RNA干扰技术的原理与应用

RNA干扰技术的原理与应用
RNA干扰技术的原理与应用

RNA干扰技术的原理与应用

RNA干扰( RNAinterference , RNAi )是通过小干扰RNA ( small interference RNA, siRNA ) 造成目的mRNA特异性降解, 从而使基因转录后沉默的一种现象。这一现象广泛存在于自然界, 是生物体进化过程中抵御外来基因侵害的一种机制, 为稳定基因组发挥了重要作用。由于RNAi可以作为一种简单、有效的代替基因剔除的遗传工具,正在功能基因组学领域掀起一场真正的革命, 并将加快这个领域的研究步伐。

1 RNAi现象的发现及发展

1995年, Guo等用反义RNA阻断秀丽新小杆线虫的part 1基因的实验中发现, 正义和反义RNA都阻断了该基因的表达,这与传统上对反义RNA技术的解释相反。1998年2月卡耐基研究院的F i re 等将双链RNA ( double stranded RNA, ds RNA)转入细胞内,发现靶基因的mRNA发生了降解,证实高度纯化的ds RNA 可以高效特异的阻断相应的基因表达,而且效率比单链RNA至少高2个数量级,首次揭示了Guo等遇到的现象,即为RNAi。

随后研究发现, RNAi现象广泛存在于各种生物中,是一种古老的重要保护机制, RNAi技术作为一种重要的研究手段大大加速了基因组学的研究进程,现已成为基因功能研究和基因治疗研究的热点。

在短短几年中,对RNAi的研究取得了突飞猛进的发展, 许多令人振奋的报道相继出现, 2001年首次报道了在哺乳动物细胞培养中成功

应用RNAi技术抑制基因表达, 开创了RNAi技术应用于高等生物基因功能研究的先河; 2002年, K ay研究小组首次报道了应用RNAi 技术在哺乳动物整体水平进行基因表达沉默的实验研究;2004年哺乳动物全基因组范围RNAi研究也取得了重要进展,先后报道了用酶法构建全基因组siRNA文库新技术和应用基因组siRNA文库,从全基因组水平对高等动物基因功能进行高通量RNAi研究。这些研究成果愈来愈表明, 生物体基因转化的最终产物不仅仅是蛋白质,还包括相当一部分RNA。

2 RNAi的作用机制

细胞中ds RNA 的存在是RNAi形成的先决条件。ds RNA可以通过多种途径在细胞核或细胞质中产生。通过对RNAi所进行的遗传学和生物化学的研究,现已初步阐明了其作用机制。RNAi的作用机制可分为三个阶段:起始阶段、效应阶段和级联放大阶段。起始阶段:由RNA 病毒入侵,转座子转录,基因组中反向重复序列转录等所产生的ds RNA分子在细胞内被一双链RNA酶!型内切酶也叫Dicer酶或Dicer核酸酶同源物剪成21~ 23 nt siRNA, 3’ 端带有2个碱基突出的黏性末端, 5’ 为磷酸基团,此结构对于siRNA行使其功能非常关键。剪切位点一般在U处, 具特异性。效应阶段: RNAi特异性的核酸外切酶、核酸内切酶、解旋酶、辅助识别同源序列蛋白和其他一些蛋白与siRNA结合成RNA诱导沉默复合体R I SC ( RNA inducing silence complex , R I SC)识别靶mRNA,其中的反义

链与靶mRNA互补结合,正义链则被臵换出来。继而, R I SC复合物中的RNase(可能是Dicer)在靶mRNA与siRNA结合区域的中间将其切断。级联放大: 在RNA 依赖性RNA聚合酶的作用下,以mRNA 为模板, siRNA为引物,扩增产生足够数量的dsRNA 作为底物提供给Dicer酶,产生更多的siRNA, 从而使效应阶段反复发生,一个完整的mRNA被降解成多个21~ 23 nt的小片段, 从而导致相应的基因表达沉默。在这一过程中的多个步骤都需要ATP , 如R I SC复合体的形成、siRNA与靶mRNA的配对、靶mRNA的切割。另外,在dsRNA 复制过程中,两条链的分离可能也需要一个依赖ATP的RNA解旋酶。

dsRNA可通过细胞微管在细胞间传递, 实现dsRNA在整个个体中的散布。RNAi在植物、线虫、果蝇等低等模式生物中,都可由dsRNA诱导,在哺乳动物细胞中, > 30 bp的dsRNA会引起干扰素效应和非特异性基因抑制, 导致mRNA非特异性降解,是医疗上应用RNAi的一大障碍,随后发现合成双链的只有19~ 21 nt的siRNA却可以避免这种效应, 特异性发挥RNAi作用, 并发现在哺乳动物细胞中转入双链RNA ( dsRNA )后导致转录后基因沉默比用核酶或反义RNA更彻底、更有效。E lbash i r等通过瞬时转染体外合成的21 nt 双链siRNA成功诱导出了哺乳动物细胞的RNA , i且避免了ds RNA引起的非特异性反应,这为RNAi技术在基因治疗领域的研究铺平了道路。

