SBK、SG(ZSG)系列三相干式(整流)变压器

SBK、SG(ZSG)系列三相干式(整流)变压器
SBK、SG(ZSG)系列三相干式(整流)变压器

移相全桥参数计算

1、 2、 介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是| |因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC2895移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏 情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表1设计规范 描述最小值典型值最大值输入电压370V390V410V 输出电压11.4V12V12.6V 允许输出电压瞬变]600mV 加载步骤90% 输出电压600W 满负荷效率93% 电感器切换频率200kHz 3、功能示意图 4、功率预算 为满足效率的目标,一组功率预算需要设定。 ^BUOGET =^OUT X 1 =45,2W V H J 5、原边变压器计算T1 变压器匝比(al): VREF GNU UPD OUTA CQMP QUIT HI WTC UL L AB oyrr&1* DC LCD DUTE瞽 QELEF OUTF TT TMiNl S-VNC M mr GS15 RSUV WC1 □ cm ADELEF口 -jWTF I s srrec

估计场效应晶体管电压降(VRDSON ): V RDSON ~ 0*3 V 基于最小指定的输入电压时 70%的占空比选择变压器。 基于平均输入电压计算典型工作周期 (DTYP ) ("OUT 彳力整座N 0 66 (V|N - 2 兀 ) 输岀电感纹波电流设置为输岀电流的 20% 需要注意在选择变压器磁化电感的正确数值 (LMAG )。下列方程计算主变 压器 器运行在电流型控制。 如果LMA 太小,磁化电流会导致变换器运行在电压模式控制代替 peak-current 模式 这是因为磁化电流太大,它将作为PW 坡道淹没RS!的电流传感信号。 ^2.76mH 图2显示了 T1原边电流(IPRIMARY )和同步整流器Q 罰QF 电流对同步整流栅驱动电流的反应。注意 l (QE ) l (QF ) 也是T1的次级绕组电流。变量 D 是转换器占空比。 a1 = N P N s 3[二(¥N 和忡)x 口叱 =21 M OUT P OUT X °隈 V OUT = 10A 仃1)的最低磁化电感,确保变频

变压器参数计算

变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф= B * S ⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф/ ⊿t * N ⑷

EL = ⊿i / ⊿t * L ⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф/ ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф= B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨)

高压干式多绕组移相变频整流变压器的设计

高压干式多绕组移相变频整流变压器的设计 一、概述 高压变频装置是计算机技术、功率器件及电机控制技术的有机组合,其中含有多项高新技术,是当前电机调速技术中发展最快的产品。 高压变频调速技术是采用隔离变压器将多个低压模块叠加(串联)而形成高压输出,主要是由多个低压功率单元和控制单元组成,每个功率单元由多绕组隔离变压器的一个三相绕组供电,这种多绕组的隔离变压器其二次线圈互相存有一个相位差,实现了输入多重化,由此可消除各单元产生的谐波对电网的污染,这个隔离变压器称为多绕组移相整流变压器。 二、多绕组移相整流变压器采用H级非包封干式变压器技术 H级非包封干式变压器是当前绝缘等级最高的干式变压器,其主体绝缘采用Nomex绝缘系统,Nomex纸是一种以芳香酰胺纤维为基础的合成绝缘材料,当Nomex纸用于变压器的绝缘系统时,在高温下,它的电气和机械性能都十分稳定,而且阻燃性能很好,Nomex 纸及其干变的优越性能如下: 1.突出的耐热性能:耐热温度高是Nomex纸固有的、它属于C级绝缘材料,在200℃以上时,电气性能和机械性能均十分稳定;在250℃温度下,不会熔融、流动和助燃。用其制成的干变可在350℃温度下,承受短期运行,过载水平和热冲击承受力非常突出。 2.牢固的机械性能:Nomex纸非常坚固,而且Nomex纸挠性很好,耐撕裂、抗磨擦、抗割穿,当Nomex纸用于绝缘系统的不同部位时,它都能够保持很好的机械性能,用其制成的干变,在短路或其它机械应力的作用下,将会保持绝缘结构的稳定和牢固。 3.优良的防潮性能:Nomex纸不吸水,具有很好的防潮性能,即使在相对湿度为95%的情况下,其电气强度也可保持较高的水平。 4.阻燃性能突出:Nomex纸在空气中不会熔化或助燃,其阻燃性能特别突出。 5.优越的电气性能:Nomex纸的耐压强度高,它的工频击穿场强为20~40kv/mm,其介电常数接近于空气,Nomex纸沿面放电起始电压较高,当它用于干式变压器时,可减少主绝缘尺寸,减少整个铁心的重量,Nomex纸的局放起始电压也较高,用其制造的干变能够做到较低的局部放电水平。 6.Nomex纸的化学特性:Nomex纸具有较强的抗酸碱侵蚀水平,能与各种油、树脂、浸渍漆、氟碳化合物、冷却剂相溶,用其制成的干变可用于较恶劣环境,在寿命期终结后,又能容易地分解处理,不造成环境危害。

