Magnon-assisted transport and thermopower in ferromagnet-normal metal tunnel junctions

Magnon-assisted transport and thermopower in ferromagnet-normal metal tunnel junctions
Magnon-assisted transport and thermopower in ferromagnet-normal metal tunnel junctions

a r X i v :c o n d -m a t /0302485v 1 [c o n d -m a t .m e s -h a l l ] 24 F e

b 2003

Magnon-assisted transport and thermopower in ferromagnet-normal metal tunnel

junctions

Edward McCann and Vladimir I.Fal’ko

Department of Physics,Lancaster University,Lancaster,LA14YB,United Kingdom

(February 2,2008)

We develop a theoretical model of magnon-assisted transport in a mesoscopic tunnel junction between a ferromagnetic metal and a normal (non-magnetic)metal.The current response to a bias voltage is dominated by the contribution of elastic processes rather than magnon-assisted processes and the degree of spin polarization of the current,parameterized by a function P (Π↑(↓),ΠN ),0≤P ≤1,depends on the relative sizes of the majority Π↑and minority Π↓band Fermi surface in the ferromagnet and of the Fermi surface of the normal metal ΠN .On the other hand,magnon-assisted tunneling gives the dominant contribution to the current response to a temperature di?erence across the junction.The resulting thermopower is large,S ~?(k B /e )(k B T /ωD )3/2P (Π↑(↓),ΠN ),where the temperature dependent factor (k B T /ωD )3/2re?ects the fractional change in the net magnetization of the ferromagnet due to thermal magnons at temperature T (Bloch’s T 3/2law)and ωD is the magnon Debye energy.

I.INTRODUCTION

For more than a decade there has been intensive re-search of spin polarized transport 1with a view to ex-ploit phenomena such as the tunneling magnetoresistance (TMR)of ferromagnetic junctions 2,3and the giant mag-netoresistance (GMR)in multilayer structures.4,5The TMR e?ect arises because the mismatch of spin currents at the interface between two ferromagnetic (F)electrodes with antiparallel spin polarizations produces a larger con-tact resistance than a junction with parallel polariza-tions.In general,the magnitude of TMR increases with the degree of polarization of the ferromagnets,but it is reduced by spin relaxation phenomena 1,6,such as spin-orbit scattering at impurities or magnon emission,which lift spin current mismatch.Magnon emission is an inelas-tic process that has been studied both theoretically 7and experimentally 8in ferromagnetic tunnel junctions with a view to relate nonlinear I (V )characteristics to the den-sity of states of magnons ?(ω)as d 2I/dV 2∝?(eV ).As well as in?uencing the magnetoresistance,magnon emis-sion is expected to produce a magnetothermopower ef-fect:a larger thermopower in the antiparallel orientation than in the parallel one.9,10

Meanwhile,interest in transport across junctions be-tween ferromagnets and normal metals or semiconductors has focused on the possibility of injecting spin into the normal system.6,11,12Current in the ferromagnet (F)is carried unequally by majority and minority carriers so that a current ?owing across the interface with a normal conductor is expected to have a ?nite degree of spin po-larization P ,0≤P ≤1.Spin injection from a ferromag-netic metal into a normal metal (N)has been measured in broad agreement with theory,6,11but there has been di?culty in achieving large degrees of spin injection into a semiconductor at room temperature.13A limiting fac-tor is believed to be conductivity mismatch,14a problem that may be overcome by introducing a tunneling barrier between the ferromagnet and semiconductor.15Spin in-jection in all-semiconducting devices has generally been more successful,16although it is limited to relatively low temperatures at the moment.

In this paper we investigate the opposite e?ect:the injection of charge caused by the equilibration of mag-netization between ferromagnetic baths kept at di?erent temperatures.The magnetization of a ferromagnet held at a ?nite temperature T is less that its maximum value due to the thermal occupation of magnons,with the frac-tional change δm (T )obeying Bloch’s T 3/2law,

δm (T )=3.47

ωD 3/2

,(1)

where ξis the spin of the localized moments and ωD is the magnon Debye energy.Under certain conditions the transfer of heat across a junction between ferromag-nets or a ferromagnet and a normal metal may involve simultaneous spin transfer and,possibly,charge transfer.Therefore we study the in?uence of magnon assisted pro-cesses on the transport properties of a mesoscopic size fer-romagnet/insulator/normal metal tunnel junction.The bottle-neck of both charge and heat transport lies in a small-area tunnel contact between the electrodes held at di?erent temperatures and/or electric potentials.The main result is a large thermopower S arising from the magnon-assisted processes that depends on the di?erence between the size of the majority and minority band Fermi surfaces in the ferromagnet,

S ≈?

k B

2

P

Π↑(↓),ΠN .

(2)

This result holds in a range of temperatures given by

1?δm (T )?(k B T )/?F ,(3)

where?F is the Fermi energy.The function P,0≤P≤1, is the degree of spin polarization of the current response to a bias voltage and it depends,in general,on the area of the maximal cross-section of the Fermi surface in the plane parallel to the interface of majorityΠ↑and minor-ityΠ↓electrons in the ferromagnet,and of the electrons in the normal(non-magnetic)metalΠN.As an example,

P=

(ΠN?Π↓)

?T =

L

I(V,?T)in terms of the occupation numbers of electrons

n L(R)(?L(R)

kα)=[exp((?L(R)

kα??L(R)F)/(k B T L(R)))+1]?1on

the left(right)hand side of the junction and of magnons

N L(q)=[exp(ωq/(k B T L))?1]?1in the ferromagnet. Here T L(R)is the temperature on the left(right)hand side,?L F??R F=?eV,andωq is the energy of a magnon of wavevector q.In the following we set T L=T+?T

and T R=T and we shall speak throughout in terms of the transfer of electrons with charge?e.The index α={↑,↓}takes account of the splitting of conduction

band electrons into‘spin-up’?L(R)

k↑and‘spin-down’?L(R)

k↓

subbands.We assume that the majority electrons in the ferromagnet are spin-up so that?L k↑=?L k??/2and

?L k↓=?L k+?/2where?L k is the bare electron energy and

?is the spin splitting energy.In the non-magnetic metal

on the right,?R k↑=?R k↓=?R k.

The total Hamiltonian of the system is

H=H L F+H R N+H T,(7)

H R N= kα?R k c?kαc kα,(8)

H T= kk′α t k,k′c?kαc k′αc kα ,(9)

where H R N is the Hamiltonian describing the conduc-

tion band electrons of the non-magnetic metal on the

right written in terms of creation and annihilation Fermi

operators c?and c.The term H T is the tunneling Hamiltonian,17–19

in transitions between the spin down minority band on the left and the spin down band on the right.Overall, the?rst order contribution to the current is I el where

I el=?4π2

e

h

V[T↑N(?F)+T↓N(?F)]

?π2h(k2B T?T)d

h

[T↑N(?F)+T↓N(?F)],(17)

and we de?ne the corresponding degree of spin polarized current P as the relative di?erence in the current due to majority and minority carriers,

P=

(T↑N?T↓N)

3k2B T

d? ln[T↑N(?)+T↓N(?)]