3 RNAi的作用特点

3 . 1 高特异性 RNAi是转录后水平的基因沉默机制,有高度的序列特异性, 19 nt的dsRNA几乎可以完全抑制基因的表达,而其中的1 n t突变后, 它对基因的抑制作用就消失了, 这种高度的序列特异性能够使ds RNA非常特异地诱导与之序列同源的mRNA降解, 避免降解与目的mRNA同家族的其他mRNA,从而实现对目的基因的精确沉默。因此, RNAi具有重大的医学价值。

3 . 2 高效性 RNAi存在级联放大效应, 由于Dicer酶切产生的siRNA 与同源mRNA 的结合并降解后者,产生新的siRNA;新产生的siRNA可再次与Dicer酶形成RISC复合体,介导新一轮的同源mRNA降解的多次利用,如此循环,使相对很少量的dsRNA分子(数量远远少于内源mRNA的数量)就能产生强烈的RNAi效应(每个细胞仅需几分子siRNA就可产生RNAi效应) ,并可达到缺失突变体表型的程度。相比普通的siRNA, 具有短发卡结构的双链RNA产生的RNAi效应更强。

3 . 3 高稳定性 ds RNA 可被细胞内的特异性核糖核酸酶家族成员Dicer酶切割为21~ 23 nt的siRNA。切割后的siRNA由于3’端悬垂TT或UU 碱基, 化学性质稳定,使其不再需要进行任何的修饰就能避免细胞内核酸酶类降解而较稳定的存在。

3 .

4 浓度时间依赖性 RNAi效应存在时间、浓度双重依赖性: 干扰效应常出现注射ds RNA的 6 h后,在注入ds RNA的2~ 3 d后的作用最强,可持续效应72 h以上; 而其干扰强度则随着浓度的增高

而增强。只有连续注入ds RNA, 沉默效应才能持续下去, 否则将产生短暂的沉默效应, 而且这种效应的强度与初始dsRNA的浓度有关。另外, RNAi还具有对靶mRNA的切割位点确定性高、对细胞调控系统无影响、作用快速、穿透性高及操作简便等优点。

3 . 5 可传播性 Fire等观察到将dsRNA注射入线虫体内,这些ds RNA可以从注射处的细胞扩散到体内其他细胞, 引起其他细胞的基因沉默, 表明了RNAi作用的可扩散性。

3 . 6 可遗传性 siRNA介导的RNAi具有一定的可遗传性。Fi re 等将dsRNA注射入秀丽新线虫的性腺后,在其第1代中也诱导出了同样的基因抑制现象, 即证明了它的遗传性。

3 . 7 靶基因位点的高选择性 外源性dsRNA的传入只对成熟mRNA产生作用,对mRNA前体没有或很少具有影响,以内含子或启动子构成的外源ds RNA无法引起RNAi效应。

4 RNAi的应用

4 . 1 基因功能的研究 人类已经进入后基因组时代, 需要大规模高通量的研究基因的功能, RNAi技术具有高效特异阻断基因的表达等特征, 也就责无旁贷地成为研究基因功能的强大工具, 已有若干实验室运用RNAi技术进行大规模的基因组筛选。其基本原理就是针对一基因组不同的部分设计对应的ds RNA,构建dsRNA文库,分别导入不同个体细胞内, 通过蛋白表达的改变来筛选基因并确定基因功能。有研究利用离体和活体RNAi方法来沉默根节线虫的编码一种保守的RKN (根节线虫)分泌肽基16D10 ,并且证实这种寄生基因在根

节线虫的植物寄生过程中起到关键作用。目前, 哺乳动物中非特异性RNAi效应的克服和新型表达载体的问世,为哺乳动物基因功能的研究提供了一种高效的途径, 其与基因芯片等技术结合,可高通量分析各基因的功能。

4 . 2 基因表达调控 在基因组学的研究中, 基因表达调控是研究基因功能的一个重要部分, 而基因功能缺失策略在基因表达调控中具有特殊重要地位。RNAi技术对于建立基因剔除动物模型具有相当大的应用前景。K i m等将siRNA运用于鼠卵母细胞和植入前胚胎中, 利用针对内源性的Oct3 /4和cmos基因的siRNA, 成功地清除了内源性的O ct3 /4和Mos产物, 结果产生了与Oct3 /4和cmos基因剔除相类似的表型,证明了siRNA对小鼠早期发育的分子生物学研究是一个非常有用的工具。Dubouzet等在2005年报道了用RNAi技术抑制黄连中异喹啉生物合成途径中金黄紫碱甲基转移酶基因,使该酶的表达水平明显降低。A llen 等用RNAi技术一次性抑制罂粟中可待因酮还原酶基因家族中所有基因的表达,结果也产生了预期的效果。RNAi转基因小鼠的出现,使得在哺乳动物整体水平研究基因的剔除成为可能。

