2015武汉大学数学分析考研真题

2015武汉大学数学分析考研真题
2015武汉大学数学分析考研真题

2015武汉大学数学分析

一、(40分)

1、.)

1()1)(1()1()1)(1(lim 2111------+--→k k n n n x x x x x x x 2、.sin cos cos lim 20x bx ax m n

x -→ 3、).11(lim 132

n -+∑=∞→n

k n k 4、已知 2

110n a a n n +≤<+,证明数列{}n a 极限存在。 二、已知曲面0)))((,))(((11=------c z y b c z x a F ,且),(t s F 二阶偏导连续,梯度处处不为零,(1)证明,曲面的切平面必过一定点;(2)()y x z z ,=,证明

.02

22222=???

? ?????-?????y x z y z x z 三、0>n a ,01lim 1n >=???

? ??-+∞→λa a n n n ,证明,()∑∞=--111n n n a 收敛. 四、求?????????????? ??--??-∞→t t y x t dxdy y x e e e 00t lim 的极限,或证明它不存在。 五、(1)、求积分()??+ππ

00cos dxdy y x 的值,(2)、10<<α,求积分()d t t f ?1

α的上确界,其中)t (f 是连续函数,

().110

≤?dt t f 六、已知()dt x tx f ?∞+=0

21cos t ,证明, (1)、()x f 在()∞+∞,

-上一致收敛; (2)()0lim =∞→t f t

(3)()x f 在()∞+∞,

-上一致连续; (4)()0dt sin 0

≤?∞

t t f ;

(5)[]πξ,0∈?,使得()0=ξf . keke

2015年武汉大学线性代数考研真题

2015年线性代数 一、 ①证明?? ????-C B C A A 可逆的充要条件是AB 可逆 ②若??????-C B C A A 可逆,求出?? ????-C B C A A 的逆。 二、r b A r A r b ==≠),()(,0,b Ax =的所有解集合为S,证明: ①S 中包含1+-r n 个线性无关的向量121,...,+-r n ηηη。 ②ξ是S 中元素充要条件是存在)1...,2,1(,+-=r n i k i , 111=∑+-=r n i i k ,使得 ∑+-==1 1r n i i i k ηξ 三、已知A 为实正交矩阵,det(A)=1,证明存在正交矩阵P ,使得 21cos ,cos sin 0sin cos 00 01 332211'-++=??????????-=a a a AP P θθθθθ 其中。 四、以下有关矩阵秩的命题在数域F 上判断正误,如正确请说明理由,如不正确请举例说明。 (1)、若)()(B r A r =,则()()* *B r A r = (2)、若())(B r AB r =,则)()(BC r ABC r = (3)、)()('AA r A r = (4)、若一个对称矩阵的秩为r ,则有一个非0 的r 阶主子式。 五、A 是n 阶实对称矩阵,其正负惯性指数分别是q p ,, AX X x f ')(=,记{} n f R x x f x N ∈==,0)(|,证明: (1)、包含于f N 的线性空间维数至多是),max(q p n - (2)、若w 是n R 的一个线性子空间,将二次型限定w 在中,得到的正负惯性指数分别是p1,q1,则有q q p p ≤≤11,。

2015武汉大学数学分析考研真题

2015武汉大学数学分析 一、(40分) 1、.) 1()1)(1()1()1)(1(lim 2111------+--→k k n n n x x x x x x x 2、.sin cos cos lim 20x bx ax m n x -→ 3、).11(lim 132 n -+∑=∞→n k n k 4、已知 2 110n a a n n +≤<+,证明数列{}n a 极限存在。 二、已知曲面0)))((,))(((11=------c z y b c z x a F ,且),(t s F 二阶偏导连续,梯度处处不为零,(1)证明,曲面的切平面必过一定点;(2)()y x z z ,=,证明 .02 22222=??? ? ?????-?????y x z y z x z 三、0>n a ,01lim 1n >=??? ? ??-+∞→λa a n n n ,证明,()∑∞=--111n n n a 收敛. 四、求?????????????? ??--??-∞→t t y x t dxdy y x e e e 00t lim 的极限,或证明它不存在。 五、(1)、求积分()??+ππ 00cos dxdy y x 的值,(2)、10<<α,求积分()d t t f ?1 α的上确界,其中)t (f 是连续函数, ().110 ≤?dt t f 六、已知()dt x tx f ?∞+=0 21cos t ,证明, (1)、()x f 在()∞+∞, -上一致收敛; (2)()0lim =∞→t f t (3)()x f 在()∞+∞, -上一致连续; (4)()0dt sin 0 ≤?∞ t t f ;