?

F

,(19)

which is equivalent to the Mott formula.29

B.Magnon-assisted contribution to the current Below we describe processes which contribute to

magnon-assisted tunneling.We consider four processes, that are lowest order in the electron-magnon interaction,

as shown schematically in Figure2.The straight lines show the direction of electron transfer,whereas the wavy

lines denote the emission or absorption of magnons.The processes are drawn using the rule,appropriate for ferro-

magnetic electron-magnon exchange,that an electron in a minority state scatters into a majority state by emit-

ting a magnon.The upper two processes in Figure2, (i)and(ii),involve transitions into(from)a majority?-

nal(initial)state on the left via an intermediate,virtual state in the minority band.For example,process(i),

which is the same as the process shown in more detail in Figure1,begins with a spin-down electron on the right

with wavevector k R and energy?R k

R

.Then,this electron tunnels across the barrier(without spin?ip)to occupy

a virtual,intermediate state with wavevector k L in the spin down minority band on the left as depicted in the left part of Figure1(a)with energy?L k

L↓

.The energy di?er-ence between the states is?L k

L↓??

R

k R

=?L k

L↑??

R

k R

+?so

that the matrix element for the transition contains an en-ergy in the denominator related to the inverse lifetime of

the electron in the virtual state.For k B T,eV??,when both initial and?nal electron states should be taken close

to the Fermi level,only long wavelength magnons can be emitted,so that the energy de?cit in the virtual states

can be approximated as?L k

L↑??R k R+?≈?.As noticed in Refs.21,20,this cancels out the large exchange param-

eter since the same electron-core spin exchange constant appears both in the splitting between minority and ma-jority bands and in the electron-magnon coupling.The second part of the transition is sketched in Figure1(b) where the electron in the virtual minority spin down state incorporates itself into a state in the majority spin up band on the left,wavevector k′,energy?L k′↑,by emitting a magnon of wavevector q.

Similiar considerations enable us to write down the

contribution to the current from all the processes in Fig-ure2.We group the processes into pairs which involve transitions between the same series of states,but in the opposite time order so that they give a current with dif-ferent signs,hence their sum gives a balance equation. The contribution to the current of the processes(i)and (ii),labelled as I↓because the state on the right is spin down,is given by

I↓=?4π2

e

2ξN

×δ(??eV??R k R)δ(???L k′↑?ωq)

× ?n R(?R k R) 1?n L(?L k′↑) [1+N L(q)]+

+ 1?n R(?R k R) n L(?L k′↑)N L(q) ,(20)

where q=k L?k′.Energies on the right are shifted by eV to take account of the voltage di?erence across the junction.

FIG.2.Schematic of the four magnon-assisted pro-cesses considered in the calculation.The upper two pro-cesses,(i)and(ii),involve transitions into(from)a ma-jority?nal(initial)state on the left via an intermedi-ate,virtual state in the minority band accompanied by magnon emission(absorption)whereas the lower two pro-cesses,(iii)and(iv),involve transitions into(from)a mi-nority?nal(initial)state on the left via an intermediate, virtual state in the majority band with magnon absorp-tion(emission).

The lower two processes in Figure2,(iii)and(iv), involve transitions into(from)a minority?nal(initial) state on the left via an intermediate,virtual state in the majority band from(into)a spin up state on the right. The contribution to the current from them,I↑,is

I↑=?4π2e

2ξN

×δ(??eV??R k R)δ(???L k′↓+ωq)

× ?n R(?R k R) 1?n L(?L k′↓) N L(q)+

+ 1?n R(?R k R) n L(?L k′↓)[1+N L(q)] ,(21)

We use the de?nition of the tunneling parameter TαN, Eq.(16),in order to express the currents as

I↓=?e

2ξN +∞?∞d?

dω?(ω)

× N L(ω)n L(?)[1?n R(?+ω?eV)]

?[1+N L(ω)][1?n L(?)]n R(?+ω?eV) ,(22)

I↑=+e

2ξN +∞?∞d?

dω?(ω)

× N L(ω)n R(??ω?eV)[1?n L(?)]

?[1+N L(ω)][1?n R(??ω?eV)]n L(?) ,(23)

where?(ω)= qδ(ω?ωq)is the magnon density of

states in the ferromagnet.Since our main aim is to

demonstrate the existence of an e?ect,we choose the sim-

ple example of a bulk,three-dimensional magnon density

of states.We assume a quadratic magnon dispersion,

ωq=Dq2,and apply the Debye approximation with a

maximum magnon energyωD=D(6π2/v)2/3where v is

the volume of a unit cell.This enables us to express the

magnon density of states as?(ω)=(3/2)Nω1/2/ω3/2

D

.

Since we are interested in the linear thermopower,we

expand the electron and magnon occupation numbers

and keep only terms linear in V and?T.The result-

ing expression for the currents I↓and I↑,Eqs.(22)and

(23)respectively,is

I↓(↑)=

e

4ξ k B T2)ζ(32k B?TΓ(72) .(24)

whereΓ(x)is the gamma function andζ(x)is Riemann’s

zeta function.30

IV.CALCULATION OF THE THERMOPOWER

The thermopower S is determined by setting the to-

tal current to zero,I=I el+I↓+I↑=0,and?nd-

ing the voltage V induced by the temperature di?erence

?T,S=?V/?T.In the regime of temperatures given

in Eq.(3)the total current may be approximated by

I≈

e2

h

3

2

)ζ(5

ωD 3/2k B?T[T↑N?T↓N],(25)

where the leading term proportional to V arises from the

elastic processes,Eq.(15),and the leading term propor-

tional to?T comes from the magnon-assisted processes,

Eq.(24).The corresponding thermopower is

S=?

k B

2.077

P Π↑(↓),ΠN .(26)

This is the main result of the paper,describing junc-

tions between normal metals and ferromagnets of arbi-

trary polarization strength ranging from weak ferromag-

netsΠ↑>~Π↓to half-metalsΠ↑?Π↓=0.The function

δm(T)in Eq.(26)is the change in the magnetization

due to thermal magnons at temperature T(Bloch’s T3/2

law),31

δm(T)=

1

2)ζ(3

ξ k B T

h2

min{Πα,ΠN},(28)

where t represents the transparency of the interface,Παis the area of the maximal cross-section of the Fermi sur-

face of spinsαin the ferromagnet,Π↑≥Π↓≥0,and ΠN is the area of the maximal cross-section of the Fermi

surface in the normal metal.For a uniformly transparent interface,

P?at=

(min{Π↑,ΠN}?min{Π↓,ΠN})

h2 aΠN

(Π↑+Π↓)

