数形结合思想例题选讲

数形结合思想例题选讲
数形结合思想例题选讲

数形结合思想例题选讲

数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。

应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象

(3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线

以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法;

以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。 例题选讲

类型一:集合的运算及韦恩图

利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。

例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。()M P S ().I C M P S e ().I D M P S e 解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P ),

且在S 的外部(转化为集合语言就是C I S ),故选C 。通过上述例子,我们知道:当应用题中牵涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。

类型二:图表信息题

此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解决问题的关键是从已知图形(图表)中挖掘信息.

例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设

点P 运动的路程为x ,ABP ?的面积为)(x f .如果函数)(x f y =的图象如图(2),则ABC ?的面积为( )

A .10

B .16

C .18

D .32

解:由)(x f y =图象可知,当04()0x f x →由时由变最大,说明,BC 4= 由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即CD=5. 所以AD=14-9=5,过D 作DG AB ⊥则DG=BC=4

3=∴AG ,由此可求出AB=3+5=8.

A B C D P 图(1)

16482

1

21=??=?=

?BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据:

现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是

A .y =2x -2 B.y =

21(x 2

-1) C.y =log 2x D.y =log 2

1x 解:解法一:把表中x 的数值取整数代入下列函数中逐一计算,近似估算,最接近y 值的一个函数为()2

112

y x =

-.故选B. 解法二:把表中()y x ,近似描点连线,对照可得最接近的函数为()2

112

y x =-的图象.故选B.

类型三:解析几何中直线与曲线

例4.曲线y =1+24x - (–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r 的取

值范围

解析 方程y =1+24x -的曲线为半圆,

y =r (x –2)+4为过(2,4)的直线

答案 (

4

3,125] 类型四:方程(多指二元方程)及方程的曲线交点问题

例5.已知最小正周期为2的函数y=f(x),当x ∈[-1,1]时,f(x)=x 2

,则函数y=f(x)

(x ∈R )的图象与y=|log 5x|的图象交点个数为( )

A.2

B.3

C.4

D.5

解:本题考查周期函数的图象和性质,对数函数的图象和性质及含有绝对的函数的图

D.

类型五:二次函数类型

例6.设f (x )=x 2–2ax +2,当x ∈[–1,+∞)时,f (x )>a 恒成立,求a 的取值范围

解法一 由f (x )>a ,在[–1,+∞)上恒成立 ?x 2–2ax +2–a >0在[–1,+∞)上恒成立

x x

考查函数g (x )=x 2–2ax +2–a 的图象在[–1,+∞]时位于x 轴上方 如图两种情况

不等式的成立条件是

(1)Δ=4a 2–4(2–a )<0?a ∈(–2,1)

(2)???

?

??>--<≥?0)1(1

0g a a ∈(–3,–2], 综上所述a ∈(–3,1)

解法二 由f (x )>a ?x 2+2>a (2x +1)

令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象

如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2直线的斜率)分别为1,–3, 故直线l 对应的a ∈(–3,1)

类型六:函数知识解应用题

函数知解应用题的题型比较丰富,一般为中档题,其中对于建立的各种数学模型,要能够模型识别,充分利用数学方法加以解决,并能积累一定数量的典型的函数模型,这是顺利解决实际问题的重要资本.

例7.某医药研究所开发一种新药.如果成年人按规定的剂量服用,据检测,服药后每

毫升血液中的含药量y (毫克)与 时间t (小时)之间的函数关系近似满足如图所示曲线.

据进一步测定,每毫升血液中含药量不少于0.25治疗疾病有效.则服药一次治疗该疾病有效的时间为( A. 4小时 B. 47

8 小时

C. 415

16

小时 D. 5小时

解:由已知图象可得, 01,()1(), 1.2t a kt t f x t -<≤??

=?->??将点(1,4)代入可得4k =,3a =.

∴34, 01,

()1(), 1.2

t t t f x t -<≤??

=?->??

