PEF技术在污泥厌氧消化处理中的应用研究

PEF技术在污泥厌氧消化处理中的应用研究
PEF技术在污泥厌氧消化处理中的应用研究

PEF 技术在污泥厌氧消化处理中的应用研究

梁美生

裴旭倩

姜俊杰

(太原理工大学环境科学与工程学院,太原030024)

摘要:高压脉冲电场技术作为新型的污泥厌氧消化预处理手段,被国外学者广泛关注。高压脉冲电场可有效改善污泥的理化性质,提高污泥中溶解性物质的浓度,强化污泥的厌氧消化过程和产甲烷效率,并且可以作为外加的电子供体用于反硝化脱氮,

但是其处理效果受多种因素的影响,只有在各因素协调配合的条件下,对污泥的预处理效果才能达到最佳。鉴于国内PEF 技术在污泥预处理过程中的应用研究尚处于萌芽阶段,

通过查阅大量的国内外文献,着重介绍了高压脉冲电场处理污泥的作用机理,分析了各个反应器控制参数对高压脉冲电场污泥预处理效果的影响。在今后的研究工作中应针对其作用机理、影响因素及相关运行设备进行更加深入的探讨研发,为实际生产工作提供科学指导依据。

关键词:高压脉冲电场;厌氧消化;污泥;预处理

DOI :10.13205/j.hjgc.201503024

RESEARCH ON APPLICATION OF PULSED ELECTRIC FIELD

IN ANAEROBIC DIGESTION OF SLUDGE

Li Wei

Liang Meisheng

Pei Xuqian

Jiang Junjie

(College of Environmental Science and Engineering ,Taiyuan University of Technology ,Taiyuan 030024)

Abstract :As a new means of anaerobic digestion pretreatment ,pulsed electric field (PEF )technology is highly concerned by foreign scholars.PEF can improve the physical and chemical properties of the sludge effectively ,increase the concentration of dissolved substances in the sludge ,and enhance the process of anaerobic digestion and methanogenic efficiency.Also PEF can be used as external electron donor for the denitrification nitrogen.But the treatment effect is influenced by many factors ,and only under the rational conditions ,the pretreatment effect of the sludge would achieve the best results.Since the application of PEF technology for domestic sludge pretreatment process is still in its infancy ,according to literature ,the mechanism of PEF technology is presented ,and the effect of each control parameter is analyzed.At last ,in order to provide scientific fundation for the actual production process ,more research on its mechanism ,related factors and operating equipment in the future studies are demanded.

Keywords :pulsed electric field ;anaerobic digestion ;sludge ;pretreatment

收稿日期:2014-06-19

0引言污水处理厂在运行过程中产生大量的剩余污泥,污泥的处理费用占到其运行费用的很大比例。厌氧消化是污泥处理的有效途径,主要包括水解发酵、产乙酸、产甲烷3个阶段,其中第1阶段的水解发酵是整个反应的限速过程,对污泥的厌氧消化效率有非常重要的影响

[1]

。传统的厌氧消化具有反应速率慢、停留时间长、池体容积庞大、甲烷产量低、污泥降解性

能差等缺点,

限制了厌氧消化的应用。为了提高污泥厌氧消化的效率,国内外学者对污泥预处理方法展开了广泛的研究。

常用的预处理技术包括:热水解处理、超声波处理、机械处理、电离辐射处理以及其组合处理方法等

[2-4]

。这些方法虽可有效提高污泥可生化利用的程度,但在工程化应用的过程中却存在着各种经济技术障碍

[5]

。国外学者将高压脉冲电场处理技术(pulsed

electric field ,PEF )用于污泥的厌氧消化预处理[6],作为一种新型的污泥预处理强化技术,国内在这方面的

研究工作近乎处于空白。因此,本文介绍了高压脉冲处理污泥的机理及其影响因素,探讨了高压脉冲电场预处理对污泥厌氧消化性能的影响,以期推动高压脉冲电场在污泥处理领域的研究和应用。1PEF 预处理技术

1.1

PEF 预处理技术作用机理从高压脉冲电场的杀菌机理[7-8]

出发,来认识高

压脉冲电场污泥预处理的机理。根据多数学者认同

的细胞膜穿孔机理假说

[7]

,PEF 技术在处理污泥的过

程中,通过外部电场与微生物细胞膜直接作用,从而破坏细胞膜的结构,

形成“电穿孔”,破坏污泥中菌体细胞膜、

复杂有机固体和大分子物质。具体来说,菌体细胞壁上的肽聚糖和细胞膜磷脂层都是极性分子,这些极性分子暴露在环境中带有负电荷,这种特殊的结构使细胞壁和细胞膜对电场的变化非常敏感,因而在施加高压脉冲电场以后,细胞壁和细胞膜产生不可逆的破坏,污泥菌体细胞破裂,释放出细胞中的有机物质;同时,

电弧放电破坏了污泥的絮体结构,使其产生更多的自由基,

将污泥中的大分子有机物质转化为小分子,从而更容易被微生物降解利用[9]

1.2

PEF 预处理反应器

PEF 反应器主要用于存放电极,并对污泥进行预处理。反应器可分为静态反应器和连续流反应器。静态反应器规模小,适合实验室研究应用,主要有U 型式、平行盘式、圆盘式、线桶式、密封式等。连续流反应器大多是由静态反应器改装设计,主要有平行盘式、同心轴式等[10]

。以同心轴连续流反应器为例,其

原理

[11]

如图1所示,整个反应器主要由轴电极和环

状外电极构成,轴电极接通脉冲直流强电压,环状外电极接地,

两电极之间的间隙为反应区域,在轴电极和环状外电极之间产生电弧放电处理污泥,在反应器的两端分别设置有进泥口和出泥口,反应器表面采用绝缘材料包裹

图1

高压脉冲反应器结构原理

Fig.1

The schematic of pulsed electric fields treatment chamber

1.3PEF 预处理效果影响因素

PEF 反应器的运行过程中各个参数的变化均会

影响污泥预处理的效果。Salerno 等[12]

提出采用处理

强度来评价反应器的处理性能。处理强度(kW ·h /

m 3)的计算见式(1)。

处理强度=K ·

V 2·D ·f ·σ·HRT

L 2

(1)

式中

V ———电压,V =J /C ,kg ·m 2/(C ·s 2);D ———脉冲宽度,s ;F ———脉冲频率;

σ—

——电导率,S /m =s ·C 2/(kg ·m 3);L ———电极之间的距离,m ;HRT ———停留时间,s ;

K ———常量,1/3600000kW ·h /J 。

根据式(1)可以从反应器控制参数这一角度出发分析影响PEF 处理污泥效果的因素。反应器的控制参数主要包括电场强度、脉冲宽度、脉冲波形、脉冲频率、作用时间和作用温度等[13]

,这些控制参数不同

程度的改变均会影响PEF 技术的污泥厌氧消化预处

理效果。

1)电场强度。电场强度是影响PEF 技术预处理效果的显著因素,

在脉冲数目不变时,污泥预处理效果随电场强度的增加而增加

[14]。在研究脉冲电场对

污泥的作用效果时,

平行板反应器得到广泛应用,因为它是一种最简单的产生均匀电场的反应器,可以避免电场强度的变化,确保反应器中各处的污泥得到均匀处理。

2)脉冲宽度。在脉冲数目不变的情况下,随着脉冲宽度的下降,污泥预处理总时间下降,从而处理效果也相应下降。

3)脉冲波形。高压脉冲处理系统所用的脉冲波形包括方波、指数衰减波、交变指数衰减波,其中方波的处理效果最佳,指数波次之,交变指数衰减波效果最差。

4)脉冲频率。在固定电场强度和脉冲宽度的条件下,污泥预处理效果由所施加的脉冲频率所决定。随着脉冲频率的提高,电容器具有了更多的脉冲数目,指数衰减曲线的下降得到减缓,从而保证了更长的污泥预处理时间。