.(31)

The large thermopower Eq.(26)indicates that the cur-rent response to?T of magnon-assisted processes is very e?cient,as compared to elastic processes.We view this as being due to an attempt by the bath of magnons to al-ter its temperature.Since the population of magnons de-?nes the magnetization of the ferromagnet,through the functionδm(T)Eq.(27),thermal equilibration achieved by changing the magnon population must be accompa-nied by a change in magnetization.This is mediated by conduction electrons,resulting in a net current response to a temperature di?erence across the junction Eqs.(24) and(25).For example,the process shown in Figure2(ii), in which an electron on the left absorbs a magnon and tunnels to the right,results in a reduction in the num-ber of magnons and the injection of a spin down electron to the right.On the other hand,the process shown in Figure2(iii),in which an electron on the right tunnels to the left and absorbs a magnon,results in a reduction in the number of magnons and the collection of a spin up electron from the right.These two processes,while both lowering the number of magnons,give competing con-tributions to the current as demonstrated by the factor T↑N?T↓N in Eq.(25).

V.CONCLUSION

The main result of this work is a large contribution to the thermopower Eq.(26)due to magnon-assisted pro-cesses in ferromagnetic-normal metal tunnel junctions. As a rough estimate,we takeδm=7.5×10?6T3/2(for a ferromagnet such as Ni,Ref.31)and P~0.4to give S~?1μV K?1at T=300K.Our simple model de-scribes tunneling between parabolic conduction bands typical of three dimensional metallic systems,with ad-ditional spin splitting and electron-magnon interactions in the ferromagnet.However we believe the main results will have qualitative relevance for junctions with semi-conducting elements,too.Recent numerical modeling of the diluted magnetic semiconductor(Ga,Mn)As us-ing a six-band Kohn-Luttinger Hamiltonian32found ev-idence of quadratic dispersion of long-wavelength spin wavesωq=ω0+Dq2with a small anisotropy gapω0. A?t at small momenta to their data for typical sample parameters yields a spin waves sti?ness D~2meV nm2 that corresponds toδm~2.5×10?4T3/2.If this is in-serted into our formula for the thermopower Eq.(26)with P~0.4,say,it gives|S|~4μV K?1at T=100K.How-ever,we stress that the sign of the thermopower Eq.(26) is speci?ed for electron(charge?e)transfer processes be-tween parabolic conduction bands and under the assump-tion that the exchange between conduction band and core electrons has a ferromagnetic sign.We considered a bulk, three-dimensional magnon density of states,but in gen-eral the magnitude and sign of the thermopower will de-pend on details of the magnon spectrum.

The authors thank J. F.Annett, B.L.Gyor?y, T.Jungwirth,A.H.MacDonald,and https://www.360docs.net/doc/1114994676.html,achov for discussions,and EPSRC for?nancial support.

3060(1991);S. F.Lee,W.P.Pratt Jr.,R.Loloee, P.A.Schroeder,and J.Bass,Phys.Rev.B46,548(1992). 6M.Johnson and R.H.Silsbee,Phys.Rev.Lett.55,1790

(1985).

7A.M.Bratkovsky,Appl.Phys.Letts.72,2334(1998);

A.H.MacDonald,T.Jungwirth,and M.Kasner,Phys. Rev.Lett.81,705(1998);F.Guinea,Phys.Rev.B58, 9212(1998).

8D.C.Tsui,R.E.Dietz,and L.R.Walker,Phys.Rev.

Lett.27,1729(1971);J.S.Moodera,J.Nowak,and R.J.M.van de Veerdonk,Phys.Rev.Lett.80,2941(1998). 9E.McCann and V.I.Fal’ko,Appl.Phys.Lett.81,3609 (2002).

10E.McCann and V.I.Fal’ko,Phys.Rev.B66,134424

(2002).

11A.G.Aronov,Pis’ma Zh.Eksp.Teor.Fiz.24,37(1976)

[JETP Lett.24,32(1976)];M.Johnson and R.H.Sils-bee,Phys.Rev.B35,4959(1987);Phys.Rev.Lett.60, 377(1988);P.C.van Son,H.van Kempen,and P.Wyder, Phys.Rev.Lett.58,2271(1987).

12S.Datta and B.Das,Appl.Phys.Lett.56,665(1990). 13W.Y.Lee,S.Gardelis,B.-C.Choi,Y.B.Xu,C.G.Smith, C.H.W.Barnes, D. A.Ritchie, E.H.Lin?eld,and J.A.C.Bland,J.Appl.Phys.85,6682(1999);P.R.Ham-mar,B.R.Bennett,M.J.Wang,and M.Johnson,Phys. Rev.Lett.83,203(1999);M.Ramsteiner,H.J.Zhu,H.-P.Sch¨o nherr,and K.H.Ploog,Physica E13,529(2002). 14G.Schmidt,D.Ferrand,L.W.Molenkamp,A.T.Filip, and B.J.van Wees,Phys.Rev.B62,R4790(2000).

15E.I.Rashba,Phys.Rev.B62,R16267(2000);A.Fert and

H.Ja?r`e s,Phys.Rev.B64,184420(2001).

16R.Fiederling,M.Keim,G.Reuscher,W.Ossau,

G.Schmidt, A.Waag,L.W.Molenkamp,Nature402, 787(1999);Y.Ohno,D.K.Young,B.Beschoten,F.Mat-sukura,H.Ohno, D. D.Awschalom,Nature402,790 (1999); B.T.Jonker,Y. D.Park, B.R.Bennett,

H.D.Cheong,G.Kioseoglou, A.Petrou,Phys.Rev.B

62,8180(2000).

17M.H.Cohen,L.M.Falicov,and J.C.Phillips,Phys.Rev. Lett.8,316(1962).

18C.Caroli,https://www.360docs.net/doc/1114994676.html,bescot,P.Nozieres,and D.Saint-James, J.Phys.C4,916(1971).

19G.D.Mahon,Many-Particle Physics(Plenum,New York, 1981).

20E.McCann and V.I.Fal’ko,Europhys.Lett.56,583 (2001);https://www.360docs.net/doc/1114994676.html,achov,E.McCann,and V.I.Fal’ko,Phys. Rev.B65,024519(2002);E.McCann,https://www.360docs.net/doc/1114994676.html,achov,and V.I.Fal’ko,Physica E12,938(2002).