令()0.25f x ≥可得40.25,11,0116t t t ≥??≤≤?<≤?或3

1,

151()0.25,2

t t t ->??

?<≤?-≥??, ∴

1516t ≤≤, 从而得服药一次治疗该疾病有效的时间为115

5-41616=,故应选C. 类型七:创新题

例8.如图,三台机器人123,,M M M 和检测台M (M 与123,,M M M 均不能重合)位

于一条直线上,三台机器人需把各自生产的零件送交M 处进行检测,送检程序设定:当1M 把零件送达M处时,2M 即刻自动出发送检,当2M 把零件送达M 处时,3M 即刻自动出发送检,设2M 的送检的速度为v ,且送检速度是1M 的2倍、3M 的3倍.

(1)求三台机器人123,,M M M 把各自生产的零件送达检测台M 处的时间总和; (2)现要求三台机器人123,,M M M 送检时间总和必须最短,请你设计出检测台M 在该直线上的位置.

解:(1)由已知得检测台M 的位置坐标为0,则机器人123,,M M M 与检测台M 的距离分别为2,1,3.又2M 的送检的速度为v ,

则1M 的送检的速度为1

2v ,3M 的送检的速度为13

v .

故三台机器人123,,M M M 按程序把各自的生产零件送达检测台M处的时间总和为

213141123

y v v v v =

++=. (2)设x 为检测台M 的位置坐标,则三台机器人123,,M M M 与检测台M 的距离分别为

|(2)|,|1|,|3|x x x ----.

于是三台机器人123,,M M M 按程序把各自的生产零件送达检测台M处的时间总和为

|(2)||1||3|1

(2|2||1|3|3|)1123

x x x y x x x v v v v ----=

++=++-+-.

只要求()2|2||1|3|3|f x x x x =++-+-的最小值.

而66,(2),214,(21),()12,(13),66,(3),

x x x x f x x x x -+<-??-+-≤

=?≤≤??->?由分段函数图象得当[1,3]x ∈时,有min ()12f x =.

即送检时间总和最短为12

v

.

?

?

????1M M

2M 3

M -2 -1 0 1 2 3

又检测台M 与123,,M M M 均不能重合,故可将检测台M 设置在直线上机器人2M 和

3M 之间的任何位置(不含23,M M 的位置),都能使各机器人123,,M M M 的送检时间总和

最短.

中考数形结合题

做家长信任的教育机构【中考冲刺】数形结合的5个常考类型 数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法. 1用数形结合的思想解题可分两类 (1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等; (2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等. 22. 热点内容 在初中教材中,“数”的常见表现形式为: 实数、代数式、函数和不等式等,而“形”的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容. 【典型例题】

类型一、利用数形结合探究数字的变化规律 1. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是. 【思路点拨】 首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n2+2n. 【答案与解析】 第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(2×3-3)个; 第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(3×4-4)个; 第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(4×5-5)个; 按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2). 故答案为n(n+2)=n2+2n. 【总结升华】 这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律. 举一反三:

(完整版)数形结合思想例题分析(可编辑修改word版)

(1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 (1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 y r x 数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例 1 已知 x 、 y 、 z 、 r 均为正数,且 x 2 + y 2 = z 2 , z ? = x 2 求证: rz = xy . C A B z 分析:由 x 2 + y 2 = z 2 , 自然联想到勾股定理。由 z ? = x 2 . 可以联想到 射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例 2 已知:0< a <1,0< b <1. 求证 + + + ≥ 2 2. 证明:如图,作边长为 1 的正方形 ABCD ,在 AB 上取点 E ,使 AE= a ;在 AD 上取点 G ,使 AG= b , 过 E 、G 分别作 EF//AD 交 CD 于 F ;作 GH//AB 交 BC 于 H 。设 EF 与 GH 交于点 O ,连接 AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△ BOE 、△ COF 、△ DOG 均为直角三角形,因此 OA = OB = OC = OD = 且 AC = BD = 由于 OA + OC ≥ AC , OB + OD ≥ BD . 所以: + + + ≥ 2 2. x 2 - r 2 x 2 - r 2 a 2 + b 2 a 2 + b 2 (1- a )2 + b 2 (1- a )2 + (1- b )2 a 2 + (1- b )2 2 a 2 + b 2