德州仪器-具有同步整流功能的移相全桥控制器UCC28950使用说明

- + -V S UCC28950 https://www.360docs.net/doc/1314516250.html, SLUSA16A–MARCH2010–REVISED JULY2010 Green Phase-Shifted Full-Bridge Controller With Synchronous Rectification Check for Samples:UCC28950 FEATURES APPLICATIONS ?Phase-Shifted Full-Bridge Converters ?Enhanced Wide Range Resonant Zero Voltage Switching(ZVS)Capability?Server,Telecom Power Supplies ?Industrial Power Systems ?Direct Synchronous Rectifier(SR)Control ?High-Density Power Architectures ?Light-Load Efficiency Management Including ?Solar Inverters,and Electric Vehicles –Burst Mode Operation –Discontinuous Conduction Mode(DCM),DESCRIPTION Dynamic SR On/Off Control with Programmable Threshold The UCC28950enhanced phase-shifted controller builds upon Texas Instrument’s industry standard –Programmable Adaptive Delay UCCx895phase-shifted controller family with ?Average or Peak Current Mode Control with enhancements that offer best in class efficiency in Programmable Slope Compensation and today’s high performance power systems.The Voltage Mode Control UCC28950implements advanced control of the full-bridge along with active control of the ?Closed Loop Soft Start and Enable Function synchronous rectifier output stage.?Programmable Switching Frequency up to1 MHz with Bi-Directional Synchronization The primary-side signals allow programmable delays to ensure ZVS operation over wide-load current and ?(+/-3%)Cycle-by-Cycle Current Limit input voltage range,while the load current naturally Protection with Hiccup Mode Support tunes the secondary-side synchronous rectifiers ?150-μA Start-Up Current switching delays,maximizing overall system ?V DD Under Voltage Lockout efficiency. ?Wide Temperature Range-40°C to125°C UCC28950Typical Application Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date.Copyright?2010,Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.

10kv干式变压器技术协议(改)

干式变压器技术协议书 甲方 乙方: 甲乙双方就乙方供应给甲方的以下变压器的有关事宜达成如下技术协议: 一、设备内容及型号、数量 1.干式变压器:SCB10-2O00-10/0.4KV 台 2.干式变压器:SCB10-1O00-10/0.4KV 台 3.干式变压器:SCB10-1250-10/0.4KV 台 4. 干式整流变压器:ZSCB10-4000-10/2*0.69 台 5. 干式整流变压器:ZSCB10-2000-10/0.66 台 二、使用环境 本地气温范围 -5℃~+50℃ 本地相对气温范围 10~100% 海拔高度:≤500m 三、执行标准: IEC 《电力变压器》 IEC726 《干式变压器》 GB/6450-1986 《干式变压器》 GB/T10228-1997 《干式变压器的技术参数和要求》 四、技术要求: 干式变压器: 1. 初级电压:10KV 2. 次级电压:0.4KV 3. 联结组别:Dyn11 4. 阻抗电压:≤6% 5. 高压侧调压范围为:±2*2.5% 6. 保护装置:温控。 7. 冷却方式:风冷(AF)。 8. 保护外壳:铝合金。 9. 绝缘耐热等级:F 10.绝缘水平:LI75AC35/LI0AC5 。

11.进出线方式:高压电缆下进线 低压标准电力变压器横排侧出,整流变压器电缆出线 12.安装方式:标准方式 13.其它按国标制作。 14.有关技术参数(见下表) 序号名称单位保证值 1 型号:SCB10 2 额定容量KVA 2000/1250/1000 3 额定电压值 高压KV 10 低压KV 0.4 高压分接范围±2*2.5% 4 频率50 5 连接组别Dyn11 6 阻抗电压6% 7 绝缘等级F级1)工频耐压KV 20 2)雷电冲击(全波)KV 3)雷电冲击(截波)KV 8 效率和损耗 1)效率 2)负载损耗W 13200/10260/8700 3)空载损耗W 3060/2030/1750 4)空载电流% 0.8 9 噪声水平≤dB 50 10 设备运行最高温度℃105 11 变压器的使用寿命年30 序号名称单位保证值 1 型号:ZSCB10 2 额定容量KVA 4000 3 额定电压值 高压KV 10 低压KV 2*0.69 高压分接范围±2*2.5% 4 频率50 5 连接组别Dd0.yn11

