板材最小弯曲半径数值

板材最小弯曲半径数值

最小弯曲半径数值

注 1.当弯曲线与纤维方向成一定角度时,可采用垂直和平行纤维方向二者的中间值。

2.在冲裁或剪切后没有退火的毛坯弯曲时,应作为硬化的金属选用。

3.表中t为板料厚度。

电缆弯曲半径的现场简便测量

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 电缆弯曲半径的现场简便测量 随着经济的发展,城市化的进程日益加速,城市电网中电力电缆的使用不断增加。 北京市三环路以内所有新建输电线路几乎全部使用电缆。 此外,城网架空线入地工程也在大范围内实施。 电缆安全运行的关键因素是其绝缘的良好程度和内部电场分布的均匀性。 电缆弯曲半径是电缆敷设施工及运行中保证其绝缘性能的主要指标。 所谓弯曲半径,是指工程上把弯曲的电缆近似看做一段圆弧,圆弧所在圆的半径即为此弯曲电缆的弯曲半径。 如果电缆在敷设施工或运行中弯曲半径小于规定值,会直接导致其结构的破坏,最终致使绝缘击穿,酿成安全质量事故。 因此,工程实践中大量存在着对弯曲半径进行测量及判断的问题。 本文就是要寻求一种简便且准确测量电缆弯曲半径的方法,以期正确判断其符合性,并希望能对电缆敷设施工做一些预防性的指导。 由于电缆工程作业区狭窄,要求测量方法有如下特点:原理正确,方法简便,结果准确。 1 现状分析目前工程实践中,电缆的最小弯曲半径规定值一般有三个标准: ?设计值,规范的施工图设计,都会明确给出施工时和运 1/ 10

行时的最小弯曲半径值; ?电缆生产厂家提供值; ? 《电气装置安装工程电缆线路施工及验收规范》(GB 50168-92)中第 5.1.7 条的规定。 较大的电缆弯曲以目测就可以判定其合格,即:观察曲线形状,假定其圆心点,自假定的圆心至最近的电缆本体,用直尺测量出其距离,即为电缆弯曲半径。 如果弯曲较小,就必须经测量而得出具体的数值,再与标准值进行比较。 怎样才能简便、准确的进行测量?首先要建立相应的数学模型。 2 区别不同现场情况,分别建立数学模型 2.1 只可于曲线内侧量取数值如图 1,理论公式为 R = b /(8a) + a/2 应用此法量取 a、b 两数值,即得 R 值。 可称其为“弦高法”。 2

如何计算抛物线点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径 对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

最新最小相对弯曲半径

第四节最小相对弯曲半径 一、最小相对弯曲半径的概念 前已叙及,弯曲时的相对弯曲半径r/t表示了弯曲时变形量的大小。当r/t小到一定值后,板料外侧纵向材料可能会因变形过大而产生破裂,或使板料断面出现大的畸变,厚度变薄严重,从而影响弯曲件的质量。增大r/t值,可减少或避免上述缺陷,但当r/t变得过大后,板料内的弹性变形区增大,塑性变形不充分,致使弯曲后回弹大,工件的圆角半径及角度不易保证。因此弯曲时,合理的相对弯曲半径r/t值应取在上述两种范围内。 防止外层纤维拉裂的极限弯曲半径,称为最小弯曲半径,以r min/t来表示。由式(3-2)知,在最大应变中,不拉裂时的r/t就是弯曲半径的最小值,即: (3-28) 二、影响最小相对弯曲半径rmin/t的因素 (一)材料的力学性能 材料的塑性越好,塑性指标如伸长率、断面收缩率等越高,便可采用越小的弯曲半径。材料的力学性能还受材料热处理状态的影响,如退火或正火后,因恢复、提高了材料的塑性,r min/t亦可减小。 (二)板料的纤维方向 冲压所用的板材多为冷轧板材,由于经过多次轧制,板材具有方向性,顺着纤维方向(轧制方向)的塑性指标大于垂直于纤维方向的指标。因此当弯曲件的折弯线与板料纤维方向相垂直时,最小相对弯曲半径r min/t的数值最小;如果折弯线与板料纤维方向平行,r min/t的数值最大(图3-13)。 图3-13板料纤维与弯曲关系

在弯制r/t较小的弯曲件时,弯曲件在板料上的排样应使折弯线尽可能垂直于板料的纤维方向,当r/t较大时,折弯线的布置主要是考虑材料利用率的大小。如果在同一零件上具有不同方向的弯曲,在考虑弯曲件排样经济性的同时,应尽可能使弯曲线与纤维方向夹角不小于30°,见图3-14。 图3-14纤维线与弯曲线夹角 (三)板料的表面质量和侧边质量 板料表面有划伤、裂纹或板料侧边(剪切面)有毛刺、裂口及冷作硬化等缺陷时,弯曲中工件容易开裂,使材料过早地破坏。表面质量和侧面切口质量较差的板料,允许采用的变形程度较小,即r min/t值较大。较小的r min/t弯曲时,可采取下述措施,如清除剪切毛刺、把有毛刺的表面朝向弯曲凸模、去掉表面硬化层等后再进行。 (四)零件的弯曲角α 板料弯曲时,变形集中在圆角部分,直边基本不参与变形。但由于板料纤维之间的相互牵制,靠近圆角附近的直边材料也参与了弯曲变形。这对于弯曲区外层的受拉状态有缓解作用,因而有利于降低最小弯曲半径。弯曲角α越小,直边参与变形的分散效应越显著,图3-15中的rmin/t也越小,α<90°时的影响很大,但α>90°后,弯曲角的影响已很小了。 图3-15弯曲角α与r min/t值的关系 (五)板料的厚度

