面的距离; 纵向加速度为x x y a V r V ? =-? 侧向加速度为 y y x a V r V ? =+?

各轮胎垂向载荷公式: 123422222222z s x s y z s x s y z s x s y z s x s y b h h b F mg m a m a l l d l b h h b F mg m a m a l l d l a h h a F mg m a m a l l d l a h h a F mg m a m a l l d l =--? =-+? =+-? =++? 各轮胎侧偏角公式: 1 1 2 2 12223242arctan()arctan()arctan()arctan()w w w w t t t t Vy ar Vx r Vy ar Vx r Vy br Vx r Vy br Vx r αδαδαα+=--+=-+-=---=-+

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化: (1)忽略转向系统的影响,直接以前轮转角作为输入; (2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且 l r Z Z F F ; (3)汽车前进速度u 视为不变; (4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围; (5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。 在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。 分析时,令车辆坐标系原点与汽车质心重合。 首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 与 为车辆坐标系的纵轴和横轴。质心速度 于时刻在 轴上的分量为 ,在 轴上的分量为 。由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变 化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿 轴速度分量变化为:

考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量 同理得: 下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成:

下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成: 汽车前后轮侧偏角与其运动参数有关。如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为, ;质心侧偏角为,;为与轴的夹角,其值为:

第三章两自由度系统振动

1α,小车与斜面之间摩擦力 gk P T π 2=, ?? ? ??+= α2sin 2k P h k P A 2 m 。 ()2 2 34mr a r k n +=ω 3.确定图2-3系统的固有频率。

() r R g n -= 32ω 图2-3 第三章 两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a )、车床两顶尖间的工件系统(b )、磨床主轴及砂轮架系统(c )。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在

于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。

[整理]matlab二自由度系统振动.

利用Adams 和Matlab 对二自由度系统振动进行仿真与分析 一、实验思想 Adams 是一种可以对一些典型运动进行高效仿真的软件,本实验是利用Adams 对二自由度系统振动进行仿真及分析,再和理论公式对比,并用另外一种常见的仿真软件Matlab 的仿真结果进行对比,观察两者的差异,分析软件仿真产生差异的原因,加深对二自由度系统振动的理解。 二、二自由度系统振动分析 固有频率取决于系统本身物理性质,而与初始条件无关。对于二 自由度的振动系统是有两种频率的简谐波组成的复合运动,这两个频率都是系统的固有频率。 主振型是当系统按固有频率作自由振动时,称为主振动。系统作 主振动时,任何瞬时各个运动坐标之间具有一定的相对比值,即整个系统具有确定的振动形态,称为主振型。 强迫振动是振动系统在周期性的外力作用下,其所发生的振动称 为强迫振动,这个周期性的外力称为驱动力。 三、二自由度系统自由振动 1.建立二自由度系统振动模型 1)创建底座:先生成一个尺寸合适的长方体基体,再使用add to part 指令创建底座的侧壁。 2)使用new part 指令分别创建两个滑块,创建滑块时应注意滑

块与滑块、滑块与侧壁之间的尺寸适当。 3)弹簧连接:分别用弹簧链接滑块、侧壁的中心点。弹簧生成后,依次选中弹簧,在modify 选项中的stiffness and damping 下拉菜单中将damping coefficient 设置成no damping,即弹簧无阻尼。 添加约束:底座和地面固定,滑块和底座用滑动副连接。 弹簧刚度分别改为1、1、2(newton/mm) 滑块质量分别为1.0 2.0 滑块与机体滑动副的阻尼改为1.0E-007 2.模型展示 3.运动仿真结果 设置x10=12 经过Adams 运算后,滑块1、2 运动状态如图所示:

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

线性二自由度汽车模型的运动方程

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化: (1)忽略转向系统的影响,直接以前轮转角作为输入; (2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且 l r Z Z F F ; (3)汽车前进速度u 视为不变; (4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围; (5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。 在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。 分析时,令车辆坐标系原点与汽车质心重合。 首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 与 为车辆坐标系的纵轴和横轴。质心速度 于时刻在 轴上的分量为 ,在 轴上的分量为 。由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变 化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿 轴速度分量变化为:

考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量 同理得: 下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成:

下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成: 汽车前后轮侧偏角与其运动参数有关。如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为,;质心侧偏角为,;为与轴的夹角,其值为:

汽车五自由度建模

汽车振动大作业

、汽车悬架系统振动模型 汽车是一个复杂的振动系统,在振动分析的建模过程当中,要根据所分析的问题对汽车 进行简化,建立相应的模型。现在考虑汽车车身悬架的五自由度模型,如下图1所示,该模型主要考虑左右车辙的不平度差异和较小的轮胎阻尼而得到的,该模型中主要有车身的垂 直、俯仰两个自由度和前后车轴质量两个垂直自由度,汽车座椅一个垂直自由度,系统共五 个自由度,其中车身质量的垂直、俯仰两个自由度的振动对系统平顺性的影响较大,假设车身是具有垂直和俯仰两个自由度的刚体,其车身的质量和转动惯量分别为:m h和I h,前后车轮质量、悬架参数和轮胎刚度的符合前加入了分别表示前(front)和后(rear)的下标“ f”和“r”,如图1示: 图1五自由度汽车悬架系统 图1中:z1表示前轮转动位移自由度;z2表示车体垂直位移自由度;z3 z1表示后轮转动位移自由度;z4俯仰转动位移自由度;z5表示驾驶员座椅垂向自由度;m1表示驾驶员座椅质量;m2表示车体质量;m( f) m3表示前轮质量;m(r) m4表示后轮质量;k1表 示座椅弹簧刚度;k2,k3,k4,k5悬架弹簧刚度;c1表示座椅弹簧阻尼;c2,c3, c4, c5表示悬架弹簧阻尼;a表示车身质心至前轴距离;b车身质心至后轴距离,F(f), F(r)分别为前 后轮随机激励力。

、运动微分方程 d ( T) ( T) dt z z 可得到多自由度的运动微分方程: V —F Qi 0 (i 1,2, ,5) 乙 Mz(t) Cz(t) Kz(t) F(t) 式中: m i 0 0 0 0 0 m 2 0 0 0 M 0 0 m 3 0 0 0 0 0 0 0 0 0 0 m 5 C 1 C 1 dG Ci C 1 C 2 C 3 dCi ac 2 bC 3 C 2 C 3 C dC 1 dCi ac 2 bC 3 d 2G 2 .2 a C 2 b C 3 aC 2 bC 3 0 C 2 ac 2 C 3 C 4 0 C 3 bC 3 C 3 C T 1m 1z 12 1 2 m 2z 2 1 2 m 4z 4 1 2 m )5Z 5 1 5 2 -m i z (m 3 I) 2 2 2 2 2 2 i 1 由图1可得到下述理论值: (1)系统的动能为: (2)系统的势能为: (1-2) 1 2 1 2 2kl(z2 Z1 dZ3)尹⑵ Z2 az3) fk 3(Z 5 Z 2 bz 3)2 1 2 1 2 gk 4( Z 4 F(f))2 2k s (Z 5 F(r))2 (1-3) C G (Z 2 Z 1 dz 3)(GZ 2 GN dGZ 3) C 2(Z 4 Z 2 bZ 3)(C 2 Z 4 C 2Z 2 dC 2 Z 3) C s (Z 5 Z 2 bZ 3)(C 3Z 5 C 3Z 2 bQZ 3) C 4(Z 5 F (f))C 4 乙 C 5(Z 5 F (r))C 5Z 5 ⑶ 系统阻尼耗散的能量: 由拉格朗日运动方程: (1-4)