21R.B.Woolsey and R.M.White,Phys.Rev.B1,4474 (1970);B.S.Shastry and D.C.Mattis,Phys.Rev.B24, 5340(1981);S.R.Allan and D.M.Edwards,J.Phys. C:Solid State Phys.15,2151(1982);M.I.Auslender and V.Y.Irkhin,J.Phys.C:Solid State Phys.18,3533(1985). 22E.L.Nagaev,Phys.Stat.Sol(b)65,11(1974);W.Nolt-ing,Phys.Stat.Sol(b)96,11(1979).

23D.M.Edwards and J.A.Hertz,J.Phys.F:Metal Phys.

3,2174(1973);D.M.Edwards and J.A.Hertz,J.Phys. F:Metal Phys.3,2191(1973).

24T.Holstein and H.Primako?,Phys.Rev.58,1048(1940). 25R.P.Feynman and A.R.Hibbs,Quantum Mechanics and Path Integrals(McGraw-Hill,New York,1965).

https://www.360docs.net/doc/1114994676.html,ndauer,Phil.Mag.21,863(1970).

27D.S.Fisher and P.A.Lee,Phys.Rev.B23,6851(1981). 28C.W.J.Beenakker,Rev.Mod.Phys.69,731(1997).

29M.Cutler and N.F.Mott,Phys.Rev.181,1336(1969). 30I.S.Gradshteyn and I.M.Ryzhik,Table of Integrals,Se-ries,and Products(Academic Press,San Diego,1965).

31C.Kittel,Introduction to Solid State Physics(John Wiley, New York,1996).

32J.K¨o nig,T.Jungwirth,and A.H.MacDonald,Phys.Rev. B64,184423(2001);J.K¨o nig,J.Schliemann,T.Jung-wirth,and A.H.MacDonald,Physica E12,379(2002).

雅思口语Part2常考话题:有趣的地方

雅思口语Part2常考话题:有趣的地方 本文为大家收集整理了雅思口语Part2常考话题:有趣的地方。雅思口语Part2着重考察同学们的英语交流能力,同学们在备考阶段可以注意多积累素材,平时多模仿多练习,这样在考试中才不至于无话可说。 Describe an interesting place to visit Ok, I'd like to tell you about the temple of the Six Banyan Trees. It's located in the city center of Guangzhou and its not far away from Zhongshan 6 Road, near the People's Hospital. It's a good place to go to and climb to see the Flower Pagoda, which has eight sides to it. You can also go there to pray if you are a Buddhist. It is an active temple and is also the head of the Guangzhou Buddhist Association. You can also do a bit of shopping there if you like. Besides the souvenirs you can buy there, it also has a very lively fruit and meat market nearby, so if you just want to shop instead you can. The main feature of this place is the pagoda because it's the tallest in the city. From the outside it looks like it has only nine stories, but actually it has 17 inside. It's quite old, and was built some time in the 10th century. The temple itself is even older than that-I think it goes back to some time

(新)混凝土热工计算

混凝土热工计算: 依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。 砼强度为:C40 砼抗渗等级为:P6 砼供应商提供砼配合比为: 水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂 155: 205 : 110 : 10.63 : 110 : 1141 : 727 一、温度控制计算 1、最大绝热温升计算 T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ 式中: T MAX——混凝土的最大绝热温升; W——每m3混凝土的凝胶材料用量; m c——每m3混凝土的水泥用量,取205Kg/m3; FA——每m3混凝土的粉煤灰用量,取110Kg/m3; SL——每m3混凝土的矿粉用量,取110Kg/m3; UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3; K1——粉煤灰折减系数,取0.3; K2——矿粉折减系数,取0.5; Q——每千克水泥28d 水化热,取375KJ/Kg; C——混凝土比热,取0.97[KJ/(Kg·K)]; ρ——混凝土密度,取2400(Kg/m3);

T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400 T MAX=303.63×375/0.97×2400=48.91(℃) 2、各期龄时绝热温升计算 Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt); Th——混凝土的t期龄时绝热温升(℃); е——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。根据商砼厂家提供浇注温度 为20℃,m值取0.362 Th(t)=48.91(1-e-mt) 计算结果如下表: 3、砼内部中心温度计算 T1(t)=T j+Thξ(t) 式中: T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土 温度最高值; T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃; ξ(t)——t 龄期降温系数,取值如下表

2020雅思口语目标7分技巧

2020雅思口语目标7分技巧 雅思考试中,听力和阅读部分拿到高分相对容易些,提高水平,在考试中细心一些即可,但是口语想要拿到7分以上却并不简单。下面就和大家分享雅思口语目标7分,希望能够帮助到大家,来欣赏一下吧。 雅思口语目标7分?口语评分标准告诉你该怎么备考 雅思口语评分标准告诉你“流利度”如何拿7分 很多雅思口语提升攻略里都会提到雅思口语评分标准的四个方面,但对其做细化分析的并不多,比如,为什么你的口语只能拿6分?口语6分与7分的差异究竟表现在哪里?其实这些在评分标准中都有具体的区分。雅思口语7分在“流利度”方面要求大家“讲话时表达详尽,没有明显的不连贯现象,偶尔会有犹豫、重复或者自我纠正,能够灵活使用连词或者有标志性的词汇”,而口语6分的评分标准要求要低很多,具体的要求是“想要讲的详细,但是会因为重复、自我纠正和犹豫失去连贯性,能在口语中使用连词,但并不是所有连词都用的恰当”。 通过对比,我们发现,其实想要在“流利度”方面达到7分并不是特别难,7分有一定的容错度,只要大家不超出界限即可,偶尔犹豫可以,但整体要给考官一种你在自如自信表达的感觉。

针对流利度,建议大家在平时多做实际交流练习,尽可能多找机会与“native speaker”交流,锻炼英式思维的同时,也能提升表达欲望。 雅思口语评分标准告诉你“词汇”如何拿7分 雅思口语评分标准第二项,词汇。口语词汇如何才能达到7分标准呢?口语词汇7分要求大家“灵活使用词汇,能用一些非常见词汇和习语,了解语体和词汇搭配,可偶尔出现使用不当的情况”。具体分析,我们发现7分的词汇要求中,有一个点大家经常忽略,那就是“习语”。其实高端词汇大家在备考中都会用到,但是习语的使用却相对较少,而非常见习语的使用更是少之又少。所以小站君建议大家在备考雅思口语的时候积累一些地道习语,用在口语表达中,不仅仅是Part2,Part1和Part3也可以根据语境使用。如果大家能在口语表达中灵活使用一些让考官大家赞许的习语,分数自然也会有不错地提升。 雅思口语评分标准告诉你“语法”如何拿7分 雅思口语在“语法”方面的要求主要是多样性和准确性,而7分是口语高分的一个分水岭,所以也是语法使用的一个分水岭。“语法”方面想要拿到7分,大家必须“灵活使用复杂结构”,但是容许有一些不影响理解的语法错误。所以口语语法想要拿到7分,必须要掌握复杂句式的使用方法,并能灵活运用。这一点需