4 . 3 基因治疗 siRNA的特异性有效保证了哺乳动物细胞中RNAi效应的特异性,结合已有的高效基因导入系统,使得RNAi在那些由于基因表达异常增高而引起的疾病(如肿瘤、病毒感染)中的作用优于目前以抑制基因表达为目的而采用的反义技术和核酶等方法。人们正在探索利用siRNA 来治疗肿瘤、病毒感染核免疫缺陷等重

大疾病, 并且取得了一定成果。Z immermann等针对为猕猴的阿朴蛋白B编码的基因施用siRNA, 成功降低阿朴蛋白B、血清胆固醇和低密度脂蛋白的水平。这是首次在非人类灵长类动物中有关RNAi 的全身用药, 是RNAi在药物治疗方法上重要进展。研究人员首次通过利用siRNA能够有选择地抑制PI 3K路径的成分并抑制实验动物中移植的人类结肠癌细胞的扩散。RNAi可以特异性的抑制基因表达,所以可用于基因病, 病毒感染、癌症的治疗。同一基因家族的多个基因具有一段同源性很高的保守序列, 设计针对这一区段序列的ds RNA 分子引发RNAi,那么只注射一种dsRNA即可以产生多个基因同时剔除的表现, 也可以同时注射多种ds RNA而将多个序列不相关的基因同时剔除。Turner等针对人类免疫缺陷病毒1基因组的LTR ( long ter m i nal repeate , LTR )、v i f和nef设计了siRNA,将siRNA转染进人类免疫缺陷病毒后,这些基因的水平降低了95 %。运用RNAi方法对比观察了低氧诱导因子1 和低氧诱导因子2 ,均有一定程度的调节血管生成基因的作用。

4 . 4 药物筛选 RNAi还应用于鉴定药物靶位和筛选药物方面。RNAi的应用明显地缩短了从鉴定到认识药物靶基因功能的时间, 有助于药物开发过程中对已知靶基因功能的高通量分析。利用RNAi 技术使丘脑下部一种豚鼠相关肽的表达量减少了50 %。豚鼠相关肽使代谢率提高而不减少摄食量,从而减轻肥胖,为肥胖的治疗提供了一个靶点。

5 结 语

虽然人们对RNAi的研究只有短短的十几年时间,但进展却极为迅速。可以认为RNAi是个以小分子RNA为中心的真核细胞基因表达调控系统,它可以在多个层面调节基因表达和细胞的增殖分化,通过对RNAi的研究将会使人们对生命现象的认识更加深入。但siRNA技术也存在一定的缺陷, 如对靶mRNA以外同源序列的非特异性抑制, 各种载体和siRNA本身所诱导的免疫反应。此外, 过量导入siRNA 可能干扰细胞内其他正常RNAi介导途径,甚至诱导体内原癌基因异常表达, 导致肿瘤发生。目前siRNA技术的疗效及安全性还有待于进一步证实, 大多数研究工作仅限于基础领域,临床应用仅有少量报道。有理由相信, 随着基因工程技术日臻完善, siRNA技术将为基因功能和基因治疗的研究开辟新的领域。

Small interfering RNA (siRNA):是一种小RNA分子(21-25核苷酸),由Dicer (RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。