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

数形结合例题选集

数形结合 一、在一些命题证明中的应用举例: 1、证明勾股定理: 2222 c b a b a 0.5ab 4=+=-+?)()( 解析:上图中,四个小三角形(阴影部分)的面积加上中间小正方形的面积等于大正方形的面积,化简后得到勾股定理222c b a =+。 2、证明乘法公式(平方差与完全平方): ))((b a b a b a 22-+=- 2ab b a b a 222 ++=+)( 解析:在上图中,利用正方形和小正方形面积的转化,能更进一步理解平方差公式与完全平方公式的运算过程以及公式的本质问题。 3、证明基本不等式:

解析:如上图所示,直角三角形斜边上的中线等于斜边的一半,长度为 2 b a +,根据直角三角形的相似关系,可以得到直角三角形斜边上的高的长度为a b ,显然在直角三角形中,斜边上的中线的长度会大于等于高,利用这样简洁明了的几何图解,对基本不等式的理解也就更加简单了。 4、证明正(余)弦定理: 解析: (1)如上图所示,csinB bsinC bsinC a 2 1 h a 21S ABC =??=?= ?的面积; 即sinC c sinB b sinA a sinC c sinB b ===,同理可得; 根据圆的性质(等弧对等角)2R sinA a 2R a sinD sinA D A ===∠=∠,即,; 综上,得正弦定理:2R sinC c sinB b sinA a ===。 (2)根据勾股定理2 2222222cosB c a b cosB c c CE AC BE AB )()(,即?--=?--=-; 整理可得余弦定理:2ac b c a cosB 2 22-+=;同理得出cosA 、cosC 的余弦定理。 5、证明结论),(,2 0x sinx x x tan π ∈>>

数形结合思想例题选讲

数形结合思想例题选讲 数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象 (3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线 以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方 法; 以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。 例题选讲 类型一:集合的运算及韦恩图 利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。 例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。()M P S ().I C M P S e ().I D M P S e 解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P ),且在 S 的外部(转化为集合语言就是C I S ),故选C 。通过上述例子,我们知道:当应用题中牵 涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。 类型二:图表信息题 此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解 决问题的关键是从已知图形(图表)中挖掘信息. 例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设点P 运动的路 程为x ,ABP ?的面积为 )(x f .如果函数)(x f y =的图象如图(2),则ABC ?的面积为( ) A .10 B .16 C . 解:由)(x f y = 图象可知,当04()0x f x →由时由由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即所以AD=14-9=5,过D 作DG AB ⊥ 则DG=BC=4 3=∴AG ,由此可求出AB=3+5=8. 16482 1 21=??=?=?BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据: 现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 A .y =2x -2 B.y = 21(x 2 -1) C.y =log 2x D.y =log 2 1x A B C D P 图(1)

七年级数形结合数学专题训练

平面直角坐标系------数形结合思想的平台 一、知识点: 1.平面直角坐标系的定义; 2.坐标平面内点的坐标的定义; 3.各象限内及坐标轴上点的坐标的特征; 4.一三(二四)象限角平分线上的坐标特点; 5.与坐标轴平行的直线上的点的坐标的特征; 6.一维、二维坐标; 7、点的坐标与点到坐标轴的距离之间的关系, 8、坐标平面内线段长度与线段两端点坐标之间的关系; 9、面积割补法; 10、绝对值的性质; 11、图形面积公式; 12、平移的性质; 二、基本思想方法: 1、思想:数形结合思想、分类讨论思想、方程思想、算术法。 2、方法:画示意图、平移。 三、典型题目 (一)基础知识训练 称点是点C,则点C所表示的数是.在x轴上,到原 2.(1)请在下面的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(4,1),(1,-2); (2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM. ①写出点C的坐标; ②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) 3.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B向上平移5个单位到达点C,求: (1)A、B两点间的距离; (2)写出点C的坐标; (3)四边形OABC的面积. 4.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B (5,0),C(3,3),D(2,4),求四边形ABCD的面积