5)电导率。当电场强度、脉冲宽度和脉冲数量

保持不变的情况下,电导率的升高会使电容器所产生的脉冲频率降低,影响污泥预处理的效果,由此可知较低的电导率对PEF 处理效果有利。

6)作用时间。作用时间是脉冲数目与宽度的乘

7

01Solid Waste Treatment and Disposal

积,脉冲宽度与电场对细胞膜破裂有着密切的关系,随着脉冲作用时间的增长,处理效果显著增强。

7)作用温度。在恒定电场强度下,污泥预处理效果随着温度的升高而升高。与此同时,当电容器的输入电压为常量时,反应器中的电压主要与污泥的电导性质和处理温度有关,处理过程中反应温度的升高会影响污泥的电导率和反应器中的电压值,进而影响反应器的电场强度。

2PEF技术污泥处理效果

2.1对污泥理化性质的影响

高压脉冲电场直接攻击菌体细胞,释放出细胞质中的营养物质,改变了污泥的pH值、电导率、TS、总COD等理化性质。Chio等[11]对经高压脉冲电场处理前后的污泥理化性质变化进行实验研究,在进泥量为800mL/min,水力停留时间为1.5s,脉冲电压19kV,脉冲频率为110Hz时,污泥理化性质的变化如表1所示。

表1脉冲电场处理前后污泥性质对照表

Table1Changes in the sludge property before and after

pulse-power treatment

项目指标处理前生污泥处理后污泥

pH值 6.1 5.9

电导率/(μS·cm-1)22702970

ρ(TS)/(mg·L-1)2793828193

ρ(VS)/(mg·L-1)1870618390

ρ(TCOD)/(mg·L-1)3232832464

ρ(SCOD)/(mg·L-1)13125746

ρ(可溶性氮)/(mg·L-1)200664

ρ(可溶性磷)/(mg·L-1)143332

ρ(ECP)/(mg·L-1)65420

ρ(蛋白质)/(mg·L-1)1368

ρ(糖类)/(mg·L-1)52352

ρ(COD)?ρ(N)?ρ(P)100?0.62?0.44100?2.05?1.02

由表1可知:经处理后污泥中SCOD、ECP、蛋白质和糖类的含量大幅提高。

此外,SEM结果显示,原始污泥颗粒表面光滑,细胞饱满,处理后的污泥颗粒表面粗糙,细胞呈现畸形化。高压脉冲电场的处理造成污泥中菌体细胞破裂,细胞壁和细胞膜变为各种颗粒碎片,细胞中的细胞质释放出来,从而改善了污泥的成分和性质,有利于污泥厌氧消化反应的进行。

2.2对甲烷产量和污泥减量化的影响

经过PEF处理后,污泥的理化性质发生了明显变化。污泥可生化性的增强明显提高污泥厌氧消化过程中的产气量,并有效减少剩余污泥量。Bruce E R等[15]研究表明,在为期6个月的实验过程中,相比未处理的污泥,经过PEF处理污泥的厌氧消化产气量稳定增长,平均月产气量提高40%。并且,生物气中的甲烷浓度维持在62%。此外,每月需要处理的污泥量也降低了25% 30%。PEF处理可明显改善污泥厌氧消化,提高生物气的产量,并对污泥减量化具有显著效果。

2.3对菌群多样性的影响

PEF处理改变污泥成分以及理化性质,在厌氧消化反应过程中,为适应新的生长环境,厌氧消化菌的种类和数量将会发生明显变化[16]。Zhang Husen 等[17]利用基因库和定量PCR技术,对PEF处理前后污泥中的微生物菌群结构进行分析,主要的菌种由Deltaproteobacteria和Spirochaetes变化为Firmicutes,Betaproteobacteria和Spirochaetes。产甲烷菌在PEF处理后,Methanoculleus从66%下降至33%,Methanosaeta 从23%提高到57%。PEF预处理对菌群结构产生了不同程度的影响,这与生物气产量的提高大体上保持一致。

另外,PEF处理后的剩余污泥可以作为反硝化过程电子供体,不仅可减少最终污泥产量,而且提高了氮的去除率。Lee IL-Su等[18]将PEF处理后的剩余污泥作为外加电子供体用于反硝化过程,其反硝化速率要比未处理的污泥和甲醇作为电子供体的更快,并且氮的去除率也有明显提高。

3结论与建议

1)作为一种新型的污泥预处理强化技术,PEF技术以其优良的处理效果,低廉的操作费用,良好的应用前景而深受学者及企业青睐。

2)高压脉冲预处理技术能够有效的改善污泥的理化性质,提高污泥中溶解性物质的浓度,强化污泥的厌氧消化过程和产甲烷效率,并且可以作为外加的电子供体用于反硝化脱氮,具有较好的社会经济效益。

3)在我国,PEF技术应用研究尚处于萌芽阶段,将高压脉冲电场广泛应用于污泥预处理过程还存在许多困难。今后在研究工作中应针对该方法的作用机理以及影响因素进行更加深入的研究,从而获得PEF技术的最佳运行参数,旨在为实际生产工作提供科学指导依据。另外,高压脉冲处理设备的研发也是研究的重点。

参考文献

[1]Lise Appels,Jan Baeyens,Jan Degreve,et al.Principles and potential of the anaerobic digestion of waste-activated sludge[J].

Progress in Energy and Combustion Science,2008,34:755-781.[2]Carrere H,Dumas C,Battimalli A,et al.Pretreatment methods to improve sludge anaerobic degradability:A review[J].Journal of

Hazardous Materials,2010,183:1-15.

[3]张毅华,台明青,王芳.剩余污泥厌氧消化与处理技术研究进展[J].中国资源综合利用,2010,28(6):24-28.

[4]戴前进,方先金,邵辉煌.城市污水处理厂污泥厌氧消化的预处理技术[J].中国沼气,2006,25(2):11-14.

[5]Kim Jeongsik,Park Chulhwan,Kim Takhyun,et al.Effects of various pretreatments for enhanced anaerobic digestion with waste

activated sludge[J].Journal of Bioscience and Bioengineering,

2003,95(3):271-275.

[6]Kopplow O,Barjenbruch M,Heinz V.Sludge pre-treatment with pulsed electric fields[J].Water Science and Technology,2004,49

(10):123-129.

[7]吴岗,郑成,宁正祥.高压脉冲电场灭菌机理[J].食品科学,1988,19(4):7-9.

[8]孙学兵,方胜,陆守道.高压脉冲电场杀菌技术研究进展[J].食品科学,2001,22(8):84-86.

[9]Lee IL-Su,Bruce E R.Effect of low solids retention time and focused pulsed pre-treatment on anaerobic digestion of waste

activated sludge[J].Bioresource Technology,2011,102:2542-

2548.

[10]Huang Kang,Wang Jianping.Designs of pulsed electric field treatment chambers for liquid foods pasteurization process:A

review[J].Journal of Food Engineering,2009,95:227-239.[11]Chio Hanna,Jeong Seungwoo,Chung Younjin.Enhanced anaerobic gas production of waste activated sludge pretreated by

pulse power technique[J].Bioresource Technology,2006,97:

198-203.