RNA干扰的作用机制及小干扰RNA的合成方法

RNA干扰的作用机制及小干扰RNA的合成方法 RNA干扰(RNA interference,缩写为RNAi)是指一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的翻译或转录来抑制基因表达。当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默[1]。与其它基因沉默现象不同的是,在植物和线虫中,RNAi 具有传递性,可在细胞之间传播,此现象被称作系统性RNA干扰(systemic RNAi)[2,3]。在秀丽隐杆线虫上实验时还可使子一代产生基因突变,甚到于可用喂食细菌给线虫的方式让线虫得以产生RNA干扰现象。RNAi现象在生物中普遍存在。 1.RNAi的作用机制 目前关于基因沉默的假说认为,转录后水平的基因沉默,主要包括起始阶段、效应阶段和倍增阶段。 1.1起始阶段 外源性导入或由转基因、转座子、病毒感染等多种方式引入双链核糖核酸(dsRNA),在细胞内特异性与RNA酶Ⅲ(RNAaseⅢ核酸内切酶) Dicer结合,dsRNA被切割成21~23nt 长度的带有3′端单链尾巴及磷酸化的5′端的短链dsRNA,即小干扰RNA(siRNA)。 1.2效应阶段 双链siRNA可以与含Argonauto(Ago)蛋白的核酶复合物结合形成RNA诱导沉默复合体(RNA-induced silencing complex,RISC)并被激活。在A TP供能情况下,激活的RISC 将siRNA的双链分开,RISC中核心组分核酸内切酶Ago负责催化siRNA其中一条链去寻找互补的mRNA链,然后对其进行切割。反义链先与同源mRNA配对结合,然后RISC在距离siRNA 3'端12个碱基的位置将mRNA切断降解,从而阻止靶基因表达,使基因沉默[1]。 1.3 倍增阶段 siRNA在RNA依赖性RNA聚合酶(RdRP)的作用下,以mRNA为模板,siRNA为引物,扩增产生足够数量的dsRNA作为底物提供给Dicer酶,产生更多的siRNA,可再次形成RISC,并继续降解mRNA,从而产生级联放大效应。并作用于靶mRNA。如此反复倍增,从而使RNAi的作用进一步放大。因此少量的siRNA就可以产生高效的基因沉默效果[4]。2.RNAi的设计及合成

RNA干扰设计

什么是siRNA和RNAi 双链RNA经酶切后会形成很多小片段,称为siRNA,这些小片段一旦与信使RNA(mRNA)中的同源序列互补结合,会导致mRNA失去功能,即不能翻译产生蛋白质,也就是使基因“沉默”了。 RNA干扰(RNAinterference,RNAi)是由双链RNA引发的转录后基因静默机制,它通过生物体内siRNA介导识别,特定RNA水解酶参与,并靶向切割同源性靶mRNA。实现RNA干扰现象是真核生物中普遍存在的抵抗病毒等外来入侵、抑制转座子活动、调控基因表达的监控机制。目前RNA干扰技术已成功用于基因功能和信号转导系统上下游分子相互关系的研究。随着研究的不断深入,RNAi的机制正在被逐步阐明,大量的论文被发表,成百上千的专利被授权或递交申请,而同时作为功能基因组研究领域中的有力工具以及新药开发的诱人前景,RNAi也越来越为人们所重视。 RNAi技术发展历程 1998:植物基因中基因沉默现象的发现 2000:哺乳动物细胞中基因沉默的实现 2001:被《科学》评为当年十大科技突破之一 2003:动物体内观察到RNA干扰作用 2004:在恒河猴上的SARS病毒研究取得进展 2004:Acuity Pharmaceutical 第一个RNA干扰药物申请IND 2004:siRNA Therapeutics 第一个RNA干扰药物申请IND 2005:第一个RNA干扰药物进入一期临床,取得良好的效果 2005:化学修饰的siRNA oligo 体内系统给药取得突破 2006:诺贝尔医学奖授予两美国RNAi技术专家 2007:美国卫生研究院(NIH)组建首个RNAi委员会,旨在为NIH 的科学主管给出有关如何尽可能改善他们对RNAi 技术的评估 截止2008年:已有七项核酸干扰药物项目在美国进入临床试验,其中,有一项药物已经推入到第III期临床试验 RNAi 2006诺贝尔医学奖述评 ——年轻的获奖者—— 2006年10月2日,现年47岁的Andrew Z. Fire和45岁的Craig C. Mello由于在RNAi(RNA interference,RNAi)及基因沉默现象研究领域的杰出贡献而今年诺贝尔医学奖获得者,且获奖日期距其研究发表仅8年时间,获奖速度之快亦令人叹为观止。颁奖委员会评价:“他们发现了控制基因信息流通的基本机制,解释了困惑这一研究者们许久的难题。”“像在清晨突然打开窗帘,然后一切都一目了然了”。 —— RNAi的殊荣—— 2001年,随着人类基因组测序的完成,针对其它多种生物的基因组测序计划也相继开展起来。在未来的一段时间内,科学界将不会出现比人类基因组测序更瞩目的技术。有人将人类基因组测序称为“21世纪科学发展史上的里程碑”、“生物学领域最重要的成就之一”。然而时隔不久,同一年在哺乳动物中发现的RNAI掀起了一场风暴,而且愈演愈烈。《Science》杂志将RNAi称为“2002年的重大突破”(Couzin,2002)。然而,更加令人吃惊和兴奋的是,4年以后的今天,Andrew Fire和Craig Mello就因此获得2006年诺贝尔医学奖。一项全新的技术在提出后短短几年就得到诺贝尔奖的青睐和肯定,此前是绝无仅有的,这也足见RNAi在医学领域的开创性意义和极大的应用前景。 —— RNAi的机制——