混凝土热工计算公式

冬季施工混凝土热工计算步骤 冬季施工混凝土热工计算步骤如下: 1、混凝土拌合物的理论温度: T0=【0.9(mceTce+msaTsa+mgTg)+4.2T(mw+wsamsa-wgmg)+c1(wsamsaTsa+wgmgTg) -c2(wsamsa+wgmg)】÷【4.2mw+0.9(mce+msa+mg)】 式中 T0——混凝土拌合物温度(℃) mw、 mce、msa、mg——水、水泥、砂、石的用量(kg) T0、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃) wsa、wg——砂、石的含水率(%) c1、c2——水的比热容【KJ/(KG*K)】及熔解热(kJ/kg) 当骨料温度>0℃时, c1=4.2, c2=0; ≤0℃时, c1=2.1, c2=335。 2、混凝土拌合物的出机温度: T1=T0-0.16(T0-T1) 式中 T1——混凝土拌合物的出机温度(℃) T0——搅拌机棚温度(℃) 3、混凝土拌合物经运输到浇筑时的温度: T2=T1-(at+0.032n)(T1-Ta) 式中 T2——混凝土拌合物经运输到浇筑时的温度(℃); tt——混凝土拌合物自运输到浇筑时的时间; a——温度损失系数 当搅拌车运输时, a=0.25 4、考虑模板及钢筋的吸收影响,混凝土浇筑成型时的温度: T3=(CcT2+CfTs)/( Ccmc+Cfmf+Csms) 式中 T3——考虑模板及钢筋的影响,混凝土成型完成时的温度(℃); Cc、Cf、Cs——混凝土、模板、钢筋的比热容【kJ/(kg*k)】; 混凝土取1 KJ/(kg*k); 钢材取0.48 KJ/(kg*k); mc——每立方米混凝土的重量(kg); mf、mc——与每立方米混凝土相接触的模板、钢筋重量(kg); Tf、Ts——模板、钢筋的温度未预热时可采用当时的环境温度(℃)。 根据现场实际情况,C30混凝土的配比如下: 水泥:340 kg,水:180 kg,砂:719 kg,石子:1105 kg。 砂含水率:3%;石子含水率:1%。 材料温度:水泥:10℃,水:60℃,砂:0℃,石子:0℃。 搅拌楼温度:5℃ 混凝土用搅拌车运输,运输自成型历时30分钟,时气温-5℃。 与每立方米混凝土接触的钢筋、钢模板的重量为450Kg,未预热。 那么,按以上各步计算如下: 1、 T0=【0.9(340×10+719×0+1105×0)+4.2×60×(180-0.03×719-0.01×1105)+2.1×0.03×719×0+2.1×0.01×1105×0-335×(0.03×719+0.01×1105)】/【4.2×180+0.9(340+719+1105)】=13.87℃ 2、 T1= T0-0.16(T0- T1)=13.87-0.16×(13.78-5)=12.45℃ 3、 T2= 12.45-(0.25×0.5+0.032×1)(12.45+5)=9.7℃

雅思口语7分词组 180组

雅思口语6-7.5分考前一个月必练词组,句子等180组 1名词词组: a few friends of mine an essential part There’s a great number of traffic accidents happened everyday. a good listener 一个很好的听众 all-round person 全方面人才 bright future 光明的未来 comprehensive skills 综合技能 cultural heritage 文化遗产 fitness center 健身中心 focus of attention 关注的焦点 internet café网吧 low salary/high salary 低薪水/高薪水 many aspects of life 生活的很多方面 modern society 现代社会 movie censorship电影审查制度 on-line shopping 网上购物 people of all ages各年龄段的人们 pleasant atmosphere 令人愉快的环境 pop song 流行歌曲 role model 偶像 scenic spot 景点 serious air pollution 严重的空气污染 the Imperial Palace/the Palace Museum 故宫 traffic jams in rush hours 高峰时期的塞车 valuable experiences 有价值的经历 well-rounded education 全面教育 2动词词组: 把我的思想从课业当中解脱出来:take my mind off my school work It’s located in… 确保某事:It can guarantee sth. to make sure this will not happen 给某人提供某物:provide sb. with sth. acquire a lot of knowledge one can not find in textbooks 学到书本上学不到的知识add to the opportunity/the success 增加机会/增加成功性 avoid health problems 避免亚健康/健康问题 be helpful/beneficial to 对…有利 be under too much pressure of school work 学校课业压力过重 become more aware of the importance of…越来越认识…的重要性 bring sb. up 把某人抚养长大 broaden one’s horizon 开阔眼界 do harm/good to children 对孩子有害/有利 do one’s best/utmost 尽某人最大力量 enforce laws 实施法律

雅思口语7分经验分享

雅思口语7分经验分享 雅思口语7分--既然选择出国,哪还在乎背一本机经,家带来了雅思口语7分经验分享,希望能够帮助到大家,下面就和大家分享,来欣赏一下吧。 雅思口语7分--既然选择出国,哪还在乎背一本机经 20XX-08-17 16:36新东方网整理分享到个人状况:大学勉强过四级,没考6级。工作后突然觉得学历不够,要继续读研,提高英语。于是断然辞职,用了将近半年多的时间复习,备考,战斗。 终于overall : 6.5 speaking:7 首先我想说的是,如果你英语不错,自认随便考考就可以考个7之类的朋友,建议你不要看此贴。因为你能力够好,不需要分享我的经验,我的每一步都是脚踏实地,没有运气,没有天赋,有的只是付出巨大的努力去换回应得的那一点点回报。 听力和阅读我就不多说了,基础不太好的同学,这两项应该都不会好到哪里去,所以我自认自己非常的努力,我的作文和口语从比这两项要考得好很多。