电解铝用大型整流变压器额定参数计算示例

有载调压整流变压器额定参数计算示例 项目示例:包头铝业ZHSFPTB-113200/220自耦有载调压整流变 包头铝业股份有限责任公司三期电解铝清洁生产、扩大合金产能、节能技改项目,工程建设厂址为包头铝业股份有限责任公司电解三公司。该工程利用原电解三公司空闲场地及现有的共用辅助设施,采用一次规划、分步实施的方案,先行建设4 万吨电解铝,两年内,逐步改造为 13.8 万吨,项目投资 81420 万元。企业自筹资金。 电解铝生产工艺选用240KA中间加料预焙阳极电解槽技术。新建两栋电解厂房内安装 218台240KA中间下料预焙阳极电解槽,并采用电解烟气密闭机器集气氧化铝吸附干法净化技术。 此项目供电系统按年产140Kt电解铝用电负荷考虑,全厂最大负荷为 203430KW。确定220KV系统主接线采用双母线系统,两回路220KV电源进线,整流所选择四组调压-整流变压器及整流器。辅助电力变压器二台。 技术要求: 1.网侧电压U1=220kV(+7.5%,-5%);当电网电压为220kV-5%时,保证机组直流额定输出电压仍保 持1050VDC,电网电压220kV+7.5%时不过激磁,且能长期运行。 3. 单机最高直流空载电压Udi0=1200 V;单机直流额定电压 UdN=1050V; 4. 单机直流额定电流 IdN=2×45kA; 5.整流变最大分接总额定阻抗:14~16%; 6.单机脉波数:P=12;总脉波为:12X4=48;主变采用两个独立铁芯。主变一次侧设移相线圈,移相 角:±3.75°、±11.25°共4台; 7.调变补偿绕组电压9.5kV,容量20000kVA; 8.有载粗细调压:粗调5级,细调16级,调压级数共79级;调压范围:5%~105%; 9.额定总损耗:不大于950kW; 10.冷却方式:OFAF;饱和电抗器调压深度70V; 11.调变的联结组别为YN a0 d11,主变的联结组别为ZN y0-y6/d11-d5; 12. 调变、主变(含饱和电抗器)采用分箱合体结构;调变与主变之间采用油-油套管联结; 13. 绕组的绝缘水平:网侧LI950AC395;阀侧AC6;中性点LI325AC140; 额定参数计算: 一、单机最高直流空载电压Udi0、阀侧交流线电压U2; 【验证性计算,在很多项目中只给出Udn,Udi0需自行计算;】 这个数值包括五个部分。即 1)额定直流电压U dN; 2)各种电抗压降; 3)各种损耗对应的电阻压降; 4)电网电压波动百分数;

整流变压器原理

整流变压器工作原理及特点介绍 整流变压器的原理 整流变压器和普通变压器的原理相同。变压器是根据电磁感应原理制成的一种变换交流电压的设备。变压器一般有初线和次级两个互相独立绕组,这两个绕组共用一个铁芯.变压器初级绕组接通交流电源,在绕组内流过交变电流产生磁势,于是在闭合铁芯中就有交变磁通。初、次级绕组切割磁力线,在次级就能感应出相同频率的交流电。变压器的初,次级绕组的匝数比等于电压比。如一个变压器的初级绕组是440匝,次级是220匝。初级输入电压为220V,在变压器的次就能得到110V的输出电压。有的变压器可以有多个次级绕组和抽头,这样就可以获得多个输出电压了。 整流变压器的特点 与整流器组成整流设备以便从交流电源取得直流电能的变压器。整流设备是现代工业企业最常用的直流电源,广泛用于直流输电、电力牵引、轧钢、电镀、电解等领域。 整流变压器的原边接交流电力系统,称网侧;副边接整流器,称阀侧。整流变压器的结构原理和普通变压器相同,但因其负载整流器与一般负载不同而有以下特点: (1)整流器各臂在一个周期内轮流导通,导通时间只占一个周期一部分,所以,流经整流臂的电流波形不是正弦波,而是接近于断续的矩形波;原、副绕组中的电流波形也均为非正弦波。图中所示为三相桥式Y/Y接法时的电流波形。用晶闸管整流时,滞后角越大,电流起伏的陡度也越大,电流中谐波成分也越多,这将使涡流损耗增大。由于副绕组的导电时间只占一个周期的一部分,故整流变压器利用率降低。与普通变压器相比,在相同条件下,整流变压器的体积和重量都较大。 1