七自由度整车模型及参数

七自由度整车模型及参数 七自由度线性整车模型如图1.1所示。图中各符号意义如下: s M 、θI 、φI ——悬挂质量、悬挂质量的侧倾转动惯量和俯仰转动惯量; 1t m 、2t m 、3t m 、4t m ——非悬挂质量(分别为前左、前右、后左、后右,下同); 1s k 、2s k 、3s k 、4s k ——悬架刚度系数; 1t k 、2t k 、3t k 、4t k ——轮胎刚度; 1s c 、2s c 、3s c 、4s c ——阻尼器阻尼系数; 1u 、2u 、3u 、4u ——作用于悬架的控制力; 1r x 、2r x 、3r x 、4r x ——地面扰动输入; 1t x 、2t x 、3t x 、4t x ——非簧载质量位移; 1s x 、2s x 、3s x 、4s x ——悬挂质量与悬架连接处的位移; c x 、θ、φ——悬挂质量的垂直位移、侧倾角、俯仰角; xf l 、xr l ——悬挂质量质心至前后车轴的距离; ylf l 、ylr l ——前后悬挂质量质心至左轮的距离。 图1.1 七自由度整车模型 令地面扰动输入向量T r r r r x x x x w ][4321 =、车轮位置向量T t t t t t x x x x x ][4321 =、悬挂质量运动向量T c C x X ][φθ=、悬架控制力向量T u u u u u ][4321 =、悬挂质量与悬架的四个连接点处的位置向量T s s s s t x x x x x ][4321=、悬架动挠度向量T st st st st st x x x x x ][4321=(1st x 、2st x 、3st x 、4st x 分别表示前左、前右、后左、后右悬架动挠度),易知,t s st x x x -=。 根据悬架的特点和几何关系可以得出: C s HX x = (1)

汽车2自由度和7自由度动力学建模仿真#精选.

1 路面模型的建立 在分析主动悬架控制过程时,路面输入是一个不可忽略的重要因素,本文利用白噪声信号为路面输入激励, )(2)(2)(0 00t w U G t x f t x g g ππ+-=? 其中,0f 为下截止频率,Hz ;G 0为路面不平度系数,m 3/cycle ;U 0为前进车速,m/sec ;w 为均值为零的随机输入单位白噪声。上式表明,路面位移可以表示为一随机滤波白噪声信号。这种表示方式来源于试验所测得的路面不平度功率谱密度(PSD )曲线的形状。我们可以将路面输入以状态方程的形式加到模型中: ???? ?=+=? X C Y W F X A X road road road road road 1,2,2,000==-==road road road g road C U G B f A x X ππ;D=0;考虑路面为普通路面,路面不平系数G 0=5e-6m 3/cycle ;车速U 0=20m/s ;建模中,路面随机白噪声可以用随机数产生(Random Number )或者有限带宽白噪声(Band-Limited White Noise )来生成。本文运用带宽白噪声生成,运用MATLAB/simulink 建立仿真模型如下: 图1 路面模型 2 汽车2自由度系统建模 图2 汽车2自由度系统模型

根据图2所示,汽车2自由度系统模型,首先建立运动微分方程: ()()()()()b b s b w s b w w w t w g s b w s b w m x K x x C x x m x K x x K x x C x x =----???=--+-+-?? 整理得: ?????? ?+--+-+-+-=-+-+-+-=g w t b w t s b w s b w s b w s w b b s b b s w b s b s b x m K x m K K x m K x m C x m C x x m K x m K x m C xb m C x 式中:s C 为悬架阻尼,s K 为悬架刚度,t K 为轮胎刚度,b m 为车身质量,w m 为 车轮质量,b b b x x x 、、分别为车身位移、速度、加速度,w w w x x x 、、分别为车轮位移、速度、加速度,g x 为路面输入。 选取状态变量和输入向量为: []w b w b x x x x X = g x U = 则可将系统运动方程及路面激励写成状态空间矩阵形式,即: BU AX X += 其中,A 为状态矩阵,B 为输入矩阵,其值如下: ?????? ?? ? ?????????---- -=00 1 0001w s s w s w s w s b s b s b s b s m K K m K m C m C m K m K m C m C A ???? ??????????=000w t m K B 将车身加速度、轮胎动变形、悬架动行程作为性能指标,即: T w b g w b x x x x x Y ][--= 将性能指标项写为状态变量以及输入信号的线性组合形式,即: DU CX Y += 其中:

将车辆的二自由度模型用能控标准型状态方程来表示

将车辆的二自由度模型用能控标准型状态方程来表示 系统状态方程的表达式不是唯一的,可根据需要建立不同形式的状态方程,如能控标准型、能观标 准型、约当型等。 状态方程是一阶微分方程或一阶差分方程,便于采用数值解法。系 统内部的物理量都可用状态矢量的分量来表示。 dX(t)/dt=AX(t)+BU(t) Y(t)=CX(t)+DU(t) X(t0)=X0 模型参数: 简记为(A,B,C,D) 系统系数矩阵A ?(nxn 维) 系统输入矩阵B ?(nxm 维) 系统输出矩阵C ?(rxn 维) 直接传输矩阵D ?(rxm 维 下面为横向动力学模型1/2车辆模型, 为了便于建立运动方程,做以下简化: (1)忽略转向系统的影响,直接以前轮转角作为输入; (2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且 l r Z Z F F ; (3)汽车前进速度u 视为不变; (4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围; (5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。 在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。 分析时,令车辆坐标系原点与汽车质心重合。 首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。

与为车辆坐标系的纵轴和横轴。质心速度于时刻在轴上的分量为,在轴上的分量为 化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿轴速度分量变化为: 考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量 下面计算二自由度汽车的动力学方程

0727第三章-两自由度系统振动(讲)

1α,小车与斜面之间摩擦力 gk P π2=,??? ??+=α2sin 2k P h k P A 2。 ()22 34mr a r k n +=ω 3()r R g n -=32ω 图2-3 第三章 两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题

中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这

第5章--两自由度系统的振动

应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以由质心C 偏离其平衡位置的铅直位移z 及平板的转角 来确定。这样,车辆在铅直面内的振动问题就被简化为一个两自由度的系统。 双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩擦力及其它阻尼,以它们各自的静平衡位置为坐标x 1、x 2的原点,物体离开其平衡位置的位移用x 1、 x 2表示。两物体在水平方向的受力图如图5-2(b)所 示,由牛顿第二定律得 ? ? ?=+-=-++00)(2212222212111x k x k x m x k x k k x m (5-1) 这就是两自由度系统的自由振动微分方程。习惯上写成下列形式 ???=+-=-+00212211dx cx x bx ax x (5-2) 显然此时 2 2 1 2 1 2 1,,m k d c m k b m k k a = == += 但对不同的系统, 式(5-2)中各系数的意义并不相同。 5.1.2 固有频率和主振型 根据微分方程的理论,设方程(5-2)的解,即两自由度无阻尼自由振动系统的解为 ?? ? ??+=+=)sin()sin(2211ααpt A x pt A x (5-3) 图5-1车辆模型 图5-2两自由度的弹簧质量系统

基于Simulink的车辆两自由度操纵稳定性模型

基于Simulink的车辆两自由度操纵稳定性模型汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。 车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。 1.二自由度汽车模型 为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自 由度的汽车模型,忽略转向系统的 影响,直接一前轮转角作为输入; 忽略悬架的作用,认为汽车车厢只 作用于地面的平面运动。

2.运动学分析 分析时,令车辆坐标系原点与汽车质心重合。首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 确定汽车质心的(绝对)加速度在车辆坐标系的分量B和B。Ox 与Oy 为车辆坐标系的纵轴与横轴。质心速度1与t 时刻在Ox 轴上的分量为u ,在Oy 轴上的分量为v 。 2.1 沿Ox 轴速度分量的变化为: 由于汽车转向行驶时伴有平移和转动,在t+△t 时刻,车辆坐标系中质心速度的大小与方向均发生变化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿x 轴速度分量变化为: ()cos ()sin cos cos sin sin u u u v v u u u v v θθ θθθθ+??--+??=?+??---??