5.计算图中四边形ABOD的面积. 6.已知点A(-4,-1),B(2,-1) =12.求点C的坐标(写必要的(1)在y轴上找一点C,使之满足S △AB C 步骤); =12的点C有多少个?这些(2)在直角坐标系中找一点C,能满足S △AB C 点有什么特征? 7.如图,每个小正方形的边长为单位长度1. (1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标,说出各点到两坐标轴的距离;并总结坐标平面内的点到坐标轴距离公式。(2)点C与E的坐标什么关系? (3)直线CE与两坐标轴有怎样的位置关系? (4)你能求出图中哪些线段的长度?(总结公式)哪些图形的面积? 8.如图,在△ABC中,已知点A(0,3),B(-2,-3),C(3,-5).(1)在给出的平面直角坐标系中画出△ABC; (2)将△ABC向左平移4个单位,作出平移后的△A′B′C′; (3)点B′到x、y轴的距离分别是多少? 9.如,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a-4|+(b-2)2=0,c=a+b. (1)求A、B、C三点的坐标,并在坐标系中描出各点; (2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由; (3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

小学数学总结-数形结合

数形结合总结 数形结合之规律 【典型例题】 例1 观察下列算式: , 65613,21873,7293,2433, 813,273,93,338 7 6 5 4321======== …… 用你所发现的规律写出20043的末位数字是__________。 例2 观察下列式子: 326241?==+?;4312252?==+?;5420263?==+?;6530274?==+?…… 请你将猜想得到的式子用含正整数n 的式子表示来__________。 例4 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。 …… (1)将下表填写完整 (2)在第n 个图形中有____________________个三角形(用含n 的式子表示)。 例6.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为4 1 的正方形,再把面积为 41的矩形等分成两个面积为8 1 的矩形,如此进行下去,试利用图形提示的规律计算: =+++++++256 11281641321161814121 例7.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正 方体的个数是 例8.观察下列图形并填表。 ① ② ③ 1 1

周长 5 8 11 14 … 例9.把1到200的数像下表那样排列,用正方形框子围住横的3个数,竖的3个数,这9个数的和是162。如果在表的另外的地方,也用正方形围住另外的9个数。 (1) 当正方形左上角的数是100时,这9个数的和是多少? (2) 当正方形中9个数的和是1557时,最大的数是多少? 200 199198197196 19528272625242322212019181716151413121110987654321 例10.将1至1001个数如下图的格式排列。用一个长方形框入12个数,要使这12个数的和等于(1)1986;(2)2529;(3)1989是否办得到?如果办不到,简单说明理由:如果办得到,写出长方形框里的最大的数和最小的数。 1001 10009999989979969952827262524232221 2019181716151413121110987 654321 例11.把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表. (1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是______,______,______. (2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x 的值;若不能,则说明理由. 例12. 把2011个正整数1,2,3,4,…,2010,2011按如图方式排列成一个表.

中考数学专题复习_数形结合思想

中考数学专题复习——数形结合思想 一、知识梳理 数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的。 华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休。”这充分说明了数形结合在数学学习中的重要性,是中考数学的一个最重要数学思想。 二、典型例题 (一)在数与式中的应用 例1、实数a 、b 在数轴上的位置如图所示,化简2 ||a a b +-=_________。 (二)在方程、不等式中的应用 例2、已知关于x 的不等式组0 20x a x ->?? ->? 的整数解共有2个,则a 的取值范围是____________。 例3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ) A .203210x y x y +-=??--=?, B .2103210x y x y --=??--=? , C .2103250x y x y --=?? +-=? , D .20210x y x y +-=?? --=? , (三)在锐角三角函数中的应用 例4、画△ABC ,使cosA=2 1 ,AB =2cm ,∠A 的对边可以在长为1cm 、2cm 、3cm 中任选,这 样的三角形可以画_______个。 (四)在函数中的应用 例5、如图为二次函数2y ax bx c =++的图象,在下列说法中: ①0ac <;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大. a b 0 · P (1,1) 1 1 2 2 3 3 -1 -1 O x y x y O 3 -1