武汉大学数学分析考试解答

武汉大学2004年攻读硕士学位研究生入学考试试题 科目名称:数学分析 科目代码:369 一、计算下列各题: 1. 2. 2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a a n a a a a a a →∞→∞+++>-=-=---lim(sin 1sin ) 11lim 2sin()cos 2211lim 2sin cos 22(1) x x x x x x x x x x x x x →∞ →∞→∞+-+-++=++=++= 3. 4. 20 30 220sin()lim sin()lim (')313x x x t dt x x L Hospital x →→==?法则2 1 11 arctan 2arctan(21)arctan(21)244 k k k k k πππ∞ =∞ ==+--=-=∑∑ 5. 4812 4812323 3 1... ()59!13!1()...3!11!15! ()()sin ()4()()()24x x A B e e A x B x x A e e e e B A x B x π π πππππππππππππππππππ---+ +++= ++++-?-=??==?--+= ??!7! 6. " '2"22' 2(,)()(),()(,) (,)()()()() (,)()(23)()(1)()xy x xy y xy x y y xy F x y x yz f z dz f z F x y F x y z f z dz x xy xf xy x x F x y f x y f xy xy y f xy y y =-=-+-= +-+-??设:其中为可微函数,求

[考试必备]武汉大学数学分析考研试题集锦(1992,1994-2012年)

武汉大学数学分析1992 1.给定数列如下: }{n x 00>x ,?? ? ???+?=?+11)1(1k n n n x a x k k x ,",2,1,0=n (1)证明数列收敛。 }{n x (2)求出其极限值。 2.设函数定义在区间)(x f I 上,试对“函数在)(x f I 上不一致连续”的含义作一肯定语气的(即不用否定词的)叙述,并且证明:函数在区间x x ln ),0(+∞上不一致连续。 3.设函数在区间上严格递增且连续,)(x f ],0[a 0)0(=f ,为的反函数,试证明成立等式: 。 )(x g )(x f []x x g a x x f a f a d )(d )()(0 0∫ ∫?=4.给定级数∑+∞ =+01 n n n x 。 (1)求它的和函数。 )(x S (2)证明广义积分 x x S d )(10 ∫ 收敛,交写出它的值。 5.对于函数??? ????=+≠++=0,00,),(222 22 22y x y x y x y x y x f ,证明: (1)处处对),(y x f x ,对可导; y (2)偏导函数,有界; ),(y x f x ′),(y x f y ′(3)在点不可微。 ),(y x f )0,0((4)一阶偏导函数,中至少有一个在点不连续。 ),(y x f x ′),(y x f y ′)0,0(6.计算下列积分: (1)x x x x a b d ln 10 ?∫ ,其中为常数,b a ,b a <<0。 (2),其中为平面上由直线∫∫?D y y x e d d 2 D x y =及曲线31 x y =围成的有界闭区域。 武汉大学数学分析1994 1.设正无穷大数列(即对于任意正数}{n x M ,存在自然数,当时,成立), N N n >M x n >E 为的一切项组成的数集。试证必存在自然数}{n x p ,使得E x p inf =。 2.设函数在点的某空心邻域内有定义,对于任意以为极限且含于的数列 ,极限都存在(有限数)。 )(x f 0x 0 U 0x 0 U }{n x )(lim n n x f ∞ →(1)试证:相对于一切满足上述条件的数列来说,数列的极限是唯一确定的, 即如果和是任意两个以为极限且含于的数列,那么总有 }{n x )}({n x f }{n x }{n x ′0x 0 U )(lim )(lim n n n n x f x f ′=∞ →∞ →。 (2)记(1)中的唯一确定的极限为,试证:)}({n x f A A x f x x =→)(lim 0 。 3.设函数在点的邻域)(x f 0x I 内有定义,证明:导数)(0x f ′存在的充要条件是存在这样的函数,它在)(x g I 内有定义,在点连续,且使得在0x I 内成立等式:

武汉大学2005数学分析试题解答.doc

2005 年攻读硕士学位研究生入学考试试题解答(武 汉 大 学) 一、设{}n x 满足: 11||||||n n n n n x x q x x +--=-,||1n q r ≤< ,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ > 0。证明级数01 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy 收敛准则和定义证明。) 10,(1,1),,,1 1()11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛 三、设1 ()||sin ,"()f x x y f x =-?求 解,(本题利用莱布尼兹求导法则:)

武汉大学2004-2010年数学分析考研试题及解答汇总

武汉大学2004年攻读硕士学位研究生入学考试试题 科目名称:数学分析 科目代码:369 一、计算下列各题: 1.求2 12lim ( ...),(1)n n n a a a a →∞ + ++ > ; 解 212lim (...)n n n a a a →∞+++211() 1l i m ()11(1) 1n n n n a a a a a a →∞-=-=--- ; 2 、求lim (sin sin x →∞ ; 解 l i m (1n )x →∞ lim 2cos 2 2 x →∞ = lim 2sin 02 x →∞ ==; 3、求2 3 sin()lim x x t dt x →? ; 解 2 3 s i n ()l i m x x t d t x →? 2 2 sin()lim (')3x x L Hospital x →=法则 13 = ; 4、 设2 1 1arctan 2n n k S k == ∑,求lim n n S →∞ . 解:利用公式arctan arctan arctan 1x y x y xy --=+, 2 1 11a r c t a n a r c t a n a r c t a n 22121 k k k = - -+, 2 1 1 arctan 2n n k S k == ∑111arctan arctan 2121n k k k =? ?=- ?-+? ?∑