RNA干扰综述

RNAi研究及其进展 公光业M110107259 前言 RNAi是真核生物中普遍存在的一种自然现象,是由双链RNA 启动的序列特异的转录后基因沉默过程,是生物体在进化中形成的一种内在基因表达的调控机制。1998年,Andrew Fire等首次在线虫中发现RNAi现象,后来大量的研究表明,RNAi广泛存在于真菌、植物和动物中。由此人们认识到RNAi技术作为研究基因功能的一种有力的革命性工具,在功能基因组、转基因动物研究、基因治疗、药物开发等方面有着巨大的潜力。RNAi被《Science》杂志评为2010年十大科学成就之一,2002年又名列《Science》杂志十大科学成就之首,成为分子生物学研究的热点。本文综述了该研究的最新进展。正文 RNAi的发现: 上世纪90年代,科学家们在进行生物遗传改良的研究中,发现靶生物体内产生了一种非期望的表型。最早报道的是在1990年美国科学家Jorgensen等,他们在增强矮牵牛花紫色的转基因研究中,得到的结果是转基因植株部分或完全开白花,表明色素合成途径被关闭而不是被加强。他们将这一现象称为共抑制(cosuppresion),后来的研究者称之为转录后基因沉默。此后不久,科学家们开展了真菌中的RNAi 的研究。1994年,意大利的Cogoni在野生型粗糙链抱霉(Neurospora crassa)的转基因研究中,把抑自身和相应内源基因表达的基因沉默现

象称为消除作用(quelling或基因压制)。 1995年,Guo等利用反义RNA技术阻断线虫的par-1基因表达,发现无论是给线虫注射正义RN A还是反义RN A,都可以抑制特异基因(par-1)的表达,结果与反义RNA技术的传统机制正好相反。这种出乎意料的发现引起了各国科学家的注意,从此展开了RNAi在动物体内的研究。1998年,Frei在研究秀丽隐杆线虫基因沉默时,首次揭开了Guo遇到的悬疑:Guo遇到的正义RNA抑制基因表达现象,是由于体外转录所得RNA中污染了微量双链RNA而引起的,并且还发现双链RNA能够比反义RN A或正义RNA更有效地关闭基因的表达,抑制基因表达的效率比单链RNA至少高2个数量级,他们称这种现象为RNAi。从此,一个新的基因功能研究领域诞生了,人们已在不同种属的生物中进行了广泛而深人的研究,结果不仅证实R- NAi现象存在于秀丽小杆线虫、植物、真菌、果蝇、锥虫、涡虫、水媳、斑马鱼、小鼠乃至人类等多种生物中,而且对RNAi的分子机制逐渐有了比较清晰的认识,植物中的“共抑制”和真菌中的“压制”,与动物中双链RNA诱导的RNAi具有高度保守的相似机制。 RNAi作用机制: 病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA (大约21~23 bp),即siRNA。siRNA在细胞内RNA解旋酶的作

RNA干扰技术的原理及应用

RNA干扰技术的原理与应用 RNA干扰( RNAinterference , RNAi )是通过小干扰RNA ( small interference RNA, siRNA ) 造成目的mRNA特异性降解, 从而使基因转录后沉默的一种现象。这一现象广泛存在于自然界, 是生物体进化过程中抵御外来基因侵害的一种机制, 为稳定基因组发挥了重要作用。由于RNAi可以作为一种简单、有效的代替基因剔除的遗传工具,正在功能基因组学领域掀起一场真正的革命, 并将加快这个领域的研究步伐。 1 RNAi现象的发现及发展 1995年, Guo等用反义RNA阻断秀丽新小杆线虫的part 1基因的实验中发现, 正义和反义RNA都阻断了该基因的表达,这与传统上对反义RNA技术的解释相反。1998年2月卡耐基研究院的F i re 等将双链RNA ( double stranded RNA, ds RNA)转入细胞内,发现靶基因的mRNA发生了降解,证实高度纯化的ds RNA 可以高效特异的阻断相应的基因表达,而且效率比单链RNA至少高2个数量级,首次揭示了Guo等遇到的现象,即为RNAi。 随后研究发现, RNAi现象广泛存在于各种生物中,是一种古老的重要保护机制, RNAi技术作为一种重要的研究手段大大加速了基因组学的研究进程,现已成为基因功能研究和基因治疗研究的热点。 在短短几年中,对RNAi的研究取得了突飞猛进的发展, 许多令人振奋的报道相继出现, 2001年首次报道了在哺乳动物细胞培养中成功