七年级(下)数形结合数学专题训练

平面直角坐标系------数形结合思想的平台
一、知识点: 1. 平 面 直 角 坐 标 系 的 定 义 ; 2. 坐 标 平 面 内 点 的 坐 标 的 定 义 ; 3. 各 象 限 内 及 坐 标 轴 上 点 的 坐 标 的 特 征 ; 4. 一 三 ( 二 四 ) 象 限 角 平 分 线 上 的 坐 标 特 点 ; 5. 与 坐 标 轴 平 行 的 直 线 上 的 点 的 坐 标 的 特 征 ; 6. 一 维 、 二 维 坐 标 ; 7、 点 的 坐 标 与 点 到 坐 标 轴 的 距 离 之 间 的 关 系 , 8、 坐 标 平 面 内 线 段 长 度 与 线 段 两 端 点 坐 标 之 间 的 关 系 ; 9、 面 积 割 补 法 ; 10 、 绝 对 值 的 性 质 ; 11 、 图 形 面 积 公 式 ; 12 、 平 移 的 性 质 ; 二、基本思想方法: 1、 思 想 : 数 形 结 合 思 想 、 分 类 讨 论 思 想 、 方 程 思 想 、 算 术 法 。 2、 方 法 : 画 示 意 图 、 平 移 。 三、典型题目 (一)基础知识训练 1 .如 图 ,数 轴 上 A , B 两 点 表 示 的 数 分 别 是 1 和 2 ,点 A 关 于 点 B 的 对 称 点 是 点 C ,则 点 C 所 表 示 的 数 是 点距离为 5 的坐标 分 别 为 ( 4, 1) , ( 1 , -2 ) ; ( 2 )在( 1 )的 条 件 下 ,过 点 B 作 x 轴 的 垂 线 ,垂 足 为 点 M ,在 BM 的 延 长 线 上 截 取 MC=BM . ①写出点 C 的坐标; ② 平 移 线 段 AB 使 点 A 移 动 到 点 C , 画 出 平 移 后 的 线 段 CD , 并 写 出 点 D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) . .在 x 轴 上 ,到 原
2.( 1 )请 在 下 面 的 网 格 中 建 立 平 面 直 角 坐 标 系 ,使 得 A , B 两 点 的 坐 标
1

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

2020中考数学 数形结合思想专题练习(含答案)

2020中考数学 数形结合思想专题练习 1.已知直线y 1=2x -1和y 2=-x -1的图象如图X5-1所示,根据图象填空. (1)当x ______时,y 1>y 2;当x ______时,y 1=y 2;当x ______时,y 1<y 2; (2)方程组的解集是____________. 图X5-1 图X5-2 2.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图X5-2所示),则能使y 1>y 2成立的x 的取值范围是____________. 3.如图X5-3,正三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设运动时间为x (单位:秒),y =PC 2,则y 关于x 的函数的图象大致为( ) 图X5-3 A B C D 4.如图X5-4,半径为2的圆内接等腰梯形ABCD ,它的下底AB 是圆的直径,上底CD 的端点在圆周上,则该梯形周长的最大值是______. 图X5-4 21, 1y x y x =-?? =-- ?