(2)普通变压器原、副边功率相等(忽略损耗),变压器的容量就是原绕组(或副绕组)的容量。但对于整流变压器,其原、副绕组的功率有可能相等,也可能不等(当原、副边电流波形不同时,例如半波整流),故整流变压器的容量是原、副边视在功率的平均值,称为等值容量,即式中S1为原边视在功率,S2为副边视在功率。 (3)与普通变压器相比,整流变压器的耐受短路电动力的能力必须严格符合要求。因此,如何使产品具有短路动稳定性,是设计、制造中的重要课题。 电化学工业----这是应用整流变最多的行业,电解有色金属化合物以制取铝、镁、铜及其它金属;电解食盐以制取氯碱;电解水以制取氢和氧。 牵引用直流电源----用于矿山或城市电力机车的直流电网。由于阀侧接架空线,短路故障较多,直流负载变化辐度大,电机车经常起动,造成不同程度的短时过载。为此这类变压器的温升限值和电流密度均取得较低。阻抗比相应的电力变压器大30%左右。 传动用直流电源----主要用来为电力传动中的直流电机供电,如轧钢机的电枢和励磁。 直流输电用----这类整流变压器的电压一般在110kV以上,容量在数万千伏安。需特别注意对地绝缘的交、直流叠加问题。 此外还有电镀用或电加工用直流电源,励磁用直流电源,充电用及静电除尘用直流电源等。 整流变压器的使用原因 应用整流变最多的化学行业中,大功率整流装置也是二次电压低,电流很大,因此很大,因此它们在很多方面与电炉变是类似的,即前所述的结构特征点,整流变压器也同样具备。整流变压器最大的特点是二次电流不是正弦交流了,由于后续整流元件的单向导通特征,各 2

UCC28950移相全桥设计指南设计

UCC28950移相全桥设计指南 一,拓扑结构及工作原理 (1) 主电路拓扑 本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。电路拓扑如图3.6所示。 图3.6 全桥ZVZCS电路拓扑 当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。当关断1S时,电源对1C C通过变压器初级绕组放电。由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于充电,2 Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2C的放电,为2S的零电压开通提供条件。当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变, S为零电流关断,3S为零电流开通。 所以4 (2) 主电路工作过程分析[7] 半个周期内将全桥变换器的工作状态分为8种模式。 ①模式1 图1模式1主电路简化图及等效电路图 ②模式2 图2模式2简化电路图 ③模式3

图3模式3简化电路图 ④模式4 图4模式4主电路简化图及等效电路图⑤模式5 图5模式5 主电路简化图及等效电路图⑥模式6 图6模式6主电路简化图及等效电路图⑦模式7

图7模式7主电路简化电路图 ⑧模式8 图8模式8主电路简化电路图 二,关键问题 1:滞后臂较难实现ZVS 原因:滞后臂谐振的时候,次级绕组短路被钳位,所以副边电感无法反射到原边参加谐振,导致谐振的能量只能由谐振电感提供,如果能量不够,就会出现无法将滞后臂管子并联的谐振电容电压谐振到0V. 解决方法: ①、增大励磁电流。但会增大器件与变压器损耗。 ②、增大谐振电感。但会造成副边占空比丢失更严重。 ③、增加辅助谐振网络。但会增加成本与体积。 2,副边占空比的丢失 原因:移相全桥的原边电流存在着一个剧烈的换流过程,此时原边电流不足以提供副边的负载电流,因此副边电感就会导通另一个二极管续流,即副边处于近似短路状态; Dloss与谐振电感量大小以及负载RL大小成正比,与输入电压大小成反比。 解决方法: ①、减少原副边的匝比。但会造成次级整流管的耐压增大的后果。

整流变压器工作原理图整流变压器

整流变压器工作原理图整流变压器 整流变压器安装使用说明书 1.产品名称和型号 1.1 产品名称:整流变压器 1.2 产品型号: 整流变压器的产品型号由“系列代号”、“规格代号”、“特殊使用环境代号”(如有)组成,其间以短横线隔开。 1.2.1 “系列代号”按表1所列代表符号组成。 1.2.2 整流变压器“规格代号”组成如下: 整流变压器型式容量(KV A )/网侧电压等级(KV ) 1.2.3 “特殊使用环境代号”由表2所列符号组成。 1.2.4 产品型号列举:

电解用油浸整流变压器,湿热带型,网侧三相,内附平衡电抗器,铜线圈,网侧电压35KV ,有载调压,型式容量为1000 K V A ,型号为:ZHZK-1000/35-TH。 2.用途和使用范围: 2.1 用途: 整流变压器是将交流电网的电压交换成整流装置所需要的电压,并通过相数和相位角的变换,改善交流侧及直流侧的运行特殊性的一种专用变压器。 2.2 使用范围: 2.2.1 该产品使用于铝镁电解、食盐电解、水电解以及其他金属电解等负载场合。 2.2.2 整流变压器的使用条件多为户内式,也可腹胀户外式。(详见铭牌)变压器室的建筑就能满足产品的轨距,外形尺寸及吊高,并备有起吊变压器总重及器身的装置,其正常使用条件应符合下列规定:

A 、海拔高度; 整流变压器安装的海拔高度不能超过1000米。 B 、冷却介质温度: 空气冷却时:周围气温自然变化的最大值不超过+40℃,最低气温不低于—30℃,日平均最高气温不超过+30℃,年平均气温不超过 +20℃。 注:干式变压器允许最低气温为—40℃。 水冷却时:冷却水温自然变化的最在值不超过+30℃;日平均最高水温不超过+25℃。 C 、空气最大相对湿度 当空气温度为+25℃,空气最大相对湿度不超过90%。 D 、安装场所无严重影响变压器绝缘的气体、蒸气、化学性沉积、 灰尘、尘垢及其爆炸性气体和浸蚀性介质。

《整流变压器简介》word版

整流变压器简介、用途、工作原理及操作方法 整流变压器整流变压器是整流设备的电源变压器。整流设备的特点是原方输入电流,而副方通过整流原件后输出直流。变流是整流、逆流和变频三种工作方式的总称,整流是其中应用最广泛的一种。作为整流装置电源用的变压器称为整流变压器。工业用的整流直流电源大部分都是由交流电网通过整流变压器与整流设备而得到的。 整流变压器是整流设备的电源变压器。整流设备的特点是原边输入交流,而副边输出通过整流元件后输出直流。作为整流装置电源用的变压器称为整流变压器。工业用的整流直流电源大部分都是由交流电网通过整流变压器与整流设备而得到的。 整流变压器是专供整流系统的变压器。 功能: 1.是供给整流系统适当的电压; 2.是减小因整流系统造成的波形畸变对电网的污染。 用途广泛用于照明、机床电器、机械电子设备、医疗设备、整流装置等。产品性能均能满足用户各种特殊要求。 一、电化学工业 这是应用整流变最多的行业,电解有色金属化合物以制取铝、镁、铜及其它金属;电解食盐以制取氯碱;电解水以制取氢和氧。 二、牵引用直流电源 用于矿山或城市电力机车的直流电网。由于阀侧接架空线,短路故障较多,直流负载变化辐度大,电机车经常起动,造成不同程度的短时过载。为此这类变压器的温升限值和电流密度均取得较低。阻抗比相应的电力变压器大30%左右。 三、传动用直流电源

主要用来为电力传动中的直流电机供电,如轧钢机的电枢和励磁。 四、直流输电用 这类整流变压器的电压一般在110kV以上,容量在数万千伏安。需特别注意对地绝缘的交、直流叠加问题。 此外还有电镀用或电加工用直流电源,励磁用直流电源, 充电用及静电除尘用直流电源等。 工作原理 整流变压器应用整流变最多的化学行业中,大功率整流装置也 是二次电压低,电流很大,因此它们在很多方面与电炉变是类 似的,即前所述的结构特征点,整流变压器也同样具备。整流 变压器最大的特点是二次电流不是正弦交流了,由于后续整流 元件的单向导通特征,各相线不再同时,流有负载电流而是软 流导电,单方向的脉动电流经滤波装置变为直流电,整流变压 器的二次电压,https://www.360docs.net/doc/1314516250.html,/电流不仅与容量连接 组有关,如常用的三相桥式整流线路,双反量带平衡电抗器的 整流线路,对于同样的直流输出电压、电流所需的整流变压器 的二次电压和电流却不相同,因此整流变压器的参数计算是以 整流线路为前提的,一般参数计算都是从二次侧开始向一次侧 推算的。 由于整流变绕组电流是非正弦的含有很多高次谐波,为了减小 对电网的谐波污染,为了提高功率因数,必须提高整流设备的 脉波数,这可以通过移相的方法来解决。移相的目的是使整流 变压器二次绕组的同名端线电压之间有一个相位移。 移相方法 移相方法就是二次侧采用量、角联结的两个绕组,可以使整流 电炉的脉波数提高一倍。 10kv干式整流变压器 对于大功率整流设备,需要脉波数也较多,脉波数为18、24、 36 https://www.360docs.net/doc/1314516250.html,/等应用的日益增多,这就必须在