听力:我后来是每天坚持听BBC,并且听写下来,听力的单词一定要会拼写,我很遗憾,考了几次每次都有低级的单词拼写错误,所以一定要拼写下来。 阅读:我阅读一直没很大的提高,剑桥的书做了很多遍,有时做了7,有时6,考试还偶尔考个5.5,问题不知出在哪里,但多看总是没错的,我考完后因为读材料和自己申请,觉得阅读提高很多,现在再去考不知道会不会提高点。 重点我想说说口语和写作,这是我能分享的成功经验。我雅思先后考了4次,但庆幸每一次都有收获,没有浪费一分钱。没有之前的失败,不会有最后的成功,所以不管考几次,一定要自己认真总结。 但4次里面,我的口语都不低于6,之后是6.5,最后是7,稳步提升。我的经验就是我从不怯场,可能和工作有关,我的沟通能力较强,比较胆大,这可能也是我胜算的原因,还有一点就是:我努力。我准备了几乎所有的话题,每天背2——3个小时,也就是说我保持说口语的状态each day,并且说的都是和雅思考试相关的内容。 但这个很难坚持,我告诉很多人,他们都表示去死也不可能坚持每天说3小时口语。但,你如果不坚持,随便准备个十来个话题,我保证你必败,除非你就是运气好,再无其他。

大体积混凝土热工计算表格

大体积混凝土热工计算 1、绝热温升计算 Th= m c Q/Cρ(1-е-mt) 式中: Th—混凝土的绝热温升(℃); m c——每m3 混凝土的水泥用量,取270Kg/m3; Q——每千克水泥28d 水化热,取375KJ/Kg; C——混凝土比热,取0.97[KJ/(Kg·K)]; ρ——混凝土密度,取2400(Kg/m3); е——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变,取0.295; 计算结果如下表: t(d) 36912 Th(℃)25.5 36.1 40.4 42.2 2、混凝土内部中心温度计算 T1(t) =T j+Thξ(t) 式中: T1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值 T j——混凝土浇筑温度,取20℃(可采取浇筑当日的询平均气温) ξ(t)——t 龄期降温系数,取值如下表 底板厚度h(m) 不同龄期时的ξ值 36912 1.50.490.460.380.29 计算结果如下表 t(d)36912 T1(t)(℃)32.5 36.6 35.4 32.2 由上表可知,砼第 6 d左右内部温度最高,则验算第 6 d砼温差 2、混凝土养护计算 混凝土表层(表面下50-100mm 处)温度,底板混凝土表面采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。地下室外墙1200 厚混凝土表面,双面也采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。

①保温材料厚度 δ= 0.5h·λi(T2-T q)K b/λ·(T max-T2) 式中: δ——保温材料厚度(m); λi——各保温材料导热系数[W/(m·K)] ,取0.0267(阻燃草帘);λ——混凝土的导热系数,取2.33[W/(m·K)] T2——混凝土表面温度:14.4 (℃)(Tmax-25) T q——施工期大气平均温度:20(℃) T2-T q—--5.6 (℃) T max-T2—21.0 (℃) K b——传热系数修正值,取 1.3; δ= 0.5h·λi(T2-T q)K b/λ·(T max-T2)*100=-0.30 cm 故可采用一层阻燃草帘并在其上下各铺一层塑料薄膜进行养护。 ②混凝土保温层的传热系数计算 β=1/[Σδi/λi+1/βq] 式中:β——混凝土保温层的传热系数[W/(m2·K)] δi——各保温材料厚度 λi——各保温材料导热系数[W/(m·K)] βq——空气层的传热系数,取23[W/(m2·K)] 代入数值得:β=1/[Σδi/λi+1/βq]=###### ③混凝土虚厚度计算: hˊ=k·λ/β 式中: hˊ——混凝土虚厚度(m) k——折减系数,取2/3; λ——混凝土的传热系数,取2.33[W/(m·K)] hˊ=k·λ/β=-0.107 ④混凝土计算厚度:H=h+2hˊ= 1.29 m ⑤混凝土表面温度 T2(t)= T q+4·hˊ(H- h)[T1(t)- T q]/H2 式中: T2(t)——混凝土表面温度(℃) T q—施工期大气平均温度(℃) hˊ——混凝土虚厚度(m) H——混凝土计算厚度(m)

雅思口语Part2参考答案之你去过的城市

雅思口语Part2参考答案之你去过的城市 一、参考范文 Sydney is my most favorite city among the cities I have visited. Sydney is the state capital of New South Wales of Australia. This city is situated in the bank of Tasman Sea and has around 4.6 million people. I have visited this city in 2008, after I finished my graduation and loved my stay there. Sydney had many attractive natural area, botanic garden, parks, and high rising buildings. This city has many heritage listed building that attracts the tourists and visitors. The Sydney Opera House is one of the most recognized landmarks in Australia and is a great place to visit. This city is known for the dynamic cultural hub and it has many famous museum, galleries and art galleries as well. Because of the great architecture, warm weather and hundreds of tourists attraction more than 11 million international and domestic tourists visit this city each year. I had been there for about 15 days and I really enjoyed everything about this city. I stayed at a 20 storied hotel that offered a really amusing sight views. The transportation system of the city is better than many other cities and I could have been maintaining the track and time of my schedules because of that. I loved being at open & wide spaces in the gardens and parks. People are welcoming and friendly there. A tourist can get plenty of helps both from people and the authority and can roam easily without any interruption. I saw 2/3 art museum and some cultural festivals and those were awesome.

雅思口语7分的7个规则和4个要点

雅思口语考试七规则,四要点 雅思口语考试七规则: 1. 心态 无论考什么试,心态都是很重要的。要有信心,不要怕。我见过很多学生,考口语的时候,出来说话都发抖。这有什么好怕?真是奇怪,就是进去说说话嘛。如果要工作也要面视嘛。不做作,给考官一个很好的第1印象。 2.当你进到考场里的时候,你坐下,然后考官说你不要紧张,等等。你不要说:“我一点也不紧张呀。”这个话说出来是很不礼貌的。反而,你说,谢谢,I feel morecomfortable now.也会收到以外的后果。 3. 不要去背一些机警的口语,这回限制你的发挥。看看是可以的,增加一下自己的思路,背的话,分就significantlydropped。希望大家记住这点。很重要。 4. 当考官问的问题,你不是很了解,或者不知道的时候,你要婉转的拒绝。For example, I can talksomething wot u know, and say: that wot i know about..., I have less experiencein these kind of .... . So could we change another one. I think I can talk umore. 等等类似的话。 5. 回答的答案不要大众化,要有自己的特色。外国人喜欢幽默和有个性的人。你如果一味的说谁都知道的事情,大家都会感到SLEEPYAND BORING。 6. 当你考完了以后,也不要去问考官关于自己的不足,等等。这个是违规的。 7. 大胆去说,如果发现不对,即时改更改,用i mean等词。 雅思口语考试四要点: 1. 流利度。这是最首要的,需要大家在雅思考试中说话时不要总是中断,嗯嗯啊啊的。这也是一个语言熟练度和思维的问题。如果你一句话说得很熟,就不会出现打梗;如果你思维开阔,就不会上句接不了下句。这需要大家以句子为单位操练(非单词),同时看大量的英文材料扩展讲话素材。 2. 语音和语调。很多人发音不好似乎是先天的,且与当地的口音有关系。如果你普通话都讲不好,在雅思口语考试时发音也很难标准。语调方面,注意英语升降调的规律,说话尽量有升有降,抑扬顿挫,不要全部一个调调,听起来像机器人。在雅思口语准备过程中发音的训练靠多听多模仿,这方面的资源很多,不再赘述。 3. 词汇丰富度。这方面不需要过分夸大口语和书面语词汇的区别。但是雅思口语方面的词汇还是应该尽量积累的,尤其是习语和动词短语(不要告诉我你不知道是什么)。见过雅思的三个不同考官的经验告诉我,口语考试中,如果你能时常蹦出一个比较“高档”的词汇(如