5.某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y(单位:万亩)随着时间x(单位:年)逐年成直线上升,y与x之间的函数关系如图X5-5. (1)求y与x之间的函数关系式(不必注明自变量x的取值范围); (2)该市2012年荔枝种植面积为多少万亩? 图X5-5 6.某公司推销一种产品,设x(单位:件)是推销产品的数量,y(单位:元)是推销费,图X5-6表示该公司每月付给推销员推销费的两种方案,看图解答下列问题: (1)求y1与y2的函数解析式; (2)解释图中表示的两种方案是如何付推销费的? (3)如果你是推销员,应如何选择付费方案? 图X5-6

数形结合思想在小学数学中的应用讲解

德宏师范高等专科学校 毕 业 论 文 系部:数学系 姓名:李宏 学号:20130732103 班级:2013级初等教育理科1班

目录 【摘要】 (1) 【关键词】数形结合;小学数学;教学应用 (1) 引言 (1) 1数学结合思想的简要概述 (1) 1.1数形结合思想的涵义 (2) 1.2数形结合在数学中的应用范围 (2) 2数形结合在小学数学中的意义和价值 (2) 2.1数形结合是开启数学大门的金钥匙 (2) 2.1.1数形结合是形成概念的好帮手 (2) 2.1.2数形结合深化课堂知识目标化解难点 (3) 2.2数形结合有助于知识的理解和记忆 (4) 2.3数学结合有利于培养小学生的数学能力 (5) 2.3.1 “数形结合形”发展学生的空间观念,培养学生初步的逻辑思维能力 (5) 2.3 . 2数形结合提高了小学生学习数学的趣味性 (5) 2.3.3能够增强学生学习数学的自信心 (7) 3数形结合在小学数学中的应用 (7) 3.1巧用数形结合,形成概念教学 (7) 3.2巧用数形结合,突破几何难点 (9) 3.3巧用数形结合,解决实际问题 (9) 4在运用数形结合教学中,应注意的问题 (10) 4.1教师应更新教学观念 (10) 4.2要培养学生运用数形结合思想的学习习惯 (11) 4.3充分发挥多媒体技术的作用 (11) 【参考文献】 (12)

数形结合思想在小学数学教学中的应用 【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。 【关键词】数形结合;小学数学;教学应用 引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显著提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验⑴,说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进行讨论。 1数学结合思想的简要概述 我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。”这句话深刻阐明了“数形结合”的思想[2]。依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

数形结合的典型例题

数形结合思想 、数学结合思想 所谓的数形结合思想,就是根据数与形之间的对应关系,通过数与形的相 互转化来解决数学问题的思想。 数学结合思想的应用包括以下几个方面: (1)“以形助数”把,某些抽象的数学问题直观化、生动化,变抽象思维有形象思维, 提示数学问题的本质; (2)“以数助形”,把直观图形数量化,使形更加精确。 二、运用数形结合需要熟练掌握“数”、“形”及其相互转化: 1.“数”:主要是指数和数量关系。 中学阶段的“数”有以下几类: (1)复数;(2)代数式;(3)函数;(4)不等式;(5)方程;(6)向量。 2.“形”:主要是指图形,有点、线、面、体等。 中学阶段的“形”有以下几类: (1)数轴;(2)Venn 图;(3)函数图象;( 4)单位圆;(5)方程的曲线;(6)平面几 何的图形;(7)立体几何图形;(8)可行域; 三、数形结合思想应用的关键: 1 .由“数”联想到“;形2”.由“图”想“。数” 四、数形结合思想解决的问题类型: 1.运用数轴、Venn 图解决不等(组)的解集、 集合的运算问题;

2.运用平面直角坐标系和函数的图象解决

函数问题、不等式问题、方程问题; 3.三角函数与解三角形问题; 4 .立体几何问题; 5.可行域求最优解问题; 6.数列问题; 7 .方程曲线与曲线方程等解析几何问题; 8.复数冋题。 数形结合思想的典型试题 以形助数探索解题思路 sin7ix(0 < X < 1) 例6 :(改编题)已知函数f(x)斗' ',若a,b,c 互不相等,且 Iog 2011 x(x >1) f (a) = f (b) = f (c),则 a +b +c 的取值范围是(C ) 例7 .设0