[12]Salerno Michael B,Lee Hyungsool,Parameswaran Prathap,et al.Using a pulsed electric field as a pretreatment for improved

biosolids digestion and methanogenesis[J].Water Environment

Research,2009,81(8):831-839.

[13]Patrick C Wouters,Ignacio Alvarez,Javier Raso.Critical factors determining inactivation kinetics by pulsed electric field food

processing[J].Trends in Food Science and Technology,2001,12:

112-121.

[14]郭烈恩,胡云堂,李华栋.高压脉冲电场在食品杀菌中的应用[J].南昌大学学报.工科版,2001,23(4):20-24.

[15]Rittmann Bruce E,Lee Hyung-sool,Zhang Husen.Full-scale application of focused-pulsed pre-treatment for improving biosolids

digestion and conver to methane[J].Water Science&Technology,

2008,58(10):1895-1901.

[16]Sheng Jie,Vannela Raveender,Rittmann Bruce E.Evaluation of cell-disruption effects of pulsed-electric-field treatment of

Synechocystis PCC6803[J].Environmental Science&

Technology,2011,45(8):3795-3802.

[17]Zhang Husen,Banaszak James E,Parameswaran Prathap.Focused-pulsed sludge pre-treatment increases the bacterial

diversity and relative abundance of acetoclastic methanogens in a

full-scale anaerobic digester[J].Water Research,2009,43:4517-

4526.

[18]Lee IL-Su,Parameswaran Prathap,Alder Jared M,et al.Feasibility of focused-pulsed treated waste activated sludge as a

supplemental electron[J].Water Environment Research,2010,

82(12):2316-2324.

第一作者:李伟(1990-),男,硕士研究生,主要研究方向为污泥处理技术。805583453@qq.com

通信作者:梁美生(1968-),女,博士,教授,主要研究方向为污泥处理及其资源化利用。

櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅

liangms88888@163.com

(上接第96页)

[8]刘慧颖.MATLAB R2006a基础教程[M].北京:清华大学出版社,2007:1-5.

[9]樊建军,王峰,陈鹏飞.利用MATLAB推导城市暴雨强度公式[J].中国给水排水,2010,26(11):111-115.

[10]刘洋,贾斌.MATLAB在风电设备设计中的应用[J].计算机应用与软件,2011,28(10):183-186.

[11]李长松,黄方林.基于MATALB的连续梁桥动力响应分

析[J].铁道科学与工程学报,2010,7(1):16-20.

[12]姜清华,程江涛,蔡清.台段式场平建设项目土方平衡优化设计的研究[J].长江科学院院报,2014,31(1):85-91.

第一作者:苟剑锋(1972-),男,讲师,主要研究方向为固体废物处置与资源化。goujf@lzu.edu.cn

通信作者:郝建青(1990-),男,硕士研究生。haojq13@lzu.edu.cn

901

Solid Waste Treatment and Disposal

城市污泥厌氧消化处理技术

城市污泥厌氧消化处理技术 彭光霞李彩斌王立宁张晓慧 (北京中持绿色能源环境技术有限公司北京100192) 摘要:随着我国城镇污水处理厂建设的推进,城市脱水污泥的处理处置问题越来越凸显出来。目前我国多数城市污水处理厂多采用浓缩、脱水后外运填埋或作农肥。城市污泥中的生物质能没得到充分利用,造成了资源、能源的浪费。污泥厌氧消化技术作为污泥处理处置的处理工艺,可以实现减量化、稳定化、无害化和资源化,可与多种工艺相结合,为现有污水厂污泥处理处置提供了很好的方向。 关键词:污泥处理处置、厌氧消化、分级分相、土地利用、资源化 1 概述 污泥厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。 污泥经厌氧消化后,体积大大减少,脱水性能大大提高,可实现污泥的减量化和稳定化;污泥在消化过程中,产生的甲烷菌具有很强的抗菌作用,可杀死大部分病原菌以及其它有害微生物,使污泥卫生化。同时,污泥厌氧消化产生大量的清洁能源--沼气,可用作锅炉燃料、直接驱动鼓风机、沼气发电提供污水处理厂的部分用电量、沼气提纯并网、沼气提纯用作汽车燃料等。 1.1 污泥厌氧处理技术原理 厌氧消化是利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥中有机物质的一种污泥处理工艺。消化过程中可回收能源,但消化后的污泥含水率较高,仍需进一步脱水。厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。 污泥厌氧消化是一个由多种细菌参与的多阶段生化反应过程,每一反应阶段都以某类细菌为主,其产物供下一阶段的细菌利用。厌氧降解过程的化学、生物化学和微生物学相发复杂,但是可以综合三阶段理论[2]:1)水解阶段;2)产酸阶段;3)产甲烷阶段。

污水处理厂污泥厌氧消化工艺选择与设计要点概要

污水处理厂污泥厌氧消化工艺选择与设计要点陈怡 (北京市市政工程设计研究总院 , 北京 100082 摘要以北京市小红门污水处理厂和西安市第五污水处理厂为例 , 对污水处理厂污泥厌氧消化工艺选择和设计要点进行了详细论述 , 包括污泥厌氧消化工艺选择、进泥预处理、厌氧消化池、沼气系统、上清液处理和污泥输送管路等 , 以保证污水处理厂污泥厌氧消化工艺的顺利实施。 关键词污水处理厂污泥厌氧消化工艺选择污泥投配污泥搅拌沼气系统 K e y p o i n t s o f t h e p r o c e s s s e l e c t i o n a n d d e s i g n o f t h e s l u d g e a n a e r o b i c d i g e s t i o n i n w a s t e w a t e r t r e a t m e n t p l a n t C h e n Y i (B e i j i n g G e n e r a l M u n i c i p a l E n g i n e e r i n g D e s i g n a n d R e s e a r c h I n s t i t u t e , B e i j i n g 100082, C h i n a A b s t r a c t :T a k i n g t h e B e i j i n g X i a o h o n g m e n W a s t e w a t e r T r e a t m e n t P l a n t a n d X i ’ a n F i f t h W a s t e w a t e r T r e a t m e n t P l a n t a s e x a m p l e , t h i s p a p e r d e s c r i b e d t h e k e y p o i n t s o f t h e p r o c e s s s e l e c -t i o n a n d d e s i g n o f t h e s l u d g e a n a e r o b i c d i g e s t i o n i n t h e w a s t e w a t e r t r e a t m e n t p l a n t , i n c l u d i n g s l u d g e a n a e r o b i c d i g e s t i o n p r o c e s s s e l e c t i o n , s l u d g e p r e -t r e a t m e n t , a n a e r o b i c d i g e s t i o n t a n k , m e t h -a n e s y s t e m , u p -l e v e l c l e a n l i q u i d t r e a t m e n t , a n d s l u d g e t r a n s m i s s i o n p i p

详细运行数据对比污泥热水解厌氧消化与常规厌氧消化

详细运行数据对比污泥热水解厌氧消化与常规厌氧消化 热水解厌氧消化是近年来污泥处理的一个新的发展方向。选取小红门污泥处理中心工程运行数据,比较了热水解厌氧消化与常规厌氧消化的操作操作、泥质土壤、消化效果、气体产生量、沼气组成等;以及辅助系统。分析了工程运行中的负荷和余热利用问题,总结了热水解厌氧消化的运行特点,并提出了建议和进一步的优化方向。 1 工程基本情况 热水水解厌氧消化是近年来国内外污泥处理技术的一个新的应用方向。美国华盛顿特区蓝原污水处理厂、英国泰晤士河Davyhulme项目、北京小红门、高碑店、淮坊、高安屯、清河二期污泥处理中心等项目均采用热水厌氧消化技术。其中,华盛顿特区的蓝原污水处理厂、北京的小红门、高碑店污泥处理中心等项目,都是对现有污泥区的改造。本文以国内最早的热水消化厌氧消化小红门污泥处理中心工程(以下简称小红门工程)为例,通过对改造前后消化系统运行情况的比较,分析总结了热水水解厌氧消化与常规厌氧消化的区别和特点。 小红门污泥水热厌氧消化工程位于小红门污水处理厂东北部。污水处理厂建设规模为60万m/d(Kz=1.3),峰值流量78万m/d,污泥处理系统由5个蛋形消化池、3个沼气池、2个干脱硫塔、1个湿脱硫装置、1个沼气室和2台废气燃烧器组成。其中,5个消化池均为蛋形主要消化池,每池容量为12000立方米。