移相全桥全参数计算

1、介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC28950移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表 1 设计规 描述最小值典型值最大值 输入电压370V 390V 410V 输出电压11.4V 12V 12.6V 允许输出电压瞬变600mV 加载步骤90% 输出电压600W 满负荷效率93% 电感器切换频率200kHz 2、功能示意图

3、功率预算 为满足效率的目标,一组功率预算需要设定。 4、原边变压器计算T1 变压器匝比(a1): 估计场效应晶体管电压降(VRDSON): 基于最小指定的输入电压时70%的占空比选择变压器。 基于平均输入电压计算典型工作周期(DTYP) 输出电感纹波电流设置为输出电流的20%。 需要注意在选择变压器磁化电感的正确数值(LMAG)。下列方程计算主变压器(T1)的最低磁化电感,确保变频器运行在电流型控制。如果LMAG太小,磁化电流会导致变换器运行在电压模式控制代替peak-current模式。这是因为磁化电流太大,它将作为PWM坡道淹没RS上的电流传感信号。

图2显示了T1原边电流(IPRIMARY)和同步整流器QE和QF电流对同步整流栅驱动电流的反应。注意I(QE) I(QF)也是T1的次级绕组电流。变量D是转换器占空比。 计算T1次级均方根电流(ISRMS):

整流变压器

35kV整流变压器 一、物资需求一览表 二、工作环境 1.基本情况 神华宁煤集团炭基公司1万吨/年绿质碳化硅项目,需购置1台35kV整流变压器。 2.工作条件 海拔高度:+1050m~1150m 最高温度:+38℃ 最低温度:-28.4℃ 年平均气温(6.7-8.8°C) 年平均相对湿度(58%) 环境污染等级:Ⅲ级 地震基本烈度:按Ⅷ度考虑 年平均风速(1.6m/s) 全年雷暴日数 24d/a 三、技术参数及要求 1.技术性能参数: 1. 额定容量: 12500 kVA 2. 运行容量: 15500 kVA 3. 网侧电压: 35kV 4. 网侧电流: 206.2A 5. 阀侧电压: 193.0V~570.4V 6. 阀侧电流: 37400A~12650A 7. 联结组别: Y,d11d5 8. 绝缘水平: LI200 AC85 / AC5 9. 油箱结构:免吊芯桶形或半钟罩式油箱

10. 出线方式:网侧:油箱顶部40kV级防污型套管引出(共3个) 阀侧:油箱侧上部一排12块环氧树脂压铸式出线铜排, 同相逆并联排列 11. 调压方式: 59档连续“变磁通”恒功率有载调压 12. 冷却方式: OFAF(强油风冷循环) 13. 过载能力:过载25%长期运行 14. 阻抗电压: 6.5%(Ud0max)~38%( Ud0min ) 15. 空载电流: 0.85%(Ud0max) 16. 平均空载损耗:≤8.8kw 17. 平均负载损耗:≤106kW(Ud0min) 18. 变压器器身重:≈28.9t 19. 变压器油重:≈15.5t 20. 变压器总重量:≈63t 21. 本体外形尺寸:长×宽×高≈5400×2600×5200 mm 22. 顶层油温升:≤ 38 K 23. 变压器噪音:≤ 70 db 24. 保护及报警:轻重瓦斯、超过载、超高油温等 2. 技术要求 2.1变压器线圈 2.1.1 变压器全部绕组采用优质无氧纸包电磁线绕制,导线绝缘良好无破损,绕制紧密,同一段的相邻导线间无明显的空隙,导线换位处加包绝缘,折弯处垫平,使导线平滑过渡,不对导线绝缘产生剪切力,位于绕组端部的几个线段进行横向的绑扎,以提高绕组的强度; 2.1.2 变压器绕组上的垫块采用高密度纸板制成,并进行倒角处理; 2.1.3 绕组采用恒压干燥工艺,所有绕组的电抗高度一致,安匝分布均匀,器身组装时采用油压千斤顶压紧绕组,当采用压钉结构时每一相压钉的数量不少于8个(相间放置肩压板); 2.1.4 绕组的压板采用整圆的高密度电工层压木压板,上下压板最小厚度不小于50mm,并在下部支撑绕组的位置和上部压钉(压紧装置)的位置上增加辅助压板,并尽可能使绕组下部的支撑面以及上部的压紧面积足够大,应使A、C相绕组的外侧以及上铁轭下部的绕组也得到有效的压紧;