应用RNAi技术抑制基因表达, 开创了RNAi技术应用于高等生物基因功能研究的先河; 2002年, K ay研究小组首次报道了应用RNAi 技术在哺乳动物整体水平进行基因表达沉默的实验研究;2004年哺乳动物全基因组范围RNAi研究也取得了重要进展,先后报道了用酶法构建全基因组siRNA文库新技术和应用基因组siRNA文库,从全基因组水平对高等动物基因功能进行高通量RNAi研究。这些研究成果愈来愈表明, 生物体基因转化的最终产物不仅仅是蛋白质,还包括相当一部分RNA。 2 RNAi的作用机制 细胞中ds RNA 的存在是RNAi形成的先决条件。ds RNA可以通过多种途径在细胞核或细胞质中产生。通过对RNAi所进行的遗传学和生物化学的研究,现已初步阐明了其作用机制。RNAi的作用机制可分为三个阶段:起始阶段、效应阶段和级联放大阶段。起始阶段:由RNA 病毒入侵,转座子转录,基因组中反向重复序列转录等所产生的ds RNA分子在细胞内被一双链RNA酶!型内切酶也叫Dicer酶或Dicer核酸酶同源物剪成21~ 23 nt siRNA, 3’ 端带有2个碱基突出的黏性末端, 5’ 为磷酸基团,此结构对于siRNA行使其功能非常关键。剪切位点一般在U处, 具特异性。效应阶段: RNAi特异性的核酸外切酶、核酸内切酶、解旋酶、辅助识别同源序列蛋白和其他一些蛋白与siRNA结合成RNA诱导沉默复合体R I SC ( RNA inducing silence complex , R I SC)识别靶mRNA,其中的反义

RNA干扰作用机制

RNA干扰机制主要分为两个阶段: 1:RNA干扰的启动阶段,即RNA核酸酶与双链RNA结合,并把它酶切成为多段大小为21~25个碱基对的小RNA片段(siRNA)。 2:RNA干扰的效应阶段,即siRNA与一种多聚核酸酶复合物,RNA诱导的沉默复合物(RISC)结合,并通过驾驭RISC到相应的mRNA位点,随即RISC执行RNA干扰的效应功能,酶切降解mRNA,使转录的基因表达终止。 第一步:双链RNA加工成为siRNA 参与该反应的酶是Dicer蛋白复合物,具有结合和酶切双链RNA的活性,与双链RNA结合的区域位于Dicer的羧基末端 第二步:siRNA的扩增 siRNA能通过细胞内的RNA依赖性RNA聚合酶(RdRP)的作用,以RNA干扰起源的双链RNA分子,或者以目标mRNA分子作为模板,合成出新的双链RNA分子,再通过Dicer的加工作用,产生出大量的siRNA,补充细胞内消耗和降解的siRNA分子。这种现象称为siRNA的扩增。 第三步:降解目标mRNA 在这一阶段,从双链RNA切割下来的siRNA与一种RNA干扰的特异蛋白复合物结合,形成RNA诱导的基因沉默复合物(RISC)。该复合物在A TP存在的条件下被激活,siRNA解链,留下反义链导向RISC与目标RNA互补结合,并酶切目标RNA分子,完成RNA干扰的过程。酶切位置常常在siRNA双链的中间部位,故,若siRNA链中间的碱基与目标不符,则会影响siRNA的沉默效应。 siRNA与RISC复合形成一种小干扰核糖蛋白粒子(siRNP) RISC与Dicer的异同点 两者都具有RNA酶活性,但是它们的作用底物不同,前者常常针对单链RNA分子,而后者则是针对双链RNA分子;另一方面,它们的酶切方式和产物也不同,前者属于RNA 的外切酶,而后者则是RNA的内切酶 另外,一些RNA干扰效应阶段的mRNA降解物,反过来可以作为RdRP的模板,合成双链RNA分子,加入到RNA干扰的启动阶段,从而放大RNA干扰的作用。

百度百科RNA干扰

RNA干扰 科技名词定义 中文名称:RNA干扰 英文名称:RNA interference;RNAi 定义1:与靶基因同源的双链RNA诱导的特异转录后基因沉默现象。其作用机制是双链RNA 被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。已经发展成为基因治疗、基因结构功能研究的快速而有效的方法。 所属学科:生物化学与分子生物学(一级学科);核酸与基因(二级学科) 定义2:引起基因沉默的一种技术,将根据基因序列制备的双链RNA注入体内,可引起该基因编码的mRNA降解,从而抑制了该基因的功能。 所属学科:细胞生物学(一级学科);细胞生物学技术(二级学科) 定义3:双链RNA有效地阻断靶基因表达的现象。 所属学科:遗传学(一级学科);分子遗传学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 RNA干扰模式图 RNA干扰(RNA interference, RNAi)是指在进化过程中高度保守的、由双链RNA (double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。 目录