第4章-多自由度系统的振动题解

习 题 4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。 解:由题3-10的结果 22121111)(l g m l g m m k k +++ =,2 221l g m k -=,2212l g m k - =,2 2222l g m k k += 代入m m m ==21,021==k k ,l l l ==21 可求出刚度矩阵K 和质量矩阵M ??? ???=m m M 00;?? ?? ??????- - =l mg l mg l mg l mg K 3 由频率方程02=-M p K ,得 0322 =????? ??? ? ?-- - -=mp l mg l mg l mg mp l mg B 0242 2 2224 2 =+-∴l g m p l g m p m l g p ) 22(1-=∴ ,l g p )22(2+= 为求系统主振型,先求出adjB 的第一列 ???? ? ? ? ???-=l mg mp l mg adjB 2 分别将频率值21p p 和代入,得系统的主振型矩阵为 ??????-=112) 1(A ?? ????+=112)2(A 题4-1图

4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。 解:设杆的转角θ和物块位移x 为广义坐标。利用刚度影响系数法求刚度矩阵k 。 设0,1==x θ,画出受力图,并施加物体力偶与力 2111,k k ,由平衡条件得到, 222111a k b k k +=, a k k 221-= 设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到, 12k a k 2-=, a k k 222= 得作用力方程为 ?? ? ???=????????????--++????????????? ?000031222222122 1x a k a k a k a k b k x m a m θθ&& && 由频率方程02=-M K p ,得 031 2 22222 212221=----+p m a k a k a k p a m a k b k 4-3 题4-3图所示的系统中,两根长度为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和k 1=k 2=k 时系统的固有频率。 解:如图取21,θθ为广义坐标,分别画受力图。由动量矩定理得到, l l k l l k I 4 34343432 11111θθθ+-=&& 2 2434343432 2211122l l k l l k l l k I θθθθ--=&& 整理得到, 016 91692 2112111=-+θθθl k l k I && 题4-3图 题4-2图

两自由度系统的振动

5-1 如图所示的系统,若运动的初始条件:,0,mm 5,0201010====x x x t 试求系统对初始条件的响应。 解: 112211222112102,,22,0,202020cos(),cos()cos()005,k k k k k x x k k x k k x mx kx kx mx kx kx x x A t t kA t t x mm ω?ωω?ω?ω-?? =??-?? -??????????+=??????????-??????????+-=+-===++++== ==2带入可得运动微分方程:m,00,m 令代入原方程可得 -mA 有 时,1020120, cos 5,sin 0,5,0 ().x x A A A mm x x mm ?ω??===-=====有可得 ω有两个值 12p p = = 15522x =+ 255c o c 22x =- 5-2 图示为一带有附于质量m 1和m 2上的约束弹簧的双摆,采用质量的微小水平平移 x 1和x 2为坐标,设m m m ==21,l l l ==21,021==k k ,试求系统的固有频率和主振型。

解:设1m 沿1x 方向移动1个单位,保持 2m 不动,对2m ,1m 进行受力分析,可得: 212 2()0, m A k l m g =--=∑2212m g k l =- 11 12111212122 111211112()()()0 m B k k k l m m g m m m m m g k g k k g k l l l =-+-+=++= +-=++∑ 同理使2m 沿2x 方向移动一个单位,保持1m 不变,对2m 受力分析可得: 22 222()()*0m C k k l m g =--=∑, 22222m g k k l =+ ; 刚度矩阵为 11211222,,k k k k ??=????k ,质量距阵12,00,m m ??=????m , 带入可得运动的微分方程为:mx kx F += 12,00,m m ?? ???? 12x x ??????+11211222,,k k k k ?? ????12x x ???? ??=F ; 综上解得:????? ????=???? ??++-=-???? ??++++)()(222221222212221 2212111t F x l g m k x l g m x m t F x l g m x g l m g l m m k x m 利用刚度影响系数法求刚度矩阵k 。 设0,121==x x ,分别画出1m 与2m 的受力图,并施加二物块力2111,k k ,列平衡方程, 对1m : ∑=0X ,0sin sin 1221111 =---k T T k θθ ∑=0Y ,0cos cos 1 2 2 1 1 =--g m T T θθ 对2 m : ∑ =0X , 0sin 2 2 21 =+θT k ∑ =0Y , 0cos 2 22=-g m T θ