小红门项目于2008年11月12日首次投入使用。生产的沼气用于驱动鼓风机和冬季加热,多余的沼气通过废气燃烧器燃烧。2015年9月,该系统关闭,热水解厌氧消化项目的升级开始。转化内容是增加热水解预处理装置,热水解采用Cambi技术,蒸煮器仍然使用原来的蒸煮器。2016年4月,转型完成后,消化系统(消化池操作次数减少到4个消化池)重新启动。2016年7月18日,随着热水解系统开始投入使用,将常规厌氧消化调整为热水解厌氧消化。2017年3月9日,该系统开始处理外部污泥。 表1为2012年(改造前常规厌氧消化的代表)和2017年(改造后热水水解厌氧消化的代表)污水处理厂进水水质、水量和消化系统。

不同预处理方法对剩余污泥厌氧消化产沼气过程的影响

第28卷第1期2009年1月 食品与生物技术学报Journal of Food Science and Biotechnology Vol.28 No.1Jan. 2009  文章编号:167321689(2009)0120107206 收稿日期:2007212229 基金项目:江苏省高技术研究项目(D G 2006044);江苏省自然科学基金项目(B K2006023)。 3通讯作者:阮文权(19662),男,上海人,教授,工学博士,主要研究环境厌氧生物技术。Email :wqruan @https://www.360docs.net/doc/1318837203.html, 不同预处理方法对剩余污泥厌氧消化 产沼气过程的影响 高瑞丽1, 严群1,2, 邹华1,2, 阮文权31,2 (1.江南大学工业生物技术教育部重点实验室,江苏无锡214122;2.江南大学环境与土木工程 学院,江苏无锡214122) 摘 要:研究了不同预处理方法对剩余污泥固态法厌氧消化产沼气过程的影响。结果表明:不同的预处理方法均可不同程度地提高产气量和甲烷含量。其中,经酶法处理后,剩余污泥前4h 产气速率最快,平均每小时为3129mL/g ;经热处理后,剩余污泥累积产气量最多,为45180mL/g ,比对照提高了230%;而经微波处理后,剩余污泥所产沼气中甲烷质量分数最高,为62126%,比对照增加了130%。 关键词:剩余污泥;厌氧消化;预处理;甲烷中图分类号:X 703;X 705文献标识码:A E ffects of Different Pretreatment of W aste Activated Sludge on Methane Production via Anaerobic Digestion GAO Rui 2li 1 , YAN Qun 1,2 , ZOU Hua 1,2 , RUAN Wen 2quan 1,23 (1.Key Laboratory of Industrial Biotechnology ,Ministry of Education ,Jiangnan University ,Wuxi 214122,China ;21School of Environment and Civil Engineering ,Jiangnan University ,Wuxi 214122,China ) Abstract :In t his manuscript ,effect s of different p ret reat ment met hods on t he met hane p roduction by waste activated sludge were caref ully investigated.It was found t hat :(1)by t reated wit h alkali p rotease ,t he specific rate of gas achieved at t he highest value (3129mL/g vs/h );(2)by t hermally t reated in an autoclave ,t he gas production was 4518mL/g ,higher 230%t han t hat of t he cont rol ;(3)by t reated by microwave irradiation ,t he met hane content was increased to 62126%,higher 130%t han t hat of t he control. K ey w ords :waste activated sludge ,anaerobic digestio n ,p ret reat ment ,met hane 随着国民经济的不断发展,我国城镇工业废水以及生活污水排放量不断增加。为了防止水域污染,改善生态环境,截止到2004年底,我国已建成城市污水处理厂708座,日处理能力达71387×107 m 3。在污水处理过程中,一般会产生占污水体积0102%的污泥,因而数量巨大,目前已成为亟待处 理的城市固体废物之一[1]。目前国内外对污泥厌氧 消化的研究多集中于采用剩余污泥或初沉污泥和剩

污泥厌氧消化的方法和特点

污泥厌氧消化的方法是什么?污泥厌氧消化的阶段有哪些?污泥厌氧消化的特点是什么?污泥厌氧消化在无氧条件下,污泥中的有机物由厌氧微生物进行降解和稳定的过程称为厌氧消化。 污泥中的有机物含量很高,采用好氧法能耗太大,一般采用厌氧消化法:即在无氧的条件下,由兼性菌及专性厌氧细菌降解有机物,最终产物是二氧化碳和甲烷气(或称污泥气、消化气),使污泥得到稳定。所以污泥厌氧消化过程也称为污泥生物稳定过程。污泥厌氧消化是一个极其复杂的过程,多年来厌氧消化被概括为两阶段过程,第一阶段是酸性发酵阶段,有机物在产酸细菌的作用下,分解成脂肪酸及其他产物,并合成新细胞;第二阶段是甲烷发酵阶段,脂肪酸在专性厌氧菌——产甲烷菌的作用下转化成CH4和CO2。1979年,伯力特(Bryant)等人根据微生物的生理种群,提出了厌氧消化三阶段理论,是当前较为公认的理论模式。三阶段消化突出了产氢产乙酸细菌的作用,并把其独立地划分为一个阶段。三阶段消化的第一阶段,是在水解与发酵细菌作用下,使碳水化合物,蛋白质与脂肪水解与发酵转化成由糖、氨基酸、脂肪酸,甘油及二氧化碳、氢等;第二阶段,是在产氢产乙酸菌的作用下,把第一阶段的产物转化成氢、二氧化碳和乙酸。第三阶段,是通过两组生理上不同的产甲烷菌的作用,一组把氢和二氧化碳转化成甲烷,另一组是对乙酸脱羟产生甲烷。 影响污泥消化的主要有以下因素:l)温度:温度影响消化速度,也影响消化深度。温度为5-15℃称低温消化,30-35℃称中温消化,50-55℃称高温消化。高温消化几乎可以杀灭一切病原微生物,但操作管理复杂,加热费用高;中温消化只能杀灭部分病原微生物,低温消化效率很低,所以一般采取中温消化。2)投配率:即每天投入消化池内的生污泥量与池内熟污泥量的百分率。投配率的大小影响池内污泥的PH值和消化速率。投配率小污泥消化速度快而充分,产气量高,但要加大池体积;投配率大,消化速度慢,PH值降低,抑制甲烷细菌的生长,破坏正常的消化过程。一般对于生活污水或水质近似的工业废水, 投配率率以6-12%为宜。3)生熟污泥的混合程度:混合充分,可加速消化过程,提高产气量,因此需要搅拌。4)厌氧条件:甲烷菌是厌氧性微生物,因此要求消化池密封,隔绝空气。以上是绿环(煤质柱状活性炭生产厂家)为您介绍的关于水处理方面的知识,如有疑问,欢迎联系!