数形结合与不等式

数形结合与不等式 在不等式的题目中有一些题目专门考查同学们的数形结合能力,而且有些题目我们必须得用数形结合才能解,这些题目都有一些比较明显的特征,所以我们给大家展示出这些题目的特点,然后告诉大家如何用数形结合的方法进行求解。应用数形结合的典型问题有三大类: 一,解不等式,二.已知不等式组求参数的范围. 三. 求参数的取值范围使不等式(能、恰、恒)成立. 一.解不等式 这一类题目的特征就是不等式两边的表达式不能转化成我们所熟悉的形式,它一般是结合了指数和对数的形式,然后与一般的一次或二次函数比较大小,这时候我们只能用数形结合的方法进行求解。同学们可能觉得直观的作出函数图形并得不出准确的解,但是这类题一般都是以选择题的形式出现,所以我们可以判断出解的大致范围就可以找出正确答案了。 思路是这样的: 第一步:确定我们要做的是哪些函数的图像,然后写出这些函数表达式。 既然是比较两个表达式的大小,我们就把不等式左边写成y=f(x),右边写成y=g(x)的形式 第二步:做出()f x 和()g x 的函数图像 第三步:根据不等式的条件判断满足不等式的区域,这个区域就是 不等式的解集,我们要求的就是()f x 的图像在()g x 的上方时 x 的取值范围 例1设函数f (x )=1221,0, 0 x x x x -?-≤? ??>?,若f (x 0)>1,则x 0的取值范围是 ( ) (A) (-1,1) (B) (-1,+∞) (C)(-∞,-2)∪(0,+∞) (D) (-∞,-1)∪(1,+∞) 解:画出分段函数f (x )=1221,0 , 0 x x x x -?-≤? ??>?及

数形结合思想例题分析

数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例1 已知x 、y 、z 、r 均为正数,且 222,x y z +=222z x r x ?-= 求证:.rz xy = 分析:由222,x y z +=自然联想到勾股定理。由 222.z x r x ?-=可以联想到射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例2 已知:0<a <1,0<b <1. 求证 22222222(1)(1)(1)(1)2 2.a b a b a b a b ++-+++-+-+-≥ 证明:如图,作边长为1的正方形ABCD ,在AB 上取点E ,使AE= a ;在AD 上取点G ,使AG= b , 过E 、G 分别作EF//AD 交CD 于F ;作GH//AB 交BC 于H 。设EF 与GH 交于点O ,连接AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△BOE 、△COF 、△DOG 均为直角三角形,因此 22 OA a b =+ 22 (1)OB a b =-+ 22(1)(1)OC a b =-+- 22 (1)OD a b =+- 且 2AC BD == 由于 ,.OA OC AC OB OD BD +≥+≥ 所以: B A C x y z r

y=1 x y 22222222(1)(1)(1)(1)2 2.a b a b a b a b ++-+++-+-+-≥ 当且仅当1 2 a b ==时,等号成立。 小结:在求证条件不等式时,可根据题设条件作出对应的图形,然后运用图形的几何性质或者平面几何的定理、公理去建立不等式使结论获证。 3、求参数的值或参数的取值范围: 例3 若方程 2 210ax x -+= (a >0)的两根满足:1x <1,1<2x <3,求a 的取值范围。 解析:画出与方程对应的二次函数 2 21y ax x =-+ (a >0)的草图: 0123 x y 0123 x y 由图可知:当 x =1时,y <0; 当x =3时,y >0. 即 2 1 211a ?-?+<0 ; 23231a ?-?+>0. 解得:5 9 <a <1. 例4 若关于x 的不等式2021x mx ≤ ++≤ 的解集仅有一个元素,求m 的值。 解:如图:在同一坐标系内,作出1y =与 2 2y x mx =++的图象。题设条件等价于抛物线 22y x mx =++在直线0y =与 1y =之间的带状区域仅有一个交点,且抛物线开口向上。由图形的直观 性质可知:这个交点只能在直线 1 y =上,故方程组 212y y x mx =? ?=++? 仅有一组解。

数形结合思想的含义数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想, 让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨着,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。

相关文档
最新文档