1 a r c t a n 1 a r c t a n 21 n =-+, lim 4 n n S π →∞ = ,即2 1 1arctan 24 k k π ∞ == ∑。 5. 求 4 8 12 4 8 12 1... 59! 13! 1...3! 11!15! ππ π ππ π + + + ++ +++! 7!; 解 设 4 8 12 4 8 12 1... ()59! 13! 1() ...3! 11!15! A B π π π ππ π π π+ + + += + +++! 7!, 则有 33 ()()sin ()()2 A B e e A B ππ πππππππππ-?-=? ?-+=?? 23 ()4() 4e e A e e B π π ππ πππππ ---? = =- 。 6. " (,)()(),()(,)xy x xy y F x y x yz f z dz f z F x y = -? 设:其中为可微函数,求。 解 '2 (,)()()()()xy x y y F x y z f z dz x xy xf xy = -+-? , "22 2 (,)( )(23)()(1)()xy x x F x y f x y f xy xy y f xy y y '= +-+-。 二、设113(1)0(1,2,3...)3n n n x x x n x ++>= =+,,,证明:lim n n x →∞ 存在,并求出极限。 证明:2 13(1)333n n n n n n n x x x x x x x ++--= -= ++, 13n n x x +- = +, 1(1)n n n x x x +>>> 当不难证明 1(2)n n n x x x +< << 当不难证明

2005年武汉大学数学分析解答

武汉大学2005年攻读硕士学位研究生入学考试试题解答 一、设{}n x 满足:11||||||n n n n n x x q x x +--=- ,||1n q r ≤<,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑ 令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ>0。证明级数0 1 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy收敛准则和定义证明。) 10,(1,1),,,1 1(11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛 三、设1 0()||,"() f x x y f x =-?求解,(本题利用莱布尼兹求导法则:)

() () ()()1 10 1 01 ()()()()()(())(())()||()sin (,[0,1] ()()sin ,(1,) ()sin ,(,0)'(b x a x b a x x F x f x dx F f x b a dx f b f a f x x y x y y x x f x x y x y x x f ααααααααααααααα =????=+-????=-?-+-∈??=-∈+∞???-∈-∞?? ??????,,,, ,10 1 01 ,[0,1] ),(1,) ,(,0)2sin [0,1]"()0,(1,) 0,(,0)x x x x x x x x f x x x ?-∈??=∈+∞???-∈-∞??∈? =∈+∞??∈-∞? ????四、判断级数2 ln ln sin ln n n n n +∞ =∑ 的绝对收敛性和相对收敛性解:(1)绝对收敛性:(主要使用放缩法) 2 1 ,|sin ||sin(1)|2sin 2 ,ln ln 1 ln ln ln ln ln ln |sin ||sin ||sin |ln ln ln ln 2n M n M n M M n n N n n A M M n n n n n n n n n A n +∞ +∞+∞ ===+∞ =?∈++≥=>=>>∑∑∑∑首先,不难证明对于当足够大的时候。显然,该级数发散。即不绝对收敛 (2)相对收敛性:(A-D 判别法){}0{}n n n n n n a b a a a b ∑∑∑<1>收敛于,有界 <2>有界,收敛 满足上述任意一个条件收敛