我国城市污水厂污泥厌氧消化系统的运行现状

我国城市污水厂污泥厌氧消化系统的运行现状 吴 静, 姜 洁, 周红明, 毕 蕾 (清华大学环境模拟与污染控制国家重点联合实验室,北京100084) 摘 要: 对我国400余座城市污水厂污泥处理工艺的调查表明,目前采用污泥厌氧消化工艺的仅46家,主要采用浓缩/中温厌氧/脱水工艺,采用一级厌氧消化和二级厌氧消化的厂家数量接近,其中仅25家的污泥消化系统正在运行,沼气产量约为14×104m3/d,另有6家在调试。污泥厌氧消化工艺在实际应用中仍存在着较多亟待解决的问题,沼气产率低和利用率不高大大削弱了该工艺的优势。 关键词: 城市污水厂; 污泥处理; 厌氧消化; 沼气 中图分类号:X703.1 文献标识码:B 文章编号:1000-4602(2008)22-0021-04 C u r r e n t O p e r a t i o nS t a t u s o f S l u d g e A n a e r o b i c D i g e s t i o n S y s t e m i n Mu n i c i p a l Wa s t e w a t e r T r e a t m e n t P l a n t s i nC h i n a WUJ i n g, J I A N GJ i e, Z H O UH o n g-m i n g, B I L e i (S t a t e K e y J o i n t L a b o r a t o r y o f E n v i r o n m e n t S i m u l a t i o n a n d P o l l u t i o n C o n t r o l,T s i n g h u a U n i v e r s i t y,B e i j i n g100084,C h i n a) A b s t r a c t: T h er e s u l t so f t h ei n v e s t i g a t i o n o n s l u d g e t r e a t m e n t s y s t e m so v e r400m u n i c i p a l w a s t e w a t e r t r e a t m e n t p l a n t s i n C h i n a s h o wt h a t o n l y a b o u t46p l a n t s h a v e s l u d g e a n a e r o b i c d i g e s t i o n s y s-t e m s,m o s t o f w h i c h a d o p t t h i c k e n i n g/m e s o p h i l i c a n a e r o b i c d i g e s t i o n/d e w a t e r i n g p r o c e s s.A b o u t h a l f o f t h e p l a n t s h a v e o n e-s t a g e a n a e r o b i c d i g e s t i o n s y s t e m s a n d t h e o t h e r h a l f h a v e t w o-s t a g e a n a e r o b i c d i g e s-t i o n s y s t e m s.F o r t h e46p l a n t s,o n l y25p l a n t s o p e r a t e t h e i r a n a e r o b i c d i g e s t i o n s y s t e m s a n d p r o d u c e a- b o u t14×104m3b i o g a s/d,t h e o t h e r6p l a n t s c o m m i s s i o n t h e i r s y s t e m s.T h e r e a r e s o m e u r g e n t p r o b l e m s f o r t h e s l u d g e a n a e r o b i c d i g e s t i o n.T h e l o wb i o g a s y i e l d a n d u t i l i z a t i o n r a t e c o u n t e r a c t s o m e a d v a n t a g e s o f t h e s l u d g e a n a e r o b i c d i g e s t i o n. K e y w o r d s: m u n i c i p a l w a s t e w a t e r t r e a t m e n t p l a n t; s l u d g e t r e a t m e n t; a n a e r o b i c d i g e s t i o n;  b i o g a s 随着我国国民经济的高速发展以及城市化进程的不断加快,城镇生活污水量也大幅增加,并在1999年首次超过工业废水排放量,占全国污水排放总量的52.9%[1]。近年来,城镇生活污水量以年均5%的速度递增,已成为我国水环境的主要污染源。我国城市污水处理率长期偏低,直至20世纪90年代以后,城市污水处理的基础设施建设才被提到日程,全国城市污水处理厂数量迅速增加。2006年城市生活污水处理率达到43.8%[2]。根据国家环境保护“十五”计划,到2010年所有城市的污水处理率不得低于60%,直辖市、省会城市、计划单列市和风景旅游城市的污水处理率不得低于70%。故在今后一段时期,城市污水厂数量仍将持续增加。 伴随城市污水厂的兴建,大量城市污泥产生。2003年我国的城市污泥(干泥)产量估计达到160×104t。城市污泥主要由沉砂池和初沉池产生的初沉污泥(含水率为96%左右)以及好氧生物处理单元产生的剩余污泥(含水率为99.2%~99.6%)组 第24卷 第22期2008年11月 中国给水排水 C H I N AWA T E R&W A S T E WA T E R V o l.24N o.22 N o v.2008

污泥亚临界热水解新技术

最新的污泥处理处置技术 RRS?亚临界热水解技术 RRS?亚临界热水解技术(又称RRS蒸汽热解技术)是针对污泥资源化处理而开发的新一代的热水解技术。该技术突破了传统热水解技术只能处理低含固污泥(即含固率不能高于10%或含水率必须高于90%)的限制,可直接处理(无需预先浆化调质)任何含固率(或含水率)的污泥。RRS?技术通过饱和蒸汽与污泥的热水解反应,破坏污泥的胶状絮体持水结构,将机械方式难以去除的“结合水”释放出来,转化为可通过机械方式脱除的“自由水”,从而实现污泥的无相变脱水,大幅度降低污泥脱水能耗和处理成本,在确保经济可行的前提下,实现污泥的减量化、无害化和稳定化。除此之外,RRS?技术还适用于厨余及餐厨垃圾、禽畜粪便及尸体、食品废弃物、园林废弃物等各种有机废弃物的资源化处理。 RRS?亚临界热水解技术主工艺流程 RRS?亚临界热水解技术应用方案(图) 技术优势与特点 Ω克服含固率局限,处理效率高 RRS?技术克服了传统热水解技术污泥含固率不能高于10%的局限,可直接处理(无需预先浆化调质)含固超过20%(即含水率低于80%)的污泥,效率较传统技术高出1倍以上。

Ω不添加化学药剂,环保、安全 RRS?工艺全过程不添加任何化学药剂,杜绝二次污染风险;同时,全流程封闭运行+高效多级生化除臭系统,确保全流程环保、安全。 Ω占地少,实现源头治污 RRS?系统处理每吨污泥占地只需8平方米,能直接安装于污水厂内,免除征地选址烦恼,实现源头治污,彻底消除污泥转运的二次污染隐患,大幅节省运输成本超过70%。 Ω无相变脱水,节能效果显著 RRS?技术通过原理的创新,实现无相变脱水,大幅降低脱水能耗,较热干化技术节能50%以上。 RRS?技术与热干化脱水能耗比较示意图 Ω真正实现污泥处理处置“四化”目标 ?无害化:高温蒸汽将污泥中的病原体、害虫卵等全部杀灭;通过水解蛋白 与重金属的络合反应和螯合反应消除重金属毒性; ?减量化:经RRS?技术处理,污泥减量化超过80%; ?稳定化和资源化:RRS?技术处理过程不添加任何化学药剂,全部产物均可 资源化利用,且安全、稳定。 Ω技术适用性广,建设周期短 RRS?技术适用于各种成分和含水率的污泥、厨余及餐厨垃圾、禽畜粪便及尸