整流变压器技术规格书(2016.7.5定稿)

内蒙古兰太实业股份有限公司 2万吨/年工业金属钠、3.1万吨/年液氯项目扩建工程35KV有载调压整流变压器 技术规格书 项目指挥部 2016年6月

1 总则 1.1 本规格书为内蒙古兰太实业股份有限公司2万吨/年工业金属钠、3.1万吨/年液氯项目扩建工程电解线整流变压器,并提出该整流变压器本体及附属设备的设计、制造、结构、性能、装配、安装、试验、调试、试运、验收、培训、运行、维护和服务等各方面的技术要求。本项目购买三台ZHSFPT-17600/35KV有载调压整流变压器,品质必须等同于或优于国内外知名品牌的变压器产品。 1.2 本规格书提出的是最低限度的技术要求,并未规定所有的技术要求和应用的标准,未对一切技术细节作出规定,也未充分引述有关标准和规格的条文,供方应提供符合现行有关标准要求和满足本规格书的高质量、高效率、节能效果突出的优质产品。 1.3 如果供方没有以书面形式对本规格书的条文提出异议,则意味着供方提供的设备完全符合本规格书的要求。如有异议,不管是多么微小,都应在应标书中以“对规格书的意见和同规格书的差异”为标题的专门章节中加以详细描述。 1.4 本规格书所使用的标准如遇与供方所执行的标准不一致时,按较高标准执行。 1.5 本规格书经供、需双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。1.6 本规格书未尽事宜,由供、需双方协商确定。 2 技术要求 2.l 应遵循的主要现行标准

2.2 环境条件 2.2.1 周围空气温度 最高温度:40℃(户外) 最低温度:-31.5℃(户外) 日平均温度:10.3℃ 年平均相对湿度:43% 2.2.2 海拔高度:1256.1 m 2.2.3 最大风速:33 m/s 2.2.4 地震烈度:8 度 (中国12级度标准) 2.2.5 污秽等级:IV级 2.2.6 覆冰厚度:18mm (风速不大于15m/s时) 2.3 工程条件 2.3.1内蒙古兰太实业股份有限公司2万吨/年工业金属钠、3.1万吨/年液氯项目扩建工程的有载调压整流变压器,接线方式上进下出。 2.3.2 安装地点:室外 2.3.3 其它要求:无 2.4 变压器基本技术参数 2.4.1网侧参数:额定电压:35KV±5% 3相,额定频率:50Hz±1%。 2.4.2单台变压器输出参数: 2.4.2.1额定输出电压:498 VAC 2.4.2.2额定输出电流:5100A×4 20400A 2.4.3调压整流变压器(一个油箱内)包括调变1台,真空有载调压开关1台,相应的整变2台 (采用两个独立的铁芯),整变12只电流互感器(测量、保护各6只,变比150/5),精度为0.5/10P10。 2.4.4调压变压器 调压方式:±17级(即35级等差)有载自耦调压,有载开关采用德国MR公司生产的真空开关M型(MⅢ600Y/72.5B-18351W)中性点调压开关,有载调压开关能实现远方档位显示功能。 调压范围:15% ~105% Udn 2.4.5整流变压器

同步整流电路分析

同步整流电路分析 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的功率损耗主要包括V1及V2的导通损耗及栅极驱动损耗。当开关频率低于1MHz时,导通损耗占主导地位;开关频率高于1MHz时,以栅极驱动损耗为主。 3、半桥他激、倍流式同步整流电路

整流器技术规格书样本

供电系统整流器技术规格书 6月

目录 1.总则 ....................................... 错误!未定义书签。 1.1 本文件适用范围 ........................... 错误!未定义书签。 1.2 供货范围内设备类型 ....................... 错误!未定义书签。 2.工程概况.................................... 错误!未定义书签。 2.1 工程说明 ................................. 错误!未定义书签。 2.2 环境条件 ................................. 错误!未定义书签。 2.3 系统运行方式 ............................. 错误!未定义书签。 2.4 相关系统和设备参数 ....................... 错误!未定义书签。 3.设备数量.................................... 错误!未定义书签。 4.主要元器件清单.............................. 错误!未定义书签。 5.备品备件、测试工具......................... 错误!未定义书签。 6.整流器技术要求.............................. 错误!未定义书签。 6.1 采用标准 ................................. 错误!未定义书签。 6.2 技术规格及要求 ........................... 错误!未定义书签。 6.3 结构要求 ................................. 错误!未定义书签。 6.4 设备的互换性 ............................. 错误!未定义书签。 6.5 铭牌..................................... 错误!未定义书签。 6.6 试验内容 ................................. 错误!未定义书签。 6.7 接口..................................... 错误!未定义书签。