电缆弯曲半径的现场简便测量

随着经济的发展,城市化的进程日益加速,城市电网中电力电缆的使用不断增加。北京市三环路以内所有新建输电线路几乎全部使用电缆。此外,城网架空线入地工程也在大范围内实施。 电缆安全运行的关键因素是其绝缘的良好程度和内部电场分布的均匀性。电缆弯曲半径是电缆敷设施工及运行中保证其绝缘性能的主要指标。所谓弯曲半径,是指工程上把弯曲的电缆近似看做一段圆弧,圆弧所在圆的半径即为此弯曲电缆的弯曲半径。 如果电缆在敷设施工或运行中弯曲半径小于规定值,会直接导致其结构的破坏,最终致使绝缘击穿,酿成安全质量事故。因此,工程实践中大量存在着对弯曲半径进行测量及判断的问题。 本文就是要寻求一种简便且准确测量电缆弯曲半径的方法,以期正确判断其符合性,并希望能对电缆敷设施工做一些预防性的指导。由于电缆工程作业区狭窄,要求测量方法有如下特点:原理正确,方法简便,结果准确。 1 现状分析 目前工程实践中,电缆的最小弯曲半径规定值一般有三个标准: ?设计值,规范的施工图设计,都会明确给出施工时和运行时的最小弯曲半径值; ?电缆生产厂家提供值; ?《电气装置安装工程电缆线路施工及验收规范》(GB 50168-92)中第5.1.7条的规定。 较大的电缆弯曲以目测就可以判定其合格,即:观察曲线形状,假定其圆心点,自假定的圆心至最近的电缆本体,用直尺测量出其距离,即为电缆弯曲半径。如果弯曲较小,就必须经测量而得出具体的数值,再与标准值进行比较。怎样才能简便、准确的进行测量?首先要建立相应的数学模型。 2 区别不同现场情况,分别建立数学模型 2.1 只可于曲线内侧量取数值 如图1,理论公式为 R = b2/(8a) + a/2 应用此法量取a、b两数值,即得R值。可称其为“弦高法”。

关于钣金折弯半径

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 钣金折弯: 折弯件的最小弯曲半径 材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径见下表。 序号 材料 最小弯曲半径 08、08F、10、10F、DX2、SPCC、E1-T52、0Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、1100-H24、T2 0.4t 15、20、Q235、Q235A、15F 0.5t 25、30、Q255 0.6t 1Cr13、H62(M、Y、Y2、冷轧) 0.8t 45、50 1.0t

55、60 1.5t 65Mn、60SiMn、1Cr17Ni7、1Cr17Ni7-Y、1Cr17Ni7-DY、SUS301、0Cr18Ni9、SUS302 2.0t 转载请注明出自https://www.360docs.net/doc/1116892788.html,/bbs 弯曲半径是指弯曲件的内侧半径,t是材料的壁厚。 t为材料壁厚,M为退火状态,Y为硬状态,Y2为1/2硬状态。 公司常用金属材料最小折弯半径列表 弯曲件的直边高度 一般情况下的最小直边高度要求 弯曲件的直边高度不宜太小,最小高度按(图4.2.1)要求:h>2t。 图4.2.1.1 弯曲件的直边高度最小值 特殊要求的直边高度 如果设计需要弯曲件的直边高度h≤2t,,则首先要加大弯边高度,弯好后再加工到需要尺寸;或者在弯曲变形区内加工浅槽后,再折弯(如下图所示)。 图4.2.2.1 特殊情况下的直边高度要求 弯边侧边带有斜角的直边高度 当弯边侧边带有斜角的弯曲件时(图4.2.3),侧面的最小高度为:h=(2~4)t>3mm 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 图4.2.3.1 弯边侧边带有斜角的直边高度 折弯件上的孔边距 孔边距:先冲孔后折弯,孔的位置应处于弯曲变形区外,避免弯曲时孔会产生变形。孔壁至弯边的距离见表下表。(目前对于本条,本人常用的方法