厌氧消化后污泥中的重金属形态分布

摘要:对污泥经消化后8种重金属的化学形态分析表明,汞、镉、铅、砷几乎全部以稳定形态存在,锌、镍、铜、铬的稳定形态含量亦不同程度地得到增加。 关键词:重金属厌氧消化化学形态 污泥在农业方面的利用日益为人们所关注,但我国城市污水厂的进水中混有大量工业废水,工业废水中所含的重金属在水处理过程中以不同形式由液相向固相转移,最后浓缩到污泥中,因此这些重金属污染物成为污泥农用的最大制约因素。随着环境科学研究的深入,人们逐渐熟悉到污泥中重金属对环境的危害除了与其总量有关外,更大程度上取决于其形态的分布,故污泥中重金属形态分布的研究对污泥的开发利用具有重要的指导意义。 1理论依据 目前,关于自然界固体物中重金属的化学形态被人们广泛接受的理论是Tessier提出的化学试剂分步提取法,它将固体颗粒物中重金属的化学形态分为5种: ①可交换态 主要指吸附在颗粒物上的重金属,水相中重金属离子的组成和浓度变化主要受这部分重金属吸附和解吸过程的影响。 ②碳酸盐结合态 主要指与颗粒物中碳酸盐结合在一起或本身就成为碳酸盐沉淀的重金属。这部分重金属对pH值变化最为敏感,且在酸性条件下易溶解释放。 ③铁锰氧化物结合态 天然水中的铁锰氧化物以铁锰结核或凝聚物形式存在于颗粒上,也有的呈胶膜状覆盖在颗粒上,其是微量重金属极好的吸着剂。与铁锰氧化物结合在一起的或本身就成为氢氧化物沉淀的这部分重金属称为铁锰氧化物结合态。这一部分重金属在氧化还原电位降低时轻易释放出来。 ④硫化物及有机结合态 指重金属硫化物沉淀及与各种形态有机质结合的重金属,这部分重金属被认为较稳定。 ⑤残渣态 指存在于石英、粘土矿物等晶格里的重金属。其主要来源于天然矿物,通常不能被生物吸收,是生物无法利用的部分。 综上所述,前三种形态稳定性差,后两种形态稳定性强。也就是说,重金属污染物的危害主要来自前三种不稳定的重金属形态。

厌氧微生物的培养驯化及成熟污泥的特征

厌氧微生物的培养驯化及成熟污泥的特征 The final edition was revised on December 14th, 2020.

厌氧消化系统试运行的一个主要任务是培养厌氧污泥,即消化污泥。厌氧活性污泥培养的主要目的是厌氧消化所需要的甲烷细菌和产酸菌,当两种菌种达到动态平衡时,有机质才会被不断地转换为甲烷气,即厌氧沼气。 (一)培菌前的准备工作 厌氧消化的启动,就是完成厌氧活性污泥的培养或甲烷菌的培养。当厌氧消化池经过满水试验和气密性试验后,便可开始甲烷菌的培养。 (二)培菌方法 污泥的厌氧消化中,甲烷细菌的培养与驯化方法主要有两种:和。 接种污泥一般取自正在运行的厌氧处理装置,尤其是城市污水处理厂的消化污泥,当液态消化污泥运输不便时,可用污水厂经机械脱水后的干污泥。在厌氧消化污泥来源缺乏的地方,可从废坑塘中取腐化的有机底泥,或以认粪、牛粪、猪粪、酒糟或初沉池底泥代替。大型污水处理厂,若同时启动所需接种量太大,可分组分别启动。 是向厌氧消化装置中投入容积为总容积的10%~30%的厌氧菌种污泥。接种污泥一般为含固率为3%~5%的湿污泥。再加入新鲜污泥至设计液面,然后通入蒸汽加热,升温速度保持1℃/h,直至达到消化温度。如污泥呈酸性,可人工加碱调整pH至~。维持消化温度,稳定一段时间(3-5d)后,污泥即可成熟。再投配新鲜污泥并转入正式运行。此法适用于小型消化池,因为对于大型消化池,要使升温速度为1℃ /h,需热量较大,锅炉供应不上。

指向厌氧消化池内逐步投入生泥,使生污泥自行逐渐转化为厌氧活性污泥的过程。该方法要使活性污泥经历一个由好氧向厌氧的转变过程,加之厌氧微生物的生长速率比好氧微生物低很多,因此培养过程很慢,一般需历时6~10个月左右,才能完成甲烷菌的培养。 或者通过加热的方法加速污泥的成熟:将每日产生的新鲜污泥投入消化池,待池内的污泥量为一定数量时,通入蒸汽。升温速度控制在1℃/h。当池内温度升到预定温度时,可减少蒸汽量,保持温度不变,并逐日投加一定数量的新鲜污泥,直至达到设计液面时停止加泥。整个成熟过程一直维持恒温,成熟时间约需30~40d。污泥成熟后,即可投配新鲜污泥并转入正式运行。 (三)培菌注意事项 厌氧消化系统的处理主要对象是活性污泥,不存在毒性问题。但是厌氧消化菌繁殖速度太慢,为加快培养启动过程,除投入接种污泥以外,还应做好厌氧污泥的加热。 厌氧消化污泥的培养,初期生污泥投加量与接种污泥的数量及培养时间有关,早期可按设计污泥量的30%~50%投加,到培养经历了60d 左右,可逐渐增加投加量。若从监测结果发现消化不正常时,应减少投泥量。 厌氧消化系统处理城市污水处理厂的活性污泥,由于活性污泥中碳、氮、磷等营养是均衡的,能够适应厌氧微生物生长繁殖的需要。因此,即使在厌氧消化污泥培养的初期也不需要和处理工业废水那样,加入营养物质。

污泥厌氧消化简介

简介: 污泥厌氧消化是指污泥在无氧条件下,由兼性菌和厌氧细菌将污泥中的可生物降解的有机物分解成二氧化碳、甲烷和水等,使污泥得到稳定的过程,是污泥减量化、稳定化的常用手段之一。 机理: 污泥厌氧消化是一个多阶段的复杂过程,完成整个消化过程,需要经过三个阶段(目前公认的),即水解、酸化阶段,乙酸化阶段,甲烷化阶段。各阶段之间既相互联系又相互影响,各个阶段都有各自特色微生物群体。 水解酸化阶段: 一般水解过程发生在污泥厌氧消化初始阶段,污泥中的非水溶性高分子有机物,如碳水化合物、蛋白质、脂肪、纤维素等在微生物水解酶的作用下水解成溶解性的物质。水解后的物质在兼性菌和厌氧菌的作用下,转化成短链脂肪酸,如乙酸、丙酸、丁酸等,还有乙醇、二氧化碳。 乙酸化阶段: 在该阶段主要是乙酸菌将水解酸化产物,有机物、乙醇等转变为乙酸。该过程中乙酸菌和甲烷菌是共生的。 甲烷化阶段: 甲烷化阶段发生在污泥厌氧消化后期,在这一过程中,甲烷菌将乙酸(CH3COOH)和H2、CO2分别转化为甲烷,如下: 2CH3COOH→2CH4↑+ 2CO2↑ 4H2+CO2→CH4+ 2H2O 在整个厌氧消化过程中,由乙酸产生的甲烷约占总量的2/3,由CO2和H2转化的甲烷约占总量的1/3。 影响因素: 温度: 在污泥厌氧消化过程中,温度对有机物负荷和产气量有明显影响。根据微生物对温度的适应性,可将污泥厌氧消化分为中温(一般30~36℃)厌氧消化和高温(一般50~55℃)厌氧消化。研究表明,在污泥厌氧消化过程中,温度发生±3℃变化时,就会抑制污泥消化速度;温度发生±5℃变化时,就会突然停止产气,使有机酸发生大量积累而破坏厌氧消化。 酸碱度: 研究表明,污泥厌氧消化系统中,各种细菌在适应的酸碱度范围内,只允许在中性附件波动。微生物对pH的变化非常敏感。水解与发酵菌及产氢、产乙酸菌适应的pH范围为5.0~6.5,甲烷菌适应的pH范围为6.6~7.5。如果水解酸化和乙酸化过程的反应速度超过甲烷化过程速度,pH就会降低,从而影响产甲烷菌的生活环境,进而影响污泥厌氧消化效果,然而,由于消化液的缓冲作用,在一定范围内避免这种情况的发生。 消化液是污泥厌氧消化过程血红有机物分解而产生的,其中含有除了CO2和NH3外,还有以NH4NCO3形态的NH4+,HCO3-和H2CO3形成缓冲体系,平衡小范围的酸碱波动。如下:H+ + HCO3- ═H2CO3 有毒物质浓度: 在污泥厌氧消化中,每一种所谓有毒物质是具有促进还是抑制甲烷菌生长的作用,关键在于它们的毒阈浓度。低于毒阈浓度,对甲烷菌生长有促进作用;在毒阈浓度范围内,有中等抑制作用,随浓度逐渐增加,甲烷菌可被驯化;超过毒阈上限。则对微生物生长具有强烈的抑制作用。 污泥厌氧消化分类:

污泥厌氧消化系统

污泥厌氧消化系统 1 引言 随着城市规模的扩大和污水处理厂处理效率的提高,剩余污泥产量逐年增加.据统计,我国城市污泥年产量已达3000万吨(以80%含水率计),其中80%未得到妥善处理.在众多的污泥处理方法中,厌氧消化技术能够同时实现污泥减量和回收能源,在国内外得到了广泛应用.然而,目前污泥厌氧消化的效率不高,尤其是我国污水处理厂厌氧消化池的运行效果不够理想,设计和运行缺乏理论指导.对于一个厌氧消化系统,物料的流变特性是工艺设计和运行中的重要参数,对传质、传热、搅拌和物料输送等厌氧消化单元有重要意义.在厌氧消化过程单元设计中,必须清楚原料的流体类型,计算出原料的流变参数,才能对厌氧消化、特别是高浓度物料厌氧消化进行合理的工艺设计以及设备选用与开发.此外,原料的流变特性也是厌氧消化工艺控制的重要依据. 由于流变特性在厌氧消化工艺设计和运行中的重要作用,一些学者对污泥的流变特性做了初步研究.Pollice和Laera研究了在不同水力停留时间下污泥以黏度表征的流变特性.Chen和Hashimoto对新鲜污泥的流变特性进行了研究,试验的浓度变化范围是2.71%~6.53%,温度变化范围为 9.5~26 ℃,这个较低的浓度和温度变化范围不能适应如今广泛使用的中高温(>35 ℃)、高浓度(>8%)厌氧消化.Sozanski 等用旋转流变仪对污泥进行流变试验研究,对流变曲线进行分析,设计了流变模型,并针对模型给出了经验公式和一些预测参数值来探讨污泥在不同浓度和温度下的流变特性.Bos使用毛细管流变仪和旋转流变仪对污泥流变特性进行试验研究,建立了温度和含水率对污泥流变特性影响的流变方程. 目前,关于污泥厌氧消化原料流变特性的研究主要集中在污泥本身,而对于餐厨垃圾与污泥混合物料的流变特性研究,国内外却鲜有报道.近年来,国内外采用餐厨垃圾与污泥联合厌氧发酵的研究及沼气工程日益增多,大部分研究都集中在餐厨垃圾对泥质的改善方面,而对于添加餐厨垃圾对污泥流变特性的影响研究却很少,导致混合发酵原料流变特性参数仍然缺乏,制约了厌氧消化单元过程的优化设计. 本文对4种主要的厌氧消化原料——脱水污泥、脱水污泥与餐厨垃圾混合物、剩余污泥以及剩余污泥与餐厨垃圾混合物的流变特性进行了研究,考察了物料浓度和温度对流变特性参数的影响,并拟合了相应模型,以期为厌氧消化设备选用及工艺设计提供基础参数. 2 材料和方法 2.1 试验材料 脱水污泥(dewatered sludge,以下简称DS)和剩余污泥(waste activated sludge,以下简称WAS)取自天津市张贵庄污水处理厂,餐厨垃圾取自天津大学学生食堂,原料取回后保存于4 ℃冰箱冷藏待用,餐厨垃圾首先经人工分选出其中的杂物,包括塑料、纸类及骨头等,然后用破碎机破碎后搅匀冷藏.DS的总固体浓度(TS)和挥发性固体浓度(VS)分别为16.4%和9.4%,WAS的TS 和VS浓度分别为2.6%和1.4%,破碎后餐厨垃圾的TS和VS浓度分别为19.3%和18.9%. 2.2 试验方法

(完整版)第三节污泥的厌氧消化

8.3 污泥的厌氧消化 厌氧消化法:在无氧的条件下,由兼性菌及专性厌氧细菌降解有机物,最终产物是二氧化碳和甲烷气(biogas),是污泥得到稳定。 8.3.1 厌氧消化的机理(间歇实验) 二阶段理论:产酸阶段----产甲烷阶段 四阶段理论:水解、酸化、酸退、甲烷化 根据参与甲烷发酵的不同营养类群微生物对基质的代谢厌氧降解过程分为三个阶段: 三阶段理论:Toerien et al (1970)Substrate flow in anaerobic digestion, 5th International Conference on water pollution research, San Francisco,CA. 书上:Bryant 1979 CH4+2H2O methane →2CH4+2CO2 ) (纤维素分解菌产氢产乙酸菌甲烷杆菌球菌 碳水化合物分解菌CH3CH2COOH+2H2O---CH3COOH+3H2+CO2蛋白质分解菌,脂肪分解菌) 产酸菌是兼性厌氧菌和专性厌氧菌,对PH,VFA,温度变化适应性强,增殖速度快;甲烷菌是专性厌氧菌,PH=6.4-7.4,对PH,VFA,温度变

化敏感,增殖速度慢。 产甲烷阶段的能量分析: (以乙酸钠为例) 在好氧消化时: C2H3O2Na+2O2NaHCO3+H2O+CO2+848.8 KJ /mol 在厌氧消化时: C2H3O2Na +H2 O NaHCO3+CH4+29.3 KJ /mol 在底物相同的条件下,厌氧消化产生的能量仅是好氧消化的1/20 –1/30.这些能量大部分都用于维持细菌的生活,而只有很少能量由于细胞合成.(这就是厌氧法产生剩余污泥量少的缘故) 虽然厌氧消化过程是要经历多个阶段,但是在连续操作的厌氧消化反应器中这几个阶段同时存在,并保持某种平衡状态. 8.3.2厌氧消化动力学(与好氧相似) 甲烷发酵阶段是厌氧消化速率的控制因素。动力学方程式: 有机物降解 细菌增殖 S K kSX dt dS S + = - bX dt dS Y dt dX - ? ? ? ? ?- =

污泥厌氧消化池设计说明书

课程设计 课程名称_固体废物利用与处置B课程设计_ 题目名称_ 260m3/d污泥厌氧消化池设计 学生学院_ _ 环境科学与工程__ _ 专业班级_ _ 环境科09级(2)班__ _ 学号 28 学生姓名_________余笃凝 ___ _____ 指导教师_________戴文灿 ___ ____ 2012 年 6 月 25 日