混凝土热工计算步骤及公式

冬季混凝土施工热工计算 步骤仁 出机温度T,应由预拌混凝土公司计算并保证,现场技术组提出混凝土 到现场得出罐温度要求。 计算入模温度T 2: (1) 现场拌制混凝土采用装卸式运输工具时 T 2=T-AT y (2) 现场拌制混凝土采用泵送施工时: T 2=T-AT b (3) 采用商品混凝土泵送施工时: T 2=T-AT-AT b 其中,AT y . 分别为采用装卸式运输工具运输混凝土时得温度降低

与采用泵管输送混凝土时得温度降低,可按下列公式计算: ATy= ( a ti+O> 032n) X (L- Ta) 3.6 I)w 叫= =4u)x x AT. x x d h C r x p r x D7 0.04 + — L L L 式中: T 2——混凝土拌合物运输与输送到浇筑地点时温度(°C) △ Ty——采用装卸式运输工具运输混凝土时得温度降低CC) △Tb——采用泵管输送混凝土时得温度降低(°C) AT.——泵管内混凝土得温度与环境气温差(°C),当现场拌制混凝土 采用泵送工艺输送时:AL= T-「;当商品混凝土采用泵送工艺输送时:△ T F T- T- Ta T a ——室外环境气温(°C) t.——混凝土拌合物运输得时间(h) t2——混凝土在泵管內输送时间(h) n ——混凝土拌合物运转次数 Q ——混凝土得比热容[kj/(kg ?K)] p c ——混凝土得质量密度(kg/m 3) 一般取值2400 X b ——泵管外保温材料导热系数[W/ (ni ?k)] d b ---泵管外保温层厚度(m) D L ——混凝土泵管内径(m) D w ——混凝土泵管外围直径(包括外围保温材料)(m) CD ——透风系数,可按规程表A. 2. 2-2取值 a ——温度损失系数(h"1);采用混凝土搅拌车时:a 二0、25;采用开敞式 大型自卸汽车时:a 二0、20;采用开敞式小型自卸汽车时:a 二0、30;采用封 闭式自卸汽车时:a=:o 、1;采用手推车或吊斗时:a 二0、50 步骤2:考虑模板与钢筋得吸热影响,计算成型温度T3 CdiuT 2 + Cfin(Tf + Csin^Ts C(nk + Cjnif + C.v/n.v Cc --- 混凝土比热容(kj/kg ?K)普通混凝土取值0、96 C f --- 模板比热容(kj/kg ?K)木模2、51,钢模0、48 C s ——钢筋比热容(kj/kg ?K)o 、48 me --- 每混凝土重量(kg) 2500 m f --- 每m 3混凝土相接触得模板重量(kg) T3=

雅思口语Part2常考话题:在学校里美好的一天

雅思口语Part2常考话题:在学校里美好的一天本文收集整理了雅思口语Part2常考话题:在学校里美好的一天。雅思口语Part2着重考察同学们的英语交流能力,同学们在备考阶段可以注意多积累素材,平时多模仿多练习,这样在考试中才不至于无话可说。 I was trying to think of my best day. You know, my life at school seems so long ago. I can remember an occasion when I won first prize in a singing contest, and I think that had to have been my best day at school. The competition was held outside the school, and we had a stage set up for each of us to sing. The sound quality was not very good since it was an outdoor competition, but I suppose that might have acted in my favour, since I really don't think I am that good of a singer. But anyway, I can remember feeling on stage as nervous as anything, and just closing my eyes and letting myself sort of float in my imagination. I imagined this was my profession, and I thought of myself as a famous person-but I can't remember who it was, it was so long ago. Anyways, after the song was finished I remember people were giving me quite a good applause. When my name was announced as the winner I felt like flying again. You know,' it was something that meant so much to me just to be on stage, but to actually also land first prize was something else. Now that I

围护结构热工性能及权衡计算--软件说明

围护结构热工性能的权衡计算 ―――软件说明 当进行围护结构热工性能权衡计算时,需要应用动态计算软件。由中国建筑科学研究院建筑物理研究所开发的建筑能耗动态模拟分析计算软件,适用于办公建筑及其它各类公共建筑的建筑节能设计达标评审。其计算内核为美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)开发的DOE-2程序,可以对建筑物的采暖空调负荷、采暖空调设备的能耗等进行全年8760小时的逐时能耗模拟。 在标准宣贯和使用过程中,大量采取能耗分析软件的主要原因在于:标准对性能化设计方法的要求以及权衡判断(Trade-off)节能指标法的引入。 首先,在标准中设置了两种指标来控制节能设计,第一种指标称为规定性指标,第二种指标称为性能性指标。规定性指标规定建筑的围护结构传热系数、窗墙比、体形系数等参数限值,当所设计的建筑能够符合这些规定时,该建筑就可判定为符合《标准》要求的节能建筑。规定性指标的优点是使用简单,无需复杂的计算。但是规定性指标也在一定程度上限制了建筑设计人员的创造性。性能性指标的优点在于突破建筑设计的刚性限制,节能目标可以通过调整围护结构的热工性能等措施来达到。也就是说性能性指标不规定建筑围护结构的各种参数,但是必须对所设计的整栋建筑在标准规定的一系列条件下进行动态模拟,单位面积采暖空调和照明的年能耗量不得超过参照建筑的限值。因此使用性能性指标来审核时需要经过复杂的计算,这种计算只能用专门的计算软件来实现。 同时,从实际使用情况来看,近年来公共建筑的窗墙面积比有越来越大的趋势,建筑立面更加通透美观,建筑形态也更为丰富。因此,传统建筑设计中对窗墙面积比的规定很可能不能满足本条文规定的要求。须采用标准第4.3节的权衡判断(Trade-off)来判定其是否满足节能要求。 图B-1 公建标准权衡判断(Trade-off)评价流程