整流变压器的参数计算

整流变压器的参数计算 晶闸管变流设备一般都是通过变压器与电网连接的,因此其工作频率为工频初级电压即 为交流电网电压.经过变压器的耦合,晶闸管主电路可以得到一个合适的输入电压,是晶闸 管在较大的功率因数下运行.变流主电路和电网之间用变压器隔离,还可以抑制由变流器进 入电网的谐波成分,减小电网污染.在变流电路所需的电压与电网电压相差不多时,有时会 采用自耦变压器;当变流电路所需的电压与电网电压一致时,也可以不经变压器而直接与电 网连接,不过要在输入端串联"进线电抗器"以减少对电网的污染. 变压器的参数计算之前,应该确定负载要求的直流电压和电流,确定变流设备的主电路 接线形式和电网电压.先选择其次级电压有效值U2,U2数值的选择不可过高和过低,如果 U2过高会使得设备运行中为保证输出直流电压符合要求而导致控制角过大,使功率因数变 小;如果U2过低又会在运行中出现当α=αmin时仍然得不到负载要求的直流电压的现象.通 常次级电压,初级和次级电流根据设备的容量,主接线结构和工作方式来定.由于有些主接 线形式次级电流中含有直流成分,有的又不存在,所以变压器容量(视在功率)的计算要根 据具体情况来定. 5.5.1 变压器次级相电压U2的计算 整流器主电路有多种接线形式,在理想情况下,输出直流电压Ud与变压器次级相电压U2有以下关系 BUVdKUKU2= (5.39) 其中KUV为与主电路接线形式有关的常数;KB为以控制角为变量的函数,设整流器在控 制角α=0和控制角不为0时的输出电压平均值分别为Ud0和Udα,则KUV= Ud0/ U2,KB=Ud α/Ud0. 在实际运行中,整流器输出的平均电压还受其它因素的影响,主要为: (1)电网电压的波动.一般的电力系统,电网电压的波动允许范围在+5%~-10%,令 ε为电压波动系数,则ε在0.9~1.05之间变化,这是选择U2的依据之一.考虑电网电压最 低的情况,设计中通常取ε=0.9~0.95. (2)整流元件(晶闸管)的正向压降.在前面对整流电路的分析中,没有考虑整流元 件的正向压降对输出电压的影响,实际上整流元件要降掉一部分输出电压,设其为UT.由 于整流元件与负载是串联的,所以导通回路中串联元件越多,降掉的电压也就越多.令

移相全桥参数计算

移相全桥参数计算 Prepared on 22 November 2020

1、介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC28950移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表1设计规范 2、功能示意图 3、功率预算 为满足效率的目标,一组功率预算需要设定。 4、原边变压器计算T1 变压器匝比(a1): 估计场效应晶体管电压降(VRDSON): 基于最小指定的输入电压时70%的占空比选择变压器。 基于平均输入电压计算典型工作周期(DTYP) 输出电感纹波电流设置为输出电流的20%。 需要注意在选择变压器磁化电感的正确数值(LMAG)。下列方程计算主变压器(T1)的最低磁化电感,确保变 频器运行在电流型控制。如果LMAG太小,磁化电流会导致变换器运行在电压模式控制代替peak-current模式。这是因为磁化电流太大,它将作为PWM坡道淹没RS上的电流传感信号。 图2显示了T1原边电流(IPRIMARY)和同步整流器QE和QF电流对同步整流栅驱动电流的反应。注意I(QE)I(QF)也是T1的次级绕组电流。变量D是转换器占空比。 计算T1次级均方根电流(ISRMS): 副边均方根电流(ISRMS1)当能量被传递到副边: 副边均方根电流(ISRMS2),当电流通过变压器,QEQF开通 副边均方根电流(ISRMS3)引起的负电流在对方绕组随心所欲的时期,请参阅图2。 副边总均方根电流(ISRMS): 计算T1原边均方根电流(IPRMS): T1原边均方根电流(IPRMS1当能量被传递到次边 T1原边均方根电流(IPRMS2)当转换器 总T1原边均方根电流(IPRMS) 此设计一个Vitec变压器被选中,型号75PR8107有一下规范 测量漏原边漏感:

相关文档
最新文档