摘要 厌氧消化或称厌氧发酵是一种普遍存在于自然界的微生物过程。厌氧消化处理是指在厌氧状态下利用厌氧微生物使固体废物中的有机物转化为CH4和CO2的过程。厌氧消化池多用于大型污水处理场的脱水剩余污泥的厌氧处理,也可用以处理高浓度有机工业废水、悬浮固体含量较高和颗粒较大的有机废水、含难降解有机物的工业废水,也以被成功地应用于肉类食品工业废水的处理。厌氧发酵反应与固液分离在同一个池内进行,结构较为简单。此次课程设计要求我们在给定参数下设计日处理量为260m3 的中温定容式污泥厌氧消化池。 关键词:固体废物厌氧消化微生物有机物

Abstract Anaerobic digestion(some says anaerobic fermentation)is a kind of microbial process which commonly finds in nature area. Anaerobic digestion treatment means that use anaerobic microbe in order to make organic matter from solid waste into CH4 and CO2 process in anaerobic digestion pools usually used in large sewage farm to treats dewatering surplus sludge anaerobicly,it also can be used to deal with high concentration of organic industrial waste water, higher content of suspended solid and the larger particle organic wastewater, including refractory organics industrial wastewater, what’s more,it can applied successfully in the meat food industrial wastewater treatment. Anaerobic fermentation reaction and solid-liquid separation are react in the same pool so the structure is simple. The course design require us to design the steady increases type of sludge anaerobic digestion pool which capacity of 260 m3 under the given parameters. Keywords: solid waste anaerobic digestion microbial organic

热水解-高温厌氧消化工艺处理污泥的方法

热水解-高温厌氧消化工艺处理污泥的方法 2011年我国污泥产量约2188万t,预估到2015年我国污泥产量将超过3000万t,已成为我国最紧迫的环境问题之一[1]. 其中接近70%的直接填埋,15%去向不明,存在突出的二次污染. 厌氧消化是一项广泛应用的污泥稳定化、减量化、无害化、资源化技术,并且能够回收沼气. 欧盟地区50%以上污水厂均采用污泥厌氧消化[2]. 各国厌氧消化比例:比利时67%,丹麦50%,法国49%,德国64%,希腊97%,意大利56%,卢森堡81%,西班牙65%[3]. 厌氧消化也是我国鼓励的主要污泥处理技术. 国家近年发布的《城镇污水处理厂污泥处理处置技术指南(试行)》、《“十二五”期间污泥处置建议》和《城镇污水处理厂污泥处理处置及污染防治技术政策(试行)》等均明确提出“大中型厂宜优先选用厌氧消化污泥处理工艺”、“鼓励城镇污水处理厂采用污泥厌氧消化工艺”等. 但目前为止,全国仅50余家污水厂建有污泥厌氧消化设备,且40%左右停运[4]. 全国经过厌氧处理的污泥不足2%. 高含固率的污泥厌氧消化(简称高固消化,进泥含固率8%以上)是近年受到关注的污泥消化新技术[5, 6, 7, 8]. 与传统污泥厌氧消化(进泥含固率3%~5%)相比,单位投资可减少40%~50%[9],又明显节省加热量,故经济优势明显. 另一方面,我国的污泥有机物含量明显低于欧美,也是厌氧技术推广难的原因之一. 考虑到污泥消化的速控步骤是污泥水解,而我国污泥有机物含量低的情况,提出了“热水解-高温厌氧消化”的高固污泥处理工艺. 该工艺的主要特点包括:①采用70℃热水解作为预处理来促进细胞溶解; ②采用高温厌氧消化来加快消化. 目前高固消化的研究还不够充分,尤其缺乏设计和实际运行经验. 本研究具有较好的参考价值. 1 材料与方法 1.1 工艺流程 本中试在广州市某水质净化厂进行,共持续9个多月. 中试的工艺流程见图 1. 进泥在水解罐中水解,之后用泵打入高温厌氧罐. 热水解罐和高温罐的有效容积分别为0.6 m3和2.0 m3,前者的反应温度为70℃±1℃,后者为55℃±1℃. 热水解的固体停留时间(solid retention time,SRT)为3 d. 图 1 工艺流程示意 1.2 接种污泥和处理的污泥 接种污泥为中温厌氧消化污泥,接种挥发性悬浮固体(volatile suspended solid,VSS)浓度为17.01 g ·L-1,有机物含量为57%. 试验所用进泥为污水厂的脱水剩余污泥配制,含固率为8%~9%,有机物含量为59.76%~69.94%,VSS为52.95~58.45 g ·L-1,SCOD为1268~3443 mg ·L-1,氨氮60~336 mg ·L-1. 该污水厂进水中工业废水约占70%左右. 1.3 有机物去除率 有机物去除率以VSS去除率表示,其计算是基于相同SRT下的稳定运行阶段的物料平衡得出:

亚洲最大的污水处理厂——白龙港污泥厌氧消化工程设计实例

亚洲最大的污水处理厂——白龙港污泥厌氧消化工程设计实例! 白龙港污水处理厂位于浦东新区合庆镇朝阳村,是亚洲最大的污水处理厂,同时其污泥处理工程是目前亚洲最大的污泥处理项目。白龙港污泥处理工程在对国内外污泥处理处置经验进行分析总结的基础上,采用了浓缩中温厌氧消化、脱水干化的处理工艺。 1、工程规模 上海市白龙港污水处理厂升级改造后总规模200万 m3/d,本工程污泥处理的对象是其产生的化学污泥、初沉污泥和剩余污泥,根据实际进水水质确定污泥量为204t DS/d( 湿污泥量 1020 t/d, 以含水率 80% 计, 以下同),按照设计水质产生的污泥量为268 t DS/d,浓缩脱水系统设计规模按设计水质设计,厌氧消化系统按现状水质设计并按设计水质复核,污水处理厂实际和设计进水水质见表 1。

2、工艺流程 污泥处理采用重力、机械浓缩中温厌氧消化脱水部分干化的处理工艺,工艺流程见图 1。 污泥处理工程由 6 个系统组成: (1) 浓缩系统。对污水处理工程产生的化学污泥、初沉污泥和剩余污泥进行浓缩处理,将污泥含固率提高到约5% ,减小污泥消化池容积,降低工程造价。为达到含固率目标,初沉污泥和化学污泥采用重力浓缩,剩余污泥经重力浓缩后再进行机械浓缩。 (2) 厌氧消化系统。对浓缩污泥进行中温一级厌氧消化,降解污泥中的有机物,产生污泥气供消化系统和干化系统利用,使污泥得到稳定化和减量化。 (3) 污泥气利用系统。对消化产生的污泥气进行处理、储存和利用,作为污泥消化系统的污泥加热热源和脱水污泥干化处理系统的干化热源,污泥气脱硫采用生物脱硫和干式脱硫分级串联组合工艺。

(4) 脱水系统。对消化污泥进行脱水,降低污泥含水率,减小污泥体积,并将脱水后的污泥输送至污泥干化处理系统进行干化处理,或直接输送至存料仓储存后外运。 (5) 干化系统。利用污泥消化产生的污泥气对部分脱水污泥进行干化处理,进一步提高污泥含固率。污泥干化处理系统采用消化处理产生的污泥气作为能源,以天然气作为备用能源,污泥干化能力按在满足消化处理条件下可利用的气量确定。 (6) 配套水系统。配套水系统分2 部分,一部分是回用水处理系统,从污水处理排放管中取水,经混凝、前加氯、过滤、后加氯处理,提供污泥干化处理系统的冷却用水;另一部分是污泥液处理系统,对污泥处理过程中产生的污泥液,包括浓缩池上清液、离心浓缩滤液、消化池上清液、离心脱水滤液等,经调节池后水泵提升至高效沉淀池处理,去除污泥液中的磷,出水排至污水处理区进行处理。 3、工程设计 1、浓缩系统

相关文档
最新文档