汽车七自由度仿真

汽车平顺性仿真模拟 3080401174 姜波 摘要:利用振动理论,平顺性研究方法及计算机技术建立了汽车三维7自由度车辆振动模型,应用Matlab 开发了相应的车辆平顺性模拟程序。通过实验和单因素分析法对所建立的车辆振动模型的正确性及模拟计算机程序的有效性进行了验证。结果表明,计算机对分析和预测车辆平顺性是切实可行的。 关键词:车辆工程;平顺性;模拟计算。 引言 随着汽车工业的发展,如何改善汽车行驶平顺性,已经成为设计者十分关注的问题,汽车作为一个复杂的多自由度振动系统,定量分析和评价平顺性的关键在于建立理想的力学模型。因此,如何更好地建立汽车行驶平顺性模型,已经成为国内外学者研究汽车平顺性的关键问题。随着计算机技术和仿真技术的发展,建立多自由度的仿真模型已经成为可能,也为研究汽车行驶平顺性提供了有效途径。 在国内外汽车市场竞争日益激烈的今天,如何在汽车设计阶段就能对 汽车平顺性进行准确预测和评估,缩短设计周期,降低生产成本,已经成为在市场竞争中取胜的关键。为此,对汽车行驶平顺性进行了仿真同时对结果进行了分析。 主要研究内容 本文通过建立整震动的空间7自由度模型,对悬架进行平顺性仿真工作,具体可以分为以下几个部分: 1. 建立起空间七自由度的汽车振动数学模型。 2. 利用Matlab/Simulink 对悬架进行平顺性仿真。 3. 对论文的工作进行总结。 整车模型的建立及参数 七自由度线性整车模型如图1.1所示。图中各符号意义如下: s M 、θI 、φI ——悬挂质量、悬挂质量的侧倾转动惯量和俯仰转动惯量; 1t m 、2t m 、3t m 、4t m ——非悬挂质量(分别为前左、前右、后左、后右,下同);

两自由度系统的振动

第5章 两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以由质心C 偏离其平衡位置的铅直位移z 及平板的转角θ 来确定。这样,车辆在铅直面内的振动问题就被简化为一个两自由度的系统。 5.1 双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩擦力及其它阻尼,以它们各自的静平衡位置为坐标x 1、x 2的原点,物体离开其平衡位置的位移用x 1、x 2表示。两物体在水平方向的受力图如图5-2(b)所示,由牛顿第二定律得 ? ? ?=+-=-++00)(2212222212111x k x k x m x k x k k x m &&&& (5-1) 这就是两自由度系统的自由振动微分方程。习惯上写成下列形式 ??? =+-=-+00212211dx cx x bx ax x &&&& (5-2) 显然此时 2 2 1 2 1 2 1,,m k d c m k b m k k a = == += 但对不同的系统, 式(5-2)中各系数的意义并不相同。 图5-2两自由度的弹簧质量系统

5.1.2 固有频率和主振型 根据微分方程的理论,设方程(5-2)的解,即两自由度无阻尼自由振动系统的解为 ?? ? ??+=+=)sin()sin(2211ααpt A x pt A x (5-3) 或写成以下的矩阵形式 )sin(2121α+?? ? ???????=??????????pt A A x x (5-4) 将式(5-4)代入式(5-2),可得代数齐次方程组 ? ?? ???=????????????----002122 A A p d c b p a (5-5) 保证式(5-5)具有非零解的充分必要条件是式(5-5)的系数行列式等于零,即 0)(2 2 2 =----= ?p d c b p a p 展开后为 0)(24=-++-bc ad p d a p (5-6) 式(5-6)唯一确定了频率p 满足的条件,通常称为频率分程或特征方程。它是2p 的二次代数方程,它的两个特征根为 )(222 22 ,1bc ad d a d a p --??? ??++=μ bc d a d a +?? ? ??-+=2 22μ (5-7) 由于式(5-7)确定的2p 的两个正实根仅取决于系统本身的物理性质,与运动的初始条件无关,因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率p 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的振幅比

相关文档
最新文档