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

弯曲半径与纤维直径的关系

弯曲半径与纤维直径的关系 张聪 (重庆国际复合材料有限公司总工室) 摘要:玻璃纤维在外力作用下,具有一定的抗弯曲能力,人们通常将玻璃纤维这种物理特性称为柔性。当其弯曲弧度逐渐加大,曲率半径逐渐减小到一定程度时,就会发生断裂,本文在检测玻璃纤维拉伸断裂率的基础上,通过弯曲变形理论公式来推导弯曲半径与纤维直径的关系,并探讨如何增强纤维抗弯曲能力。 关键词:玻璃纤维;弯曲半径;纤维直径;拉伸断裂率 1 引言 玻璃纤维具有良好的绝缘性能、机械强度、耐热性、耐腐蚀性及柔韧性,被广泛用于织布、制毡或制成纱线等。然而当今社会上纤维品种繁多,除玻璃纤维外还有碳纤维、植物纤维及各种矿物棉,如何从表观上(显微镜或SEM观察)来区分他们呢? 本文将通过研究玻璃纤维弯曲半径的特性,用符合材料力学的理论公式,推导计算弯曲半径大小的方法,对比真实弯曲半径与理论弯曲半径,以辨别产品中的纤维状物质是否为玻璃纤维。 2 拉伸变形 2.1 失效及强度计算 构件或结构不再起预定作用的状态或情况被称之为失效,主要有几下几种:弹性失效、滑移失效、蠕变失效和断裂失效,前三种为塑性材料失效,而断裂是脆性材料失效时的显著特征。 脆性失效也即是材料的完全断裂。强度计算方面,以脆性材料断裂时的应力和塑性材料到达屈服时的应力作衡量指标,即强度极限σb和屈服极限σv作为构件失效时的极限应力σu。为保持构件有足够的强度,在载荷作用下构件的实际应力或称工作应力显然应低于极限应力σu。强度计算中,脆性材料[σ]表示如下: [] b b n σ σ= 上式中 b n为安全系数,是人为选定的一个数,反映了构件规定多少倍的强度储备,合理选定安全系数是一个很重要且复杂的问题,确定安全系数须考虑以下几个因素:(1)材料的均匀性; (2)载荷估计的准确性;(3)计算简图及计算方法的 准确性。为确保结构不被破坏, max σ≤[σ]。 2.2 拉伸变形 如前所述,失效可能是由于过大的弹性变形引起的,由图1所示:设等直杆的原长度为l,横截面积为A,承受一对轴向拉力P的作用而伸长,则有: l l l- = ?1

管材最小弯曲半径

d k 无缝钢管不锈钢管 不锈无缝钢管焊接钢管d K 壁厚R d K 壁厚R d K 壁厚R d K 壁厚 R l 最小热冷68101214141618182022 253232383844.54557 57 76 89102108133159159194219245273325371111.51.51.531.51.531.53333.533.533.53.5444 444.566668810 1515202530183040284050506060807010090110150180220270340450420500500600700800900 1418(22)2532384557(76)89102(108)133139 22222.52.52.52.53.54444 18285050607090110225250360400450 681012141618202225323841577689102108133159194219111.51.51.51.51.51.51.533334446661012 151520253030404060608080100180220270340420600800900 13.51721.2526.7533.542.25486075.588.5114125150 41″83″21″43″1″141″121″2″221″3″4″5″6″ 2.752.75 3.253.253.53.53.7544 40506580100130150180225265340400500 80100130160200250290360450530680 404550557085100120150170230 中国第一重型机械集团公司标准 管材最小弯曲半径 CFHI SD 圆圆猿原2008代替YZB 223-89 中国第一重型机械集团公司2008-12-01批准 2008-12-31实施mm 1 1 返回总目录 返回分目录 后退后退 返回分目录返回总目录

如何计算抛物线某点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

电缆的最小弯曲半径

电缆的最小弯曲半径 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电缆弯曲半径与电缆外径最小比值电缆护套类型 电力电缆其他电缆 单芯多芯多芯 金属护套 铅251515 铝303030 皱纹铝套和皱纹钢套202020 非金属护套2015无铠装10有铠装15 不同标准中电缆弯曲半径的差异 不同标准中电缆弯曲半径的差异 1.电线电缆制造标准 ①GB12706-2002 《35kV及以下塑料绝缘电力电缆》表1 电缆最小允许弯曲半径 项目 单芯电缆三芯电缆 无铠 装 有铠 装 无铠 装 有铠装 安装时的电缆最小弯曲半 径 20D 15D 15D 12D 靠近连接合和终端的电缆 的最小弯曲半径 15D 12D 12D 10D 注:D为电缆外径。 ②GB9330-88《塑料绝缘控制电缆》 无铠装电缆,应不低于电缆外径的6D;

铠装或铜带屏蔽电缆,应不低于电缆外径的12D; 屏蔽软电缆,就不低于电缆外径的6D。 注:D为电缆外径。 2. GB50303-2002《建筑电气工程施工质量验收规范》 电缆桥架转弯处的弯曲半径,不小于桥架内电缆最小允许弯曲半径,电缆最小允许弯曲半径见表2。 表2 电缆最小允许弯曲半径 低压配电设计规范 根据GB50054-95低压配电设计规范中第条电缆敷设的弯曲半径与电缆外径的比值,不应小于表3的规定。 表3 电缆弯曲半径与电缆外径比值

注:①表中未说明者,包括铠装和无铠装电缆; ②电力电缆中包括油浸纸绝缘电缆(不滴流电缆在内)和橡塑绝缘电缆,其它电缆指控制信号电缆等。

相关主题
相关文档
最新文档