2015武汉大学考博英语部分真题答案

感谢”珞珈人(武大考博)197431621”群网友热心提供题源一、阅读理解 Justice in society must include both a fair trial to the accused and the selection of an appropriate punishment for those proven guilty. Because justice is regarded as one form. of equality, we find in its earlier expressions the idea of a punishment equal to the crime. Recorded in the Old Testament is the expression "an eye for an eye, and a tooth for a tooth." That is, the individual who has done wrong has committed an offence against society. To make up for his offence, society must get even. This can be done only by doing an equal injury to him. This conception of retributive justice is reflected in many parts of the legal documents and procedures of modern times. It is illustrated when we demand the death penalty for a person who has committed murder. This philosophy of punishment was supported by the German idealist Hegel. He believed that society owed it to the criminal to give a punishment equal to the crime he had committed. The criminal had by his own actions denied his true self and it is necessary to do something that will counteract this denial and restore the self that has been denied. To the murderer nothing less than giving up his own will pay his debt. The demand of the death penalty is a right the state owes the criminal and it should not deny him his due. Modern jurists have tried to replace retributive justice with the notion of corrective justice. The aim of the latter is not to abandon the concept of equality but to find a more adequate way to express it. It tries to preserve the idea of equal opportunity for each individual to realize the best that is in him. The criminal is regarded as being socially ill and in need of treatment that will enable him to become a normal member of society. Before a treatment can be administered, the cause of his antisocial behavior. must be found. If the cause can be removed, provisions must be made to have this done. Only those criminals who are incurable should be permanently separated front the rest of the society. This does not mean that criminals will escape punishment or be quickly returned to take up careers of crime. It means that justice is to heal the individual, not simply to get even with him. If severe punishments is the only adequate means for accompanying this, it should be administered. However, the individual should be given every opportunity to assume a normal place in society. His conviction of crime must not deprive him of the opportunity to make his way in the society of which he is a part. 1. The best title for this selection is (B ) A. Fitting Punishment to the Crime B. Approaches to Just Punishment C. Improvement in Legal Justice D. Attaining Justice in the Courts 2.The passage implies that the basic difference between retributive justice and corrective jus tice is the (C ) . A. type of crime that was proven B. severity for the punishment C. reason for the sentence

武汉大学2005考研数学分析

武 汉 大 学 2005 年攻读硕士学位研究生入学考试试题解答 制作人:zhubin846152 一、设{}n x 满足: 11||||||n n n n n x x q x x +--=-,||1n q r ≤< ,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ > 0。证明级数01 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy 收敛准则和定义证明。) 10,(1,1),,,1 1()11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛

三、设1 ()||sin ,"()f x x y f x =-?求 解,(本题利用莱布尼兹求导法则:) ()() ()()1 10 1 01 0()()()()()(())(())()||sin ()sin ()sin ,[0,1] ()()sin ,(1,) ()sin ,(,0)'(b x a x b a x x F x f x dx F f x b a dx f b f a f x x y x y y x x f x x y x y x x f ααααααααααααααα =????=+-????=-?-+-∈??=-∈+∞???-∈-∞?? ??????,,,, ,10 1 01 ,[0,1] ),(1,) sin ,(,0)2sin [0,1]"()0,(1,) 0,(,0)x x x x x x x x f x x x ?-∈??=∈+∞???-∈-∞??∈? =∈+∞??∈-∞? ???? 四、判断级数2ln ln sin ln n n n n +∞ =∑ 的绝对收敛性和相对收敛性 解:(1)绝对收敛性:(主要使用放缩法) 21,|sin ||sin(1)|2sin 2 ,ln ln 1 ln ln ln ln ln ln |sin ||sin ||sin |ln ln ln ln 2n M n M n M M n n N n n A M M n n n n n n n n n A n +∞ +∞+∞ ===+∞ = ?∈++≥=>=>>∑∑∑∑首先,不难证明对于当足够大的时候。显然,该级数发散。即不绝对收敛 (2)相对收敛性:(A-D 判别法) {}0{}n n n n n n a b a a a b ∑∑∑<1>收敛于,有界 <2>有界,收敛 满足上述任意一个条件收敛

武汉大学2003数学分析试题解答

武汉大学2003年攻读硕士学位研究生入学考试试题解答 考试科目:数学分析 科目代码:359 一、 判断下列命题是否正确(共5小题,每小题6分,共30分): 1)单调序列{}n a 中有一子列{}i n a 收敛,则序列{}n a 收敛。 2)子列{}n a 的子序列2{}n a 和21{}n a +收敛,则序列{}n a 也收敛 3)序列{}n a 收敛,则序列{}n a 收敛,其命题也成立 4)n a ∑收敛,则1()n a o n =. 5)函数序列{()}n u x ,[,]x a b ∈,满足对任意的自然数p 和任意[,]x a b ∈,有以下性质:lim ()()0n n p n u x u x +→∞ -=,则{()}n u x 一致收敛。 二、 计算题(每小题8分,共32分) 1 )设(),'(0)x F x t dt F -=?求 2)求极限:2 ln(1)lim x x xe x x →∞-+ 3) 2222222(),V x y z dV V x y z a ++++=???计算积分:其中是球面 和圆z =锥面 4)计算曲面积分333S I x dydz y dzdx z dxdy =++??,S 为球面2221x y z ++=的外侧 三、 判断级数与反常积分的敛散性(共4小题,每小题9分,共36分) 1)21sin x dx x +∞? 2)1sin 1x dx x x +∞+? 3 )n 4)ln 1(ln ) n n ∑

四、 设a>0,求曲线222222x y az x y xy a ?+=??++=??上的点到xy-平面的最大最小距离 五、 设0在[,]δ+∞一致收敛, 而在[0,]+∞上不是一致收敛的

相关文档
最新文档