雅思口语7分对于part1的要求

雅思口语7分对于part1的要求 如何提高雅思口语成绩?今天给大家带来了雅思口语7分对于part1的要求,希望能够帮助到大家,下面就和大家分享,来欣赏一下。 雅思口语7分对于part1的要求 众所周知,雅思口语考试一共分为3个部分,考试时间为11-14分钟,那么问题来了,如何在如此短的时间内“征服”你们的考官?不论他是面挂迷之微笑,亦或满目苍凉,还是摇头无奈,搞定他们分分钟不在话下。要问我口出狂言的底气在哪里,答案就在这篇*中。当童鞋们一听到口语7,不禁会纷纷惊厥,怎么做到的?其实就是一句话“漂亮的开头,华丽的结尾”。 在口语的三个部分中,part1无疑是大家留给考官们的first impression。虽说不能一语定乾坤,但是从印象分来说不得不引起大家的注意。从口语评判的四个维度分析来看,若想拿到7分,就得做到表达详尽,无明显困难,或不失连贯,具有一定灵活性地使用一系列连接词。灵活地使用词汇讨论各种话题,使用一些非常见的词汇及习语,对语体及词汇搭配有所认识,能够有效地进行改述;较灵活地使用一系列复杂的语法结构,虽然反复出现一些语法错误,但语句通常正确无误;发音表现出6分水平中所

有积极表现,但也表现出8分水平中部分积极表现。概括成一句话,就是“低错误率,高产出值”。在part1中,大家通常会被问到五大类题型:个人信息类、个人喜好类、休闲类、技能类、抽象类。若想一举将它们拿下,就要学会使用功能型结构词及万能语料。这就要求大家“先打扫干净屋子再请客人”,将脑海中固有的一些“口水话”全部摒弃,再给大脑注入新鲜的氧气和血液。譬如,当大家想表达因果关系时,不应一张嘴就是because,so,我们可以适当的使用for this reason,accordingly,as a consequence,on this account等诸如此类的口语表达;当想表达喜爱时,不能想当然就是I like,而应该多用用I’m fairly keen on、I’m really into、I simply adore、I am pretty fond of……,让表达不落入俗套。对于part1的问题,大多数还是关乎大家的个人信息以及个人喜好,所以回答起来也是驾轻就熟,相信答案的key words 大部分的鸭鸭们都是可以想到的,关键是如何将这些idea用两三句话完美无误的表达出来。需要注意几点:一是注意时态。明明问的是上周的活动,就不要再用一般现在时啦;二是注意句式的变化。不要一味依赖靠谱的简单句,认为祸从口出,就不敢多说,其实考官期待的是你主动与他们交流,尽可能多的描述事件的细节或者是给出相应的实例,增强答案的信服度,同时也可以增加答案的长度。譬如,in 20XX就可以变为in the year of 20XX;三是注意用词,避免cliché。尽可能使用一些高端大气上档次的词汇及词组,譬如,将nice替换成fabulous,terrific,marvelous

雅思口语part2文稿

Street that you like to visit_where, how often, what do you like to do, why you like there I’d like to talk about a street ,a gathering place of non government organizations.,which is located in the function of zhongnan road and zhongshan road in wuhan city in china .There are more than 50 ngo established and ran on this street so you can always see many energetic college volunteers passing out leaflets about caring aids children here or some street performance which are aim to hencing public’s environmental awareness.i often go to this street, about once a week to take part in some voluntary activities or visit my friends who works in a foundation there, besides, some education salons also attract me a lot, it feel so free to sit in the coffee bar on the street with a group of persons who all pays more attention to chinese basic organization. I thinks , this is a place that reflect my dream because i do really want to be a professional person work on public service to help children in remote areas to receive basic education for my strong belief that........ What sport you would like to try for the first time What, how, equipment, why you want to learn this I’d like to talk about GAONAO, a kind of Chinese traditional sport i’d like to learn. I want to learn this because more than 80percent of students in my university can play it well and i do really admire them. Besides, my boyfriend is a crazy player of gaonao so in order to create our common interest and play it with him, i plan to learn it. At last, i think this sport is so interesting which probably could attract many foriners to play, so i want to recommend and teach this chinese traditional sports to others when i study abroad which is beneficial for me to make friends. The only equipment used is a small foot bag and the playing method is very easy, you have to throw foot bag very high and run to receive it with another person by leg within 1mins. And two other persons would try to stop both of you. If your competitor receive the foot bag first rather than you , you would fail.i will learn it form my patient and professional boyfriend. A photo of yourself Where you took it When you took How,\ How you felt about it I’d like to talk a photo of myself by a selfie stick in a special spot, bathroom in my dorm, recording my most frustrating but bravest moment in my university. My most

黄瀚生雅思口语Part2话题

人物 —A good student A good student that I have studied with was Tom. Tom was my high school classmate and he was our class monitor. He always got top marks in our class. For example when most people scored a 60 on the test. Tom would always get 80 or 90. So his scores were always better than others. We studied together during the weekend at the library and during weekdays we studied together in the classroom. We were really good friends and we always help each other. I remember Tom would always help me with my English because it was my weakest subject. Through his help my English improved a lot. Besides studying, we also had many common interests such as doing sports and playing games. I think he was a good student because he was hardworking and diligent. In high school many students studied to 6pm and went home to play, but Tom would always study until 9 or 10. He puts in a lot more work than others so that’s why I think he is also a motivated person. Most importantly. I feel that he sets high standards fo r himself and that’s the reason for his success. --A good parent Someone I know who I think is a good parent is my mother. My mother is the matriarch of my family, she is a kind and understanding person. She has so much love in her that makes all the kids in my family love her. Although she is not the bread winner of the family, she makes many important decisions in my family. My father will often ask my mother’s opinion before he does something. To me my mom is like my friend, I can talk to her about everything, whether it’s about my relationship, my studies or my social circle. No one knows me better than my mom. My mother will always be there to give me encouragement and gives me constructive feedback. My mother is also a knowledgeable person, when I was young, whenever I had about my homework, she would always help me. She really sets a good example for me, I received lots of influences from her. I think she is the perfect example of a good parent. --A famous person A famous person who has impressed me was Steve Jobs. Steve jobs is the founder of Apple. I remembered the first time I knew about him was when I got my first apple product which was the Ipad. At that time I only knew him as the founder of Apple. As I started to use more and more apple products, I felt Jobs became closer to life. When he died, I read his biography and I started to admire him. He started as a college dropout with a dream and passion for greatness. He was an innovative genius who made products that would change our lives. His pursuit of perfection made Apple become a leader in the IT industry. What impresses me the most is that Jobs is a bold person. He is willing to do and try things that most people can only imagine. I think I learned a lot from Jobs and as a young person, I think we need to be like him. We often times only think but never take the initiative. So this is a famous person that has really impressed me. 地点

相关文档
最新文档