简介 发现 作用机制 特点 制备方法 应用 相关知识 简介 发现 作用机制 特点 制备方法 应用 相关知识 展开 编辑本段简介 近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。 编辑本段发现 RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程 RNAi实验图片 中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能 有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RNA技术的理论做出合理解释。直到1998年,Fire等证实Guo等发现的正义RNA抑制同源基因表达的现象是由于体外转录制备的RNA中污染了微量dsRNA而引发,并将这一现象命名为RNAi。

RNA干扰

RNA干扰 RNA干扰(RNA interference, RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由双链RNA(doublestrandedRNAs,dsRNAs)引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质内靶mRNA序列特异性的降解机制。有时转基因会同时导致TGS和PTGS。 由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,(长度超过三十的dsRNA会引起干扰素毒性)所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的治疗领域。 RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程 1.作用机制 病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应, 其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞内RNA解旋酶的作用下解链成正义链和反义链,继之由反义siRNA再与体内一些酶(包括内切酶、外切酶、解旋酶等)结合形成RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)。RISC与外源性基因表达的mRNA的同源区进行特异性结合,RISC具有核酸酶的功能,在结合部位切割mRNA,切割位点即是与siRNA中反义链互补结合的两端。被切割后的断裂mRNA随即降解,从而诱发宿主细胞针对这些mRNA的降解反应。siRNA不仅能引导RISC切割同源单链mRNA,而且可作为引物与靶RNA 结合并在RNA聚合酶(RNA-dependent RNA polymerase,RdRP)作用下合成更多新的dsRNA,新合成的dsRNA再由Dicer切割产生大量的次级siRNA,从而使RNAi 的作用进一步放大,最终将靶mRNA完全降解。 RNAi发生于除原核生物以外的所有真核生物细胞内。需要说明的是,由于dsRNA抑制基因表达具有潜在高效性,任何导致正常机体dsRNA形成的情况都会引起不需要的相应基因沉寂。所以正常机体内各种基因有效表达有一套严密防止dsRNA形成的机制。 怀特黑德生物医学研究所的本杰明·刘易斯等研究人员发现小RNA能通过阻断蛋白质合成的方式调控基因表达。他们借助一个计算模型来确定小RNA和对应的基因,发现了miRNA控制很大一部分生命功能的证据。 研究人员比较了人类和狗、鸡、鼠的基因组,对这几个物种共有的蛋白质合成基因与miRNA寻求对应关系。结果发现,尽管这几个物种在3.1亿年前就开始“分家”各自进化,但它们基因组中受miRNA调控的基因都占三分之一左右,而且这些基因在进化过程中都得以保存而未发生变化。刘易斯说,随着更多的基因组数据发布以及实验技术的进步,还可能发现更多的基因是由小RNA调控的。 RNA干扰现象的机理[8] RNA干扰作用是通过一类较稳定的中间介质实现的。对植物的研究证明,双链RNA 复合体先降解成为35nt左右的小RNA分子,然后他们通过序列互补与mRNA结合,从而导致mRNA降解[9][10]。对果蝇的研究证明,长度为21~23nt的小RNA分

RNA干扰iRNA技术及其应用

RNA干扰iRNA技术及其应用 摘要:RNA干扰(interference RNA,iRNA)是正常生物体内抑制特定基因表达的一种现象,它是指当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默的现象,这种现象发生在转录后水平,又称为转录后基因沉默。RNA具有特异性和有效性。iRNA技术作为功能基因组学强有力的研究工具,可以特异地使特定基因沉默,获得功能丧失或降低突变。随着对现代分子生物学研究的发展,该技术的应用领域逐步扩展到医学,农业,林业,渔业,畜牧等多个领域,具有巨大的科研,经济和社会价值,本文主要论述RNA干扰技术在医学领域方面的应用。 关键字:RNA干扰转录后基因沉默RNA 诱导的沉默复合物 正文:今年来,对RNA干扰技术的研究已经成为热点,预测未来10年间最后可能出重要成果的领域之一,并被《Science》评选为2002年度最重要科技突破的首位。RNA干扰技术之所以有如此重要的地位,与其运用到的领域有关。21世纪初,人类完成了基因组计划,破译人类全部的遗传信息,使人类第一次在分子水平上全面认识自我。因此,很多疾病的病因也将揭开神秘的面纱,这位这些疾病的基因诊断和基因治疗奠定了基础。因此,利用RNA干扰技术抑制基因组的基因表达的技术手段,有可能在基因治疗方面开辟一条心的途径,克服医学上许多疑难杂症,例如,病毒性疾病,肿瘤心血管疾病和遗传性疾病。 1.RNA干扰的发现:首次发现dsRNA能够导致基因沉默的线索来源于线虫Caenorhabditis elegans的研究。1995年,康乃尔大学的Su Guo博士在试图阻断秀丽新小杆线虫(C.elegans)的par-1基因时,发现了一个意想不到的现象。她们本想利用反义RNA技术特异性地阻断上述基因的表达,而同时在对照实验中给线虫注射正义RNA以期观察到基因表达的增强,但得到的结果是二者都同样地切断了par-1基因的表达途径。这是与传统上对反义RNA技术的解释正好相反。该研究小组一直未能给这个意外以合理解释。这个奇怪的现象直到3年后才被解开。1998年2月,华盛顿卡耐基研究院的Andrew Fire和马萨诸塞大学癌症中心的Craig Mello才首次揭开这个悬疑之谜。通过大量艰苦的工作,他们证实,Su Guo博士遇到的正义RNA抑制基因表达的现象,以及过去的反义RNA技术对基因表达的阻断,都是由于体外转录所得RNA中污染了微量双链RNA而引起。当他们将体外转录得到的单链RNA纯化后注射线虫时发现,基因抑制效应变得十分微弱,而经过纯化的双链RNA却正好相反,能够高效特异性阻断相应基因的表达。实际上每个细胞只要很少几个分子的双链RNA已经足够完全阻断同源基因的表达。后来的实验表明在线虫中注入双链RNA不单可以阻断整个线虫的同源基因表达,还会导致其第一代子代的同源基因沉默,该小组将这一现象称为RNA干扰。现在RNA干扰现象广泛存在于从植物、真菌、线虫、昆虫、蛙类、鸟类、大鼠、小鼠、猴一直到人类的几乎所有的真核生物中细胞,这种情况揭示了iRNA现象很可能出现于生命进化的早期阶段。后来在果蝇细胞中的实验进一步揭

RNA干扰实验技术相关探讨

文章编号: 06-(2004)063002101-10 中图分类号:Q344 中国生命科学论坛分子生物学版精华 RNA干扰(RNAi)实验技术相关探讨 马志杰 (maziwise) 编写小瘪修改 (中国生命科学论坛分子生物学版第1版主 ) [责任编辑:TILS007] 摘要:RNA干扰(RNAi)是一种由双链RNA所引起的序列特异性基因沉默。它是真核生物中基因转录后沉默作用的重要机制之一。RNAi技术作为新兴的基因阻抑方法,在功能基因组学、微生物学、基因表达调控机理研究等领域得到了广泛应用。本文就其作用机制、基本实验程序及注意事项作了较详细的综述,对其存在的相关问题和前景亦做了展望。 关键词:RNAi;siRNA;转染 小RNA作用与应用研究继2001,2002连续两年被美国Science杂志评为年度10大突破技术以来,近年来继续热度高涨,名列前矛。其核心技术RNA干扰(RNAi),即用20多个核苷酸组成的短的双链RNA(siRNA)代替传统反义核酸进行转录后基因沉默,已经迅速而广泛地应用到基因功能,基因表达调控机制研究等热门领域,不仅如此,它还为基因治疗开辟了新的途径。此外,RNAi沉默机制的探索也取得了相当的进展。目前,在大致勾画出生物体内源性小RNA的重要作用框架后,进一步阐述其作用细节、探索小RNA对细胞行为的调控、如何利用RNAi进行疾病防治等等都成为生物学家研究的一大热点。 1、RNAi的作用机制

通过生化和遗传学研究表明,RNA干扰包括起始阶段和效应阶段(inititation and effector steps)。在起始阶段,加入的小分子RNA被切割为21-23核苷酸长的小分子干扰RNA 片段(small interfering RNAs, siRNAs)。证据表明;一个称为Dicer的酶,是RNase III家族 中特 图1、RNAi的作用机制 异识别双链RNA的一员,它能以一种ATP依赖的方式逐步切割由外源导入或者由转基因、病毒感染等各种方式引入的双链RNA,切割将RNA降解为19-21bp的双链RNAs(siRNAs),每个片段的3’端都有2个碱基突出。在RNAi效应阶段,siRNA双链结合一个核酶复合物从而形成所谓RNA诱导沉默复合物(RNA-induced silencing complex, RISC)。激活RISC需要一个ATP依赖的将小分子RNA解双链的过程。激活的RISC通过碱基配对定位到同源mRNA转录本上,并在距离siRNA3’端12个碱基的位置切割mRNA。尽管切割的确切机制尚不明了,但每个RISC都包含一个siRNA和一个不同于Dicer的RNA酶。另外,还有研究证明含有启动子区的dsRNA在植物体内同样被切割成21-23nt长的片段,这种dsRNA可使内源相应的DNA序列甲基化,从而使启动子失去功能,使其下游基因沉默。其基本原理见(图1): 2、RNAi基本试验程序及注意事项 2.1、siRNA的设计 2.1.1、目标序列的筛选

相关主题
相关